1,683
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Milk fat globule membrane glycoproteins: Valuable ingredients for lactic acid bacteria encapsulation?

, , , & ORCID Icon

References

  • Ali-Vehmas, T., P. Westphalen, V. Myllys, and M. Sandholm. 1997. Binding of Staphylococcus aureus to milk fat globules increases resistance to penicillin-G. J. Dairy Res. 64:253–60.
  • Anand, B. S., J. J. Romero, S. K. Sanduja, and L. M. Lichtenberger. 1999. Phospholipid association reduces the gastric mucosal toxicity of aspirin in human subjects. Am. J. Gastroenterol. 94:1818–22.
  • Baars, A., A. Oosting, E. Engels, D. Kegler, A. Kodde, L. Schipper, H. J. Verkade, and E. M. van der Beek. 2016. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. Br. J. Nutr. 115:1930–37.
  • Bacherio, D., S. Uson III, and R. Jimenez-Flores. 2007. Lipid binding characterization of lactic acid bacteria in dairy products. Toronto, Canada, p. 490.
  • Bansil, R., and B. S. Turner. 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11:164–70.
  • Benyacoub, J., S. Blum-Sperisen, M. N. Bosco, L. J. R. Bovetto, I. Bureau-Frantz, A. Donnet-Hughes, E. Schiffrin, and L. Favre. 2011. Infant formula with probiotics and milk fat globule membrane components. WO2011069987A1.
  • Berer, K., A. Schubart, K. R. Williams, and C. Linington. 2005. Pathological consequences of molecular mimicry between myelin oligodendrocyte glycoprotein (MOG) and butyrophilin (BTN) in experimental autoimmune encephalomyelitis (EAE). Immunology 116:42–42.
  • Bergonzelli, G. E., D. Granato, R. D. Pridmore, L. F. Marvin-Guy, D. Donnicola, and I. E. Corthésy-Theulaz. 2006. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect. Immun. 74:425–34.
  • Brisson, G., H. F. Payken, J. P. Sharpe, and R. Jimenez-Flores. 2010. Characterization of Lactobacillus reuteri interaction with milk fat globule membrane components in dairy products. J Agric Food Chem 58:5612–19.
  • Buck, B. L., E. Altermann, T. Svingerud, and T. R. Klaenhammer. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71:8344–51.
  • Burgain, J., C. Gaiani, M. Linder, and J. Scher. 2011. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 104:467–83.
  • Burgain, J., J. Scher, G. Francius, F. Borges, M. Corgneau, A. M. Revol-Junelles, C. Cailliez-Grimal, and C. Gaiani. 2014. Lactic acid bacteria in dairy food: Surface characterization and interactions with food matrix components. Adv. Colloid Interface Sci. 213:21–35.
  • Burgain, J., J. Petit, J. Scher, R. Rasch, B. Bhandari, and C. Gaiani. 2017. Surface chemistry and microscopy of food powders. Prog. Surf. Sci. (In Press).
  • Carlson, S. E., M. B. Montalto, D. L. Ponder, S. H. Werkman, and S. B. Korones. 1998. Lower Incidence of Necrotizing Enterocolitis in Infants Fed a Preterm Formula with Egg Phospholipids. Pediatr. Res. 44:491–8.
  • Chung, R. W. S., A. Kamili, S. Tandy, J. M. Weir, R. Gaire, G. Wong, P. J. Meikle, J. S. Cohn, and K.-A. Rye. 2013. Dietary Sphingomyelin Lowers Hepatic Lipid Levels and Inhibits Intestinal Cholesterol Absorption in High-Fat-Fed Mice. PLOS ONE 8:e55949.
  • Cook, M. T., G. Tzortzis, D. Charalampopoulos, and V. V. Khutoryanskiy. 2012. Microencapsulation of probiotics for gastrointestinal delivery. J. Controlled Release 162:56–67.
  • Corredig, M., and D. G. Dalgleish. 1997. Isolates from Industrial Buttermilk:  Emulsifying Properties of Materials Derived from the Milk Fat Globule Membrane. J. Agric. Food Chem. 45:4595–600.
  • Corredig, M., and D. G. Dalgleish. 1998. Characterization of the interface of an oil-in-water emulsion stabilized by milk fat globule membrane material. J. Dairy Res. 65:465–77.
