5,952
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Quantifiable risk–benefit assessment of micronutrients: From theory to practice

, , &

References

  • Arkbåge, K., Verwei, M., Havenaar, R. and Witthöft, C. (2003). Bioaccessibility of folic acid and (6S)-5-methyltetrahydrofolate decreases after the addition of folate-binding protein to yogurt as studied in a dynamic in vitro gastrointestinal model. J. Nutr. 133(11):3678–83.
  • Blakley, R. L. (1984). Dihydrofolatereductase. In: Folates and Pterins: Chemistry and Biochemistry of Folates (volume 1), pp191–244. Blakley, R. L., Benkovic, S. J., editors. Wiley, New York.
  • Bruins, M.J., et al. (2015). Addressing the risk of inadequate and excessive micronutrient intakes: traditional versus new approaches to setting adequate and safe micronutrient levels in foods. Food Nutr. Res. 59.
  • Casgrain, A., et al. (2010). Micronutrient bioavailability research priorities. Am. J. Clin. Nutr. 91:1423S–1429S.
  • Duque, X., et al. (2014). Effect of supplementation with ferrous sulfate or iron bis-glycinate chelate on ferritin concentration in Mexican schoolchildren: a randomized controlled trial. Nutr. J. 13:71–81.
  • EFSA. (2004). Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of iron. EFSA J. 125:1–34.
  • EFSA. (2006). Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the commission related to ferrous bisglycinate as a source of iron for use in the manufacturing of foods and in food supplements. EFSA J. 299:1–17.
  • EFSA. (2006). Tolerable upper intake levels for vitamins and minerals, scientific committee on food and scientific panel on dietetic products, nutrition and allergies. ISBN: 9291990140; Available at http://www.efsa.europa.eu/en/ndatopics/docs/ndatolerableuil.pdf.
  • EFSA. (2010a). Scientific opinion on principles for deriving and applying dietary reference values. EFSA J. 8(3):1458.
  • EFSA. (2010b). Guidance on human health risk-benefit assessment of foods. EFSA J. 8(7):1673.
  • EFSA. (2012). Guidance on selected default values to be used by the EFSA scientific committee, scientific panels and units in the absence of actual measured data. EFSA J. 10(3):2579.
  • EFSA. (2014). Scientific opinion on dietary reference values for folate. EFSA J. 12(11):3893.
  • EFSA. (2015a). Available at http://www.efsa.europa.eu/en/datexfoodcdb/datexfooddb.
  • EFSA. (2015b). Scientific opinion on dietary reference values for iron. EFSA J. 13(10):4254.
  • ERNA/EHPM. (2004). Vitamin and mineral supplements: a risk management model. ISBN 9080920614. Pgs. 1–23.
  • Etcheverry,   et al. (2012). Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc and vitamins B6, B12, D and E. Front. Physiol. 3:1–22.
  • European Commission. (2006). Discussion paper on the setting of maximum and minimum amounts for vitamins and minerals in foodstuffs. Available at http://ec.europa.eu/food/food/labellingnutrition/supplements/discus_paper_amount_vitamins.pdf.
  • European Commission. (2007). Orientation paper on the setting of maximum and minimum amounts for vitamins and minerals in foodstuffs. Reference no. Sanco/E4/FDA/bs(2007)D/540510. Pgs. 1–23.
  • Fairweather-Tait, S. J., et al. (2011). Risk-benefit analysis of mineral intakes: case studies on copper and iron. Proc. Nutr. Soc. 70:1–9.
  • Ferrari, P., et al. (2012). Treatment of mild non-chemotherapy-induced iron deficiency anemia in cancer patients: comparison between oral ferrous bisglycinate chelate and ferrous sulfate. Biomed Pharmacother. 66(6):414–418. doi: 10.1016/j.biopha.2012.06.003.
  • Flynn, A., et al. (2009). Intake of selected nutrients from foods, from fortification and from supplements in various European countries. Food Nutr.Res. 12:1–51.
  • Gregory, J. F. (1995). The bioavailability of folate. In: Folate: Nutritional and Clinical Perspectives (Bailey, L., ed), pp. 195–235. New York: Marcel Dekker.
