2,841
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Ugly but tasty: A systematic review of possible human and animal health risks related to entomophagy

, , , , &

References

  • Adámková, A., Kouřimská, L., Borkovcová, M., Mlček, J. and Bednářová, M. (2014). Calcium in edible insects and its use in human nutrition. Potravinarstvo: Sci. J. Food Ind. 8:233–38.
  • Adamolekun, B. and Ibikunle, F. R. (1994). Investigation of an epidemic of seasonal ataxia in Ikare, western Nigeria. Acta Neurologica Scand. 90:309–11.
  • Adebowale, Y. A., Adebowale, K. O., Ogentokun, M. O.(2005). Evaluation of nutritive properties of the large African cricket (Gryllidae sp). Karachi, PAKISTAN, Pakistan Council of Scientific and Industrial Research.
  • Adeduntan, S. A. (2005). Nutritonal and antinutritional characteristics of some insects for againg in Akure forest reserve Ondo State, Nigeria. J. Food Technol. 3:563–67.
  • Aigbodion, F. I., Egbon, I. N., and Erukakpomren, E. (2012). A preliminary study on the entomophagous response of Gallus gallus domesticus (Galliformes: Phasianidae) to adult Periplaneta americana (Blattaria: Blattidae). Int. J. Tropical Insect Sci. 32:123–25.
  • Alegbeleye, W. O., Obasa, S. O., Olude, O. O., Otubu, K., and Jimoh, W. (2012). Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus L.) for African catfish Clarias gariepinus (Burchell. 1822) fingerlings. Aquaculture Res. 43:412–20.
  • Assielou, B., Due, E. A., Koffi, M. D., Dabonne, S., and Kouame, P. L. (2015). Oryctes owariensis larvae as good alternative protein source: nutritional and functional properties. Sciencedomain Int. 8:1–9.
  • Atteh, J. O. and Ologbenla, F. D. (1993). Replacement of fish meal with maggots in broiler diets: Effects on performance and nutrient retention. Nigerian J.Animal Prod. 20:44–49.
  • Azad Thakur, N. S. and Firake, D. M. (2012). Ochrophora montana (Distant): A precious dietary supplement during famine in northeastern Himalaya. Curr.Sci. 102:845–46.
  • Barennes, H., Phimmasane, M. and Rajaonarivo, C. (2015). Insect consumption to address undernutrition, a national survey on the prevalence of insect consumption among adults and vendors in laos. PloS One 10:e0136458.
  • Barre, A., Caze-Subra, S., Gironde, C., Bienvenu, F., Bienvenu, J. and Rougé, P. (2014). Entomophagie et risque allergique. Revue Française d'Allergologie 54:315–21.
  • Bauserman, M., Lokangaka, A., Gado, J., Close, K., Wallace, D., Kodondi, K. K., Tshefu, A., and Bose, C. (2015). A cluster-randomized trial determining the efficacy of caterpillar cereal as a locally available and sustainable complementary food to prevent stunting and anaemia.Public Health Nutrition 18:1785–92.
  • Belluco, S. (2009). Insetti per uso alimentare umano: aspetti nutrizionali e igienico-sanitaried. ^eds. Facoltá di Medicina Veterinaria, Università degli studi di Padova.
  • Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C., Ricci, A. and Paoletti, M. G. (2015). Edible insects: a food security solution or a food safety concern? Animal Frontiers 5:25–30.
  • Bovera, F., Piccolo, G., Gasco, L., Marono, S., Loponte, R., Vassalotti, G., Mastellone, V., Lombardi, P., Attia, Y. A., and Nizza, A. (2015). Yellow mealworm larvae (Tenebrio molitor L.) as a possible alternative to soybean meal in broiler diets. Br. Poultry Sci. 56:569–75.
  • Braide, W. and Nwaoguikpe, R. N. (2010). Microbiological and nutritional status of an edible caterpillar (Rhynchophorus phoenicis).Curr. Trends Microbiology 6:61–68.