  • Corredig, M., R. R. Roesch, and D. G. Dalgleish. 2003. Production of a Novel Ingredient from Buttermilk. J. Dairy Sci. 86:2744–50.
  • Daniels, M. J., Y. Wang, M. Lee, and A. R. Venkitaraman. 2004. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306:876–9.
  • Demmer, E., M. D. Van Loan, N. Rivera, T. S. Rogers, E. R. Gertz, J. B. German, J. T. Smilowitz, and A. M. Zivkovic. 2016. Addition of a dairy fraction rich in milk fat globule membrane to a high-saturated fat meal reduces the postprandial insulinaemic and inflammatory response in overweight and obese adults. J. Nutr. Sci. 5:e14.
  • Dewettinck, K., R. Rombaut, N. Thienpont, T. T. Le, K. Messens, and J. Van Camp. 2008. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 18:436–57.
  • Dillehay, D. L., S. K. Webb, E. M. Schmelz, and A. Merrill. 1994. Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. – ProQuest. J. Nutr. 124:615–20.
  • Douëllou, T., M. C. Montel, and D. Thevenot Sergentet. 2017. Invited review: Anti-adhesive properties of bovine oligosaccharides and bovine milk fat globule membrane-associated glycoconjugates against bacterial food enteropathogens. J. Dairy Sci. 100:3348–59.
  • Eckhardt, E. R. M., D.Q–.H. Wang, J. M. Donovan, and M. C. Carey. 2002. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology 122:948–56.
  • Elías-Argote, X., A. Laubscher, and R. Jiménez-Flores. 2013. Dairy Ingredients Containing Milk Fat Globule Membrane: Description, Composition, and Industrial Potential. In Advances in Dairy Ingredients, G. W. Smithers, and rA. Augustin, eds. Wiley-Blackwell, Oxford, pp. 71–98.
  • El-Loly, M. 2011. Composition, Properties and Nutritional Aspects of Milk Fat Globule Membrane – a Review. Pol. J. Food Nutr. Sci. 61:7–32.
  • Etzold, S., D. A. MacKenzie, F. Jeffers, J. Walshaw, S. Roos, A. M. Hemmings, and N. Juge. 2014. Structural and molecular insights into novel surface-exposed mucus adhesins from Lactobacillus reuteri human strains. Mol. Microbiol. 92:543–56.
  • Evers, J. M. 2004. The milkfat globule membrane—compositional and structural changes post secretion by the mammary secretory cell. Int. Dairy J. 14:661–74.
  • Evers, J. M., R. G. Haverkamp, S. E. Holroyd, G. B. Jameson, D. D. S. Mackenzie, and O. J. McCarthy. 2008. Heterogeneity of milk fat globule membrane structure and composition as observed using fluorescence microscopy techniques. Int. Dairy J. 18:1081–89.
  • Farhang, B., Y. Kakuda, and M. Corredig. 2012. Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Sci. Technol. 92:353–66.
  • Fong, B. Y., C. S. Norris, and A. K. H. MacGibbon. 2007. Protein and lipid composition of bovine milk-fat-globule membrane. Int. Dairy J. 17:275–88.
  • Gallier, S., K. Vocking, J. A. Post, B. Van De Heijning, D. Acton, E. M. Van Der Beek, and T. Van Baalen. 2015. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surf. B Biointerfaces 136:329–39.
  • Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7:175–88.
  • Gorewit, R. C., and V. L. Spitsberg, U. Cornell. 1998. Anti-cancer properties of proteins in the milk fat globule membranes in whey. International Dairy Federation, In Whey International Conference, Brussels, p. 315–325.
  • Granato, D., G. E. Bergonzelli, R. D. Pridmore, L. Marvin, M. Rouvet, and I. E. Corthésy-Theulaz. 2004. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect. Immun. 72:2160–2169.
  • Gülseren, İ., and M. Corredig. 2013. Storage Stability and Physical Characteristics of Tea-Polyphenol-Bearing Nanoliposomes Prepared with Milk Fat Globule Membrane Phospholipids. J. Agric. Food Chem. 61:3242–51.
  • Gülseren, İ., A. Guri, and M. Corredig. 2012. Encapsulation of Tea Polyphenols in Nanoliposomes Prepared with Milk Phospholipids and Their Effect on the Viability of HT-29 Human Carcinoma Cells. Food Dig. 3:36–45.
  • Hannun, Y. A., and L. M. Obeid. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9:139–50.