  • Gregory, J. F. (2001). Bioavailability of nutrients and other bioactive components from dietary supplements. case study: Folate bioavailability. J. Nutr. 131:1376S–1382S.
  • IOM National Research Council. (1998). Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. The National Academies Press, Washington, DC. Available at http://www.nap.edu/catalog/6015.html.
  • IOM National Research Council. (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; Available at http://www.nap.edu/catalog/10026.html.
  • IOM National Research Council. (2014). List of dietary reference intakes. Available at http://iom.edu/Activities/Nutrition/SummaryDRIs/∼/media/Files/Activity%20Files/Nutrition/DRIs/New%20Material/5DRI%20Values%20SummaryTables%2014.pdf.
  • Milman, N., et al. (2014). Ferrous bisglycinate 25 mg iron is as effective as ferrous sulfate 50 mg iron in the prophylaxis of iron deficiency and anemia during pregnancy in a randomized trial. J. Perinat. Med. 42(2):197–206. doi: 10.1515/jpm-2013-0153.
  • NHANES: National Health and Nutrition Examination Survey of the US Center for Disease Control and Prevention. Available at http://www.cdc.gov/nchs/nhanes.htm.
  • NTP. (2015). National toxicology program. Draft NTP monograph for the expert panel: identifying research needs for assessing safe use of high intakes of folic acid. (Available at http://ntp.niehs.nih.gov/ntp/about_ntp/ntpexpanel/2015/draft_monograph_folic_acid_508.pdf; July, 2015).
  • Öhrvik, V. (2009). Folate bioavailability in vitro experiments and human trials. Doctoral thesis of the Swedish University of Agricultural Sciences, Uppsala, ISBN 978-91-576-7410-4.
  • Palou, A., et al. (2009). Integration of risk and benefit analysis–the window of benefit as a new tool. Cr. Rev. Food Sci.Nutr. 49(7):670–680.
  • Pentieva,   et al. (2004). The short-term bioavailabilities of (6S)-5-methyltetrahydrofolate and folic acid are equivalent in men. Human Nutr.Metab. 134:580–585.
  • Pietzrik, K., et al. (2010). Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 49(8):535–548.
  • Prinz-Langenohl, R., et al. (2003). Effect of folic acid preload on the bioequivalence of [6S]-5-methyltetrahydrofolate and folic acid in healthy volunteers. J. Inherit. Metab. Dis. 26(Suppl 1):124.
  • Renwick, A. G., et al. (2004). Risk-benefit analysis of micronutrients. Food Chem.Toxicol. 42(12):1903–1922.
  • Richardson, D. P. (2014). Nutritional risk analysis approaches for establishing maximum levels of vitamins and minerals in food (dietary) supplements. Prepared on behalf of IADSA. Available at http://www.vitaminsinmotion.com/fileadmin/data/pdf/Publications/IADSA_Nutritional_risk_appraoches_for_establishing_max_levels_of_vits___minerals_in_food_supplements.pdf.
  • Rossum, C. T. M. van, et al. (2011). Dutch National Food Consumption Survey 2007-2010. RIVM Report 350050006. Available at http://www.rivm.nl/bibliotheek/rapporten/350050006.pdf
  • Shea, B., et al. (2013). Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis (Review). Cochrane Database Syst. Rev. 5. DOI: 10.1002/14651858.CD000951.pub2.
  • Tijhuis, M. J., et al. (2012). State of the art in benefit-risk analysis: Food and nutrition. Food Chem. Toxicol. 50:5–25.
  • van Ommen, B., et al. (2009). Challenging homeostasis to define biomarkers for nutrition related health. Mol. Nutr. Food Res. 53(7):795–804.
  • van Ommen, B., et al. (2010). The micronutrient genomics project: A community-driven knowledge base for micronutrient research. Genes. Nutr. 5:285–296.
  • Verkerk, R. (2010). The paradox of overlapping micronutrient risks and benefits obligates risk/benefit analysis. Toxicology 278(1):27–38.
  • Yang, T. L., et al. (2005). A long-term controlled folate feeding study in young women supports the validity of the 1.7 multiplier in the dietary folate equivalency equation. J. Nutr. 135:1139–1145.