  • Broekman, H., Knulst, A., den Hartog Jager, S., Monteleone, F., Gaspari, M., de Jong, G., Houben, G., and Verhoeckx, K. (2015). Effect of thermal processing on mealworm allergenicity. Mol. Nutr. Food Res. 59:1855–64.
  • Cheseto, X., Kuate, S. P., Tchouassi, D. P., Ndung'u, M., Teal, P. E. and Torto, B. (2015). Potential of the desert locust schistocerca gregaria (Orthoptera: Acrididae) as an unconventional source of dietary and therapeutic sterols. PloS One 10:e0127171.
  • Chrappa, V., Peter, V., Straznicka, H., Sabo, V., Abelova, H., and Strozyk, Z. (1990). Production effects of feeding housefly (Musca domestica L.) larvae and pupae to broiler chicks. Sci. Agriculturae Bohemoslovaca 22:201–8.
  • Chrappa, V., Peter, V., Stróžyk, Z., and Slámečka, J. (1990). The effects of the feeding of poultry dung cultured by housefly (Musca domestica L.) larvae on the efficiency of broiler chicks. Sci. Agriculturae Bohemoslovaca 22:131–38.
  • Collavo, A., Glew, R. H., Huang, Y. S., Chuang, L. T., Bosse, R. and Paoletti, M. G. (2005). House cricket small-scale farminged. ^eds. Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Enfield, Science Publishers, Inc., 519–44.
  • DeFoliart, G. R., Finke, M. D. and Sunde, M. L. (1982). Potential value of the Mormon cricket (Orthoptera: Tettigoniidae) harvested as a high-protein feed for poultry. J. Econ. Entomology 75:848–52.
  • Despins, J. L. and Axtell, R. C. (1995). Feeding behavior and growth of broiler chicks fed larvae of the darkling beetle, Alphitobius diaperinus. Poultry Sci. 74:331–6.
  • Dhaliwal, J. S., Virk, R. S. and Atwal, A. S. (1980). The use of house fly (Musca domestica Linnaeus) pupae meal in broiler mash. Indian J. Poultry Sci. 15:119–22.
  • Ekpo, K. E. (2011). Nutritional and biochemical evaluation of the protein quality of four popular insects consumed in Southern Nigeria. Arch. Appl. Sci. Res. 3:428–44.
  • Ekpo, K. E. (2011). Effect of processing on the protein quality of four popular insects consumed in Southern Nigeria. Arch. Appl. Sci. Res. 3:307–26.
  • Enghoff, H., Manno, N., Tchibozo, S., List, M., Schwarzinger, B., Schoefberger, W., Schwarzinger, C. and Paoletti, M. G. (2014). Millipedes as food for humans: Their nutritional and possible antimalarial value-a first report. Evidence-Based Complementary and Alternative Medicine: eCAM 2014:651768.
  • Fasakin, E. A., Balogun, A. M. and Ajayi, O. O. (2003). Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquaculture Res. 34:733–38.
  • Fontaneto, D., Tommaseo-Ponzetta, M., Galli, C., Risé, P., Glew, R. H. and Paoletti, M. G. (2011). Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecology of food and nutrition. Ecology Food Nutrition 50:351–67.
  • Gado, M. S., El Aggory, S. M., Abd El Gawaad, A. A. and Mahmoud, A. K. (1982). The possibility of applying insect protein in broiler rations. Res. Bull. - Ain-Shams University.
  • Gawaad, A. A. A. and Brune, H. (1979). Insect protein as a possible source of protein to poultry1. Z. für Tierphysiologie Tierernährung Futtermittelkunde 42:216–22.
  • Hernandez-Flores, L., Llanderal-Cazares, C., Guzman-Franco, A. W. and Aranda-Ocampo, S. (2015). Bacteria present in Comadia redtenbacheri Larvae (Lepidoptera: Cossidae). J. Med. Entomol. 52:1150–8.