  • Haramizu, S., T. Mori, M. Yano, N. Ota, K. Hashizume, A. Otsuka, T. Hase, and A. Shimotoyodome. 2014. Habitual exercise plus dietary supplementation with milk fat globule membrane improves muscle function deficits via neuromuscular development in senescence-accelerated mice. SpringerPlus 3:339.
  • Harrison, R. 2006. Milk xanthine oxidase: Properties and physiological roles. Int. Dairy J. 16:546–54.
  • Heid, H. W., and T. W. Keenan. 2005. Intracellular origin and secretion of milk fat globules. Eur. J. Cell Biol. 84:245–58.
  • Hernell, O., N. Timby, M. Domellöf, and B. Lönnerdal. 2016. Clinical Benefits of Milk Fat Globule Membranes for Infants and Children. J. Pediatr. 173 (Supplement):S60–5.
  • Hickey, C. D., J. J. Sheehan, M. G. Wilkinson, and M. A. E. Auty. 2015a. Growth and location of bacterial colonies within dairy foods using microscopy techniques: a review. Food Microbiol. 6:99.
  • Hickey, C. D., M. A. E. Auty, M. G. Wilkinson, and J. J. Sheehan. 2015b. The influence of cheese manufacture parameters on cheese microstructure, microbial localisation and their interactions during ripening: A review. Trends Food Sci. Technol. 41:135–48.
  • Holzmüller, W., and U. Kulozik. 2016. Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. Int. Dairy J. 63:88–91.
  • Holzmüller, W., O. Gmach, A. Griebel, and U. Kulozik. 2016a. Casein precipitation by acid and rennet coagulation of buttermilk: Impact of pH and temperature on the isolation of milk fat globule membrane proteins. Int. Dairy J. 63:115–23.
  • Holzmüller, W., M. Müller, D. Himbert, and U. Kulozik. 2016b. Impact of cream washing on fat globules and milk fat globule membrane proteins. Int. Dairy J. 59:52–61.
  • Jensen, H., S. Roos, H. Jonsson, I. Rud, S. Grimmer, J.-P. van Pijkeren, R. A. Britton, and L. Axelsson. 2014. Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiol. Read. Engl. 160:671–681.
  • Jiménez-Flores, R., and G. Brisson. 2008. The milk fat globule membrane as an ingredient: why, how, when? Dairy Sci. Technol. 88:5–18.
  • Jin, H.-H., Q. Lu, and J.-G. Jiang. 2016. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. J. Dairy Sci. 99:1780–90.
  • Kankainen, M., L. Paulin, S. Tynkkynen, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci U A 106:17193–198.
  • Kanno, C., Y. Shimomura, and E. Takano. 1991. Physicochemical Properties of Milk Fat Emulsions Stabilized with Bovine Milk Fat Globule Membrane. J. Food Sci. 56:1219–1223.
  • Kidd, P. 2002. Phospholipids: Versatile Nutraceutical Ingredients For Functional Foods. Functional Foods and Nutraceuticals 12:30–40.
  • Kim, H.-H. Y., and I. C. Baianu. 1991. Novel liposome microencapsulation techniques for food applications. Trends Food Sci. Technol. 2:55–61.
  • Kim, D. H., C. Kanno, and Y. Mizokami. 1992. Purification and characterization of major glycoproteins, PAS-6 and PAS-7, from bovine milk fat globule membrane. Biochim. Biophys. Acta 1122:203–211.
  • Kingsley, M. 2012. Effects of Phosphatidylserine Supplementation on Exercising Humans. Sports Med. 36:657–69.
  • Kinoshita, H., H. Uchida, Y. Kawai, T. Kawasaki, N. Wakahara, H. Matsuo, M. Watanabe, H. Kitazawa, S. Ohnuma, K. Miura, A. Horii, and T. Saito. 2008. Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J. Appl. Microbiol. 104:1667–74.
  • Kivinen, A., S. Tarpila, T. Kiviluotos, H. Mustonens, and E. Kivilaaksos. 1995. Milk and egg phospholipids act as protective surfactants against luminal acid in Necturus gastric mucosa. Aliment. Pharmacol. Ther. 9:685–91.
  • Kvistgaard, A. S., L. T. Pallesen, C. F. Arias, S. López, T. E. Petersen, C. W. Heegaard, and J. T. Rasmussen. 2004. Inhibitory Effects of Human and Bovine Milk Constituents on Rotavirus Infections. J. Dairy Sci. 87:4088–96.