  • Hwangbo, J., Hong, E. C., Jang, A., Kang, H. K., Oh, J. S., Kim, B. W. and Park, B. S. (2009). Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol./Acad. Environ. Biol. India 30:609–14.
  • Hyun, S. H., Kwon, K. H., Park, K.-H., Jeong, H. C., Kwon, O., Tindwa, H., and Han, Y. S. (2012). Evaluation of nutritional status of an edible grasshopper, Oxya Chinensis Formosana. Entomological Res. 42:284–90.
  • Igwe, C. U., Ojiako, A. O., Okwara, J. E., Emejulu, A. A. and Nwaoguikpe, R. N. (2014). Biochemical and haematologic effects of intake of Macrotermes nigeriensis fortified functional diet. Pakistan J. Biol. Sci.: PJBS 17:282–6.
  • Jadalla, J. B., Habbani, A. M. H., Bushara, I. and Mekki, D. M. (2014). Effects of inclusion of different levels of watermelon bug meal in broiler rations on feed intake, body weight changes and feed conversion ratio in North Kordofan, Sudan. Sci. J. Animal Sci. 3:8–14.
  • Ji, H., Zhang, J., Huang, J., Cheng, X. and Liu, C. (2015). Effect of replacement of dietary fish meal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Res. 46:1209–21.
  • Joshi, P. S., Rao, P. V., Mitra, A. and Rao, B. S. (1980). Evaluation of deoiled silkworm pupae-meal on layer performance. Indian J. Animal Sci. 50:979–82.
  • Kinyuru, J. N., Kenji, G. M., Njoroge, S. M. and Ayieko, M. (2010). Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (macrotermes subhylanus) and grasshopper (ruspolia differens). Food Bioprocess Technol. 3:778–82.
  • Klein, R. G. (2009).The human career. Human Biological and Cultural Origins. 3rd ed., The University of Chicago Press, Chicago and London.
  • Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M. and Nout, M. J. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control 26:628–31.
  • Koc, K., Incekara, U. and Turkez, H. (2014). Biomonitoring of the genotoxic effects and oxidative potentials of commercial edible dung beetles (Onitis sp.), grasshopper (Caelifera sp.) and mole crickets (Gryllotalpa sp.) in vitro. Toxicol. Ind Health 30:683–9.
  • Koo, S. I., Currin, T. A., Johnson, M. G., King, E. W. and Turk, D. E. (1980). The nutritional value and microbial content of dried face fly pupae [musca autumnalis (de geer)] when fed to chicks. Poult. Sci. 59:2514–18.
  • Kumar, A., Hasan, S. B. and Rao, R. J. (1992). Studies on the performance of broilers fed on silkworm moth meal. Int. J. Animal Sci. 7:227–29.
  • Lee, J., Choi, I. C., Kim, K. T., Cho, S. H. and Yoo, J. Y. (2012). Response of dietary substitution of fishmeal with various protein sources on growth, body composition and blood chemistry of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846). Fish Physiol. Biochemistry 38:735–44.
  • Longvah, T., Manghtya, K. and Qadri, S. S. (2012). Eri silkworm: A source of edible oil with a high content of alpha-linolenic acid and of significant nutritional value. J. Sci. Food Agric. 92:1988–93.
  • Longvah, T., Mangthya, K. and Ramulu, P. (2011). Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae.Food Chem. 128:400–3.
  • Lundy, M. E. and Parrella, M. P. (2015). Crickets are not a free lunch: Protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PloS One 10:e0118785.
  • Memis, E., Turkez, H., Incekara, U., Banjo, A. D., Fasunwon, B. T. and Togar, B. (2013). In vitro biomonitoring of the genotoxic and oxidative potentials of two commonly eaten insects in southwestern Nigeria. Toxicol. Ind. Health 29:52–9.