  • Laloy, E., J.-C. Vuillemard, M. El Soda, and R. E. Simard. 1996. Influence of the fat content of Cheddar cheese on retention and localization of starters. Int. Dairy J. 6:729–40.
  • Le, T. T., J. Van Camp, R. Rombaut, F. van Leeckwyck, and K. Dewettinck. 2009. Effect of washing conditions on the recovery of milk fat globule membrane proteins during the isolation of milk fat globule membrane from milk. J. Dairy Sci. 92:3592–603.
  • Li, Y., E. Arranz, A. Guri, and M. Corredig. 2017. Mucus interactions with liposomes encapsulating bioactives: Interfacial tensiometry and cellular uptake on Caco-2 and cocultures of Caco-2/HT29-MTX. Food Res. Int. Ott. Ont 92:128–17.
  • Li, Z., A. T. Paulson, and T. A. Gill. 2015. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. J. Funct. Foods 19 (Part A):733–43.
  • Liu, W., A. Ye, W. Liu, C. Liu, and H. Singh. 2013. Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. J. Dairy Sci. 96:2061–70.
  • Lopez, C. 2011. Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Curr. Opin. Colloid Interface Sci. 16:391–404.
  • Lopez, C., M.-B. Maillard, V. Briard-Bion, B. Camier, and J. A. Hannon. 2006. Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria. J. Agric. Food Chem. 54:5855–67.
  • Lopez, C., M.-N. Madec, and R. Jimenez-Flores. 2010. Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chem. 120:22–33.
  • Macías-Rodríguez, M. E., M. Zagorec, F. Ascencio, R. Vázquez-Juárez, and M. Rojas. 2009. Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. J. Appl. Microbiol. 107:1866–74.
  • Maherani, B., E. R. Arab-Tehrany, M. Mozafari, C. Gaiani, and M. Linder. 2011. Liposomes: A Review of Manufacturing Techniques and Targeting Strategies. Curr. Nanosci. 7:436–42.
  • Martin, H. M., J. T. Hancock, V. Salisbury, and R. Harrison. 2004. Role of Xanthine Oxidoreductase as an Antimicrobial Agent. Infect. Immun. 72:4933–39.
  • Mather, I. H. 2000. A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci. 83:203–47.
  • Mazzei, J. C., H. Zhou, B. P. Brayfield, R. Hontecillas, J. Bassaganya-Riera, and E. M. Schmelz. 2011. Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: importance of peroxisome proliferator-activated receptor γ expression. J. Nutr. Biochem. 22:1160–71.
  • McDaniel, M. A., S. F. Maier, and G. O. Einstein. 2003. “Brain-specific” nutrients: a memory cure? Nutrition 19:957–75.
  • Miyoshi, Y., S. Okada, T. Uchimura, and E. Satoh. 2006. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci. Biotechnol. Biochem. 70:1622–28.
  • Mozafari, M. R., K. Khosravi-Darani, G. G. Borazan, J. Cui, A. Pardakhty, and S. Yurdugul. 2008. Encapsulation of Food Ingredients Using Nanoliposome Technology. Int. J. Food Prop. 11:833–44.
  • Mutsumi, M., M. Hiroaki, Y. Jun-ichi, T. Miyako, A. Seiichiro, I. Toshihiko, and K. Hiroshi. 2003. Milk Sphingomyelin Accelerates Enzymatic and Morphological Maturation of the Intestine in Artificially Reared Rats. J. Pediatr. Gastr. Nutr. 36:2410–247.
  • Naidu, A. S., W. R. Bidlack, and R. A. Clemens. 1999. Probiotic Spectra of Lactic Acid Bacteria (LAB). Crit. Rev. Food Sci. Nutr. 39:13–26.
  • Newburg, D. S., J. A. Peterson, G. M. Ruiz-Palacios, D. O. Matson, A. L. Morrow, J. Shults, MdeL. Guerrero, P. Chaturvedi, S. O. Newburg, C. D. Scallan, M. R. Taylor, R. L. Ceriani, and L. K. Pickering. 1998. Role of human-milk lactadherin in protectoin against symptomatic rotavirus infection. The Lancet 351:1160–64.
  • Nishiyama, K., M. Sugiyama, and T. Mukai. 2016. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin. Microorganisms 4:1–18.
  • Norris, G. H., C. Jiang, J. Ryan, C. M. Porter, and C. N. Blesso. 2016. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J. Nutr. Biochem. 30:93–101.
  • Norris, G. H., C. M. Porter, C. Jiang, C. L. Millar, and C. N. Blesso. 2017. Dietary sphingomyelin attenuates hepatic steatosis and adipose tissue inflammation in high fat diet-induced obese mice. J. Nutr. Biochem. 40:36–43.
  • Oberg, C., W. McManus, and D. McMahon. 1993. Microstructure of Mozzarella Cheese During Manufacture. Food Struct. 12:2510–258.
  • Oshida, K., T. Shimizu, M. Takase, Y. Tamura, T. Shimizu, and Y. Yamashiro. 2003. Effects of Dietary Sphingomyelin on Central Nervous System Myelination in Developing Rats. Pediatr. Res. 53:589–93.
  • von Ossowski, I., J. Reunanen, R. Satokari, S. Vesterlund, M. Kankainen, H. Huhtinen, S. Tynkkynen, S. Salminen, W. M. de Vos, and A. Palva. 2010. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Env. Microbiol 76:2049–57.
  • von Ossowski, I., R. Satokari, J. Reunanen, S. Lebeer, S. C. J. De Keersmaecker, J. Vanderleyden, W. M. de Vos, and A. Palva. 2011. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 77:4465–72.
  • Ota, N., S. Soga, T. Hase, and A. Shimotoyodome. 2015. Daily consumption of milk fat globule membrane plus habitual exercise improves physical performance in healthy middle-aged adults. SpringerPlus 4:120.
  • Parker, P., L. Sando, R. Pearson, K. Kongsuwan, R. L. Tellam, and S. Smith. 2009. Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells. Glycoconj. J. 27:89–97.
  • Pasvolsky, R., V. Zakin, I. Ostrova, and M. Shemesh. 2014. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. Int. J. Food Microbiol. 181:19–27.
  • Patton, S., S. J. Gendler, and A. P. Spicer. 1995. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim. Biophys. Acta 1241:407–23.
  • Pretzer, G., J. Snel, D. Molenaar, A. Wiersma, P. A. Bron, J. Lambert, W. M. de Vos, R. van der Meer, M. A. Smits, and M. Kleerebezem. 2005. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 187:6128–36.
  • Reineccius, G. A. (University of M.) 1995. Liposomes for controlled release in the food industry. Encapsulation and Controlled Release of Food Ingredients, SJ Risch & GA Reineccius, eds pp.113–133. ACS Symposium Series 590. Washington, DC American: Chemical Society.
  • Reunanen, J., I. von Ossowski, A. P. Hendrickx, A. Palva, and W. M. de Vos. 2012. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl Env. Microbiol 78:2337–44.
  • Rhodes, D. A., W. Reith, and J. Trowsdale. 2016. Regulation of Immunity by Butyrophilins. Annu. Rev. Immunol. 34:151–172.
  • Riccio, P. 2004. The proteins of the milk fat globule membrane in the balance. Trends Food Sci. Technol. 15:458–61.
  • Roesch, R. R., A. Rincon, and M. Corredig. 2004. Emulsifying Properties of Fractions Prepared from Commercial Buttermilk by Microfiltration. J. Dairy Sci. 87:4080–87.
  • Rombaut, R., V. Dejonckheere, and K. Dewettinck. 2007. Filtration of Milk Fat Globule Membrane Fragments from Acid Buttermilk Cheese Whey. J. Dairy Sci. 90:1662–73.
  • Roos, S., and H. Jonsson. 2002. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiol. Read. Engl. 148:433–42.
  • Ross, S. A., J. A. Lane, M. Kilcoyne, L. Joshi, and R. M. Hickey. 2016. Defatted bovine milk fat globule membrane inhibits association of enterohaemorrhagic Escherichia coli O157:H7 with human HT-29 cells. Int. Dairy J. 59:36–43.
  • Sachdeva, S., and W. Buchheim. 1997. Recovery of phospholipids from buttermilk using membrane processing. Kiel. Milchwirtsch. Forschungsberichte 49:47–68.
  • Sánchez-Juanes, F., J. M. Alonso, L. Zancada, and P. Hueso. 2009. Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. Int. Dairy J. 19:273–78.