  • Mujahid, M. Z., Agistia, D. D., Sa'adah, M. and Nugroho, A. E. (2013). A combination of bitter gourd ethanolic extract with ant lion larvae aqueous extract for a blood glucose-lowering agent. Int. Food Res. J. 20:851–55.
  • Musundire, R., Zvidzai, C. J., Chidewe, C., Samende, B. K. and Manditsera, F. A. (2014). Nutrient and anti-nutrient composition of Henricus whellani (Orthoptera: Stenopelmatidae), an edible ground cricket, in south-eastern Zimbabwe. Int. J. Tropical Insect Sci. 34:223–31.
  • Nakagaki, B. J., Sunde, M. L. and Defoliart, G. R. (1987). Protein quality of the house cricket, acheta domesticus, when fed to broiler chicks. Poult. Sci. 66:1367–71.
  • Ocio, E., Viñaras, R. and Rey, J. M. (1979). House fly larvae meal grown on municipal organic waste as a source of protein in poultry diets. Animal Feed Sci. Technol. 4:227–31.
  • Ogunleye, R. F. (2006). Biochemical implications of the consumption of Zonocerus variegatus, (Orthoptera: Notodontidae) and Cirina forda Westwood (Lepidoptera: Saturnidae). J. Food Agric. Environ. 4:23–25.
  • Omotoso, O. T. (2006). Nutritional quality, functional properties and anti-nutrient compositions of the larva of Cirina forda (Westwood) (Lepidoptera: Saturniidae). J. Zhejiang Univ.Sci. B 7:51–5.
  • Omotoso, O. T. (2015). Nutrient composition, mineral analysis and anti-nutrient factors of Oryctes rhinoceros L. (Scarabaeidae: Coleoptera) and winged termites, Marcrotermes nigeriensis Sjostedt. (Termitidae: Isoptera).Br. J. Appl.Sci.Technol. 8:97–106.
  • Omotoso, O. T. and Afolabi, O. (2007). Nutritional evaluation, functional properties and anti-nutritional factors of Macrobrachium rosenbergii, an underutilized animal. Pakistan J. Sci. Ind. Res. 50:109–12.
  • Onifade, A. A., Oduguwa, O. O., Fanimo, A. O., Abu, A. O., Olutunde, T. O., Arije, A. and Babatunde, G. M. (2001). Effects of supplemental methionine and lysine on the nutritional value of housefly larvae meal (Musca domestica) fed to rats. Bioresource Technol. 78:191–4.
  • Oonincx, D. G., van Itterbeeck, J., Heetkamp, M. J., van den Brand, H., van Loon, J. J. and van Huis, A. (2010). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS One 5:e14445.
  • Payne, C. L. R., Scarborough, P., Rayner, M. and Nonaka, K. (2016). A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 47:69–77.
  • Pro, M. A., Cuca, G. M., Becerril, P. C., Bravo, M. H., Bixler, C. E. and Pérez, H. A. (1999). Estimation of metabolizable energy and utilization of fly larvae (Musca domestica L.) in the feeding of broilers. Archivos Latinoamericanos de Producción Animal7:39–51.
  • Routh, S. and Routh, J. (2005). Note di cucina di Leonardo da Vinci. Voland, Roma.
  • Shantibala, T., Lokeshwari, R. K. and Debaraj, H. (2014). Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. J. Insect Sci. 14:14.
  • Simpanya, M. F., Allotey, J., and Mpuchane, S. F. (2000). A mycological investigation of phane, an edible caterpillar of an emperor moth, Imbrasia belina.J. Food Prot. 63:137–40.
  • Sogbesan, A. O. and Ugwumba, A. A. A. (2008). Nutritional evaluation of termite (Macrotermes subhyalinus) meal as animal protein supplements in the diets of Heterobranchus longifilis (Valenciennes, 1840) fingerlings. Turkish J. Fisheries Aquatic Sci. 8:149–57.
  • Srinroch, C., Srisomsap, C., Chokchaichamnankit, D., Punyarit, P. and Phiriyangkul, P. (2015). Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem. 184:160–6.