  • Sando, L., R. Pearson, C. Gray, P. Parker, R. Hawken, P. C. Thomson, J. R. S. Meadows, K. Kongsuwan, S. Smith, and R. L. Tellam. 2009. Bovine Muc1 is a highly polymorphic gene encoding an extensively glycosylated mucin that binds bacteria. J. Dairy Sci. 92:5276–91.
  • Shimizu, M., K. Yamauchi, and C. Kanno. 1980. Effect of proteolic of milk fat globule membrane proteins on stability of the globules. Milchwissenschaft. 35:9–12.
  • Singh, H. 2006. The milk fat globule membrane—A biophysical system for food applications. Curr. Opin. Colloid Interface Sci. 11:154–63.
  • Smoczyński, M., B. Staniewski, and K. Kiełczewska. 2012. Composition and Structure of the Bovine Milk Fat Globule Membrane—Some Nutritional and Technological Implications. Food Rev. Int. 28:188–202.
  • Snow, D. R., R. Jimenez-Flores, R. E. Ward, J. Cambell, M. J. Young, I. Nemere, and K. J. Hintze. 2010. Dietary Milk Fat Globule Membrane Reduces the Incidence of Aberrant Crypt Foci in Fischer-344 Rats. J. Agric. Food Chem. 58:2157–63.
  • Soga, O., C. F. van Nostrum, M. Fens, C. J. F. Rijcken, R. M. Schiffelers, G. Storm, and W. E. Hennink. 2005. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Controlled Release 103:341–53.
  • Spitsberg, V. L., and R. C. Gorewit. 2002. Isolation, Purification and Characterization of Fatty-Acid-Binding Protein from Milk Fat Globule Membrane: Effect of Bovine Growth Hormone Treatment. Pak. J. Nutr. 1:43–8.
  • Sprong, R. C., M. F. E. Hulstein, and R. van der Meer. 2002. Bovine milk fat components inhibit food-borne pathogens. Int. Dairy J. 12:209–15.
  • Stamler, C. J., D. Breznan, T. A.-M. Neville, F. J. Viau, E. Camlioglu, and D. L. Sparks. 2000. Phosphatidylinositol promotes cholesterol transport in vivo. J. Lipid Res. 41:1214–21.
  • Stefferl, A., A. Schubart, M. Storch2, A. Amini, I. Mather, H. Lassmann, and C. Linington. 2000. Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis. J. Immunol. Baltim. Md 1950 165:2859–65.
  • Thompson, A. K., and H. Singh. 2006. Preparation of Liposomes from Milk Fat Globule Membrane Phospholipids Using a Microfluidizer. J. Dairy Sci. 89:410–9.
  • Thompson, A. K., D. Haisman, and H. Singh. 2006. Physical stability of liposomes prepared from milk fat globule membrane and soya phospholipids. J. Agric. Food Chem. 54:6390–97.
  • Thompson, A. K., A. Couchoud, and H. Singh. 2009. Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy Sci. Technol. 89:99–113.
  • Timby, N., E. Domellöf, O. Hernell, B. Lönnerdal, and M. Domellöf. 2014a. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am. J. Clin. Nutr. 99:860–8.
  • Timby, N., B. Lönnerdal, O. Hernell, and M. Domellöf. 2014b. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr. Res. 76:394–400.
  • Timby, N., O. Hernell, O. Vaarala, M. Melin, B. Lönnerdal, and M. Domellöf. 2015. Infections in Infants Fed Formula Supplemented With Bovine Milk Fat Globule Membranes. J. Pediatr. Gastr. Nutr. 384–389.
  • Tripathi, M. K., and S. K. Giri. 2014. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 9:225–241.
  • Tunick, M. H., K. L. Mackey, J. J. Shieh, P. W. Smith, P. Cooke, and E. L. Malin. 1993. Rheology and microstructure of low-fat Mozzarella cheese. Int. Dairy J. 3:649–62.
  • Vanderghem, C., P. Bodson, S. Danthine, M. Paquot, C. Deroanne, and C. Blecker. 2010. Milk fat globule membrane and buttermilks: from composition to valorization. BASE 14:485–500.
  • Veereman-Wauters, G., S. Staelens, R. Rombaut, K. Dewettinck, D. Deboutte, R.-J. Brummer, M. Boone, and P. L. Ruyet. 2012. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition 28:