  • Sudhakara Reddy, P., Nakahari, D., Talukdas, J. K., and Sundararasu, V. (1991). Effect of mineral supplementation on the nutritive value of silkworm pupae meal in broiler feeds.Cheiron 20:106.
  • Sujatha, K. R. and Rao, B. S. (1981). Feasibility of substituting fishmeal by alternative protein sources in layer rations. Indian J. Poultry Sci. 16:350–57.
  • Sun, T., Long, R. J., Liu, Z. Y., Ding, W. R. and Zhang, Y. (2012). Aspects of lipid oxidation of meat from free-range broilers consuming a diet containing grasshoppers on alpine steppe of the Tibetan Plateau.Poultry Sci. 91:224–31.
  • Tamale, A., Sifuna, T., Mwangi, K., Ayieko, M. and Ndonga, M. (2010). Use of mayflies as total replacement of Rastrineobola argentea in diets for catfish, Clarias gariepinus in Lake Victoria basined. ^eds. Ethnobotany and Health Proceedings of the Cluster Workshop. Entebbe, Uganda, Inter-University Council for East Africa Lake Victoria Research Initiative, 178–84.
  • Tang, J. J., Fang, P., Xia, H.-L., Tu, Z.-C., Hou, B.-Y., Yan, Y.-M., Di, L., Zhang, L. and Cheng, Y.-X. (2015). Constituents from the edible Chinese black ants (Polyrhachis dives) showing protective effect on rat mesangial cells and anti-inflammatory activity. Food Res. Int. 67:163–68.
  • Tommaseo-Ponzetta, M. and Paoletti, M. G. (2005). Lessons from traditional foraging patterns in west papua (Indonesia). Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails. pp. 441–57, Science Publishers, Inc., Enfield.
  • Turkez, H., Incekara, U., Guner, A., Aydin, E., Dirican, E. and Togar, B. (2014). The cytogenetic effects of the aqueous extracts of migratory locust (Locusta migratoria L.) in vitro. Toxicol. Ind. Health 30:233–7.
  • Van Huis, A. (2013). Edible Insects: Future Prospects for Food and Feed Security. Food and Agriculture Organization of the United Nations, Rome.
  • Verhoeckx, K. C. M., van Broekhoven, S., den Hartog-Jager, C. F., Gaspari, M., de Jong, G. A. H., Wichers, H. J., van Hoffen, E., Houben, G. F. and Knulst, A. C. (2014). House dust mite (Der p 10) and crustacean allergic patients may react to food containing yellow mealworm proteins. Food Chem. Toxicology 65:364–73.
  • Virk, R. S., Lodhi, G. N. and Ichhponani, J. S. (1980). Nutritive value of untreated, water and acid treated deoiled silk worm pupae meal for broiler chicks. Indian J. Poultry Sci. 15:155–61.
  • Virk, R. S., Lodhi, G. N. and Ichhponani, J. S. (1980). Deoiled silk worm pupae meal as a substitute for fish meal in White Leghorn laying ration. Indian J. Poultry Sci. 15:149–54.
  • Xia, Z., Chen, J., and Wu, S. (2013). Hypolipidemic activity of the chitooligosaccharides from Clanis bilineata (Lepidoptera), an edible insect. Int. J. Biol. Macromolecules 59:96–8.
  • Xia, Z., Wu, S., Pan, S. and Kim, J. M. (2012). Nutritional evaluation of protein from Clanis bilineata (Lepidoptera), an edible insect. J. Sci. Food Agric. 92:1479–82.
  • Yeboah, S. O. and Mitei, Y. C. (2009). Further lipid profiling of the oil from the mophane caterpillar, imbrasia belina. J. Am. Oil Chem. Soc. 86:1047–55.
  • Zhou, J. and Han, D. (2006). Safety evaluation of protein of silkworm (Antheraea pernyi) pupae. Food Chem. Toxicology 44:1123–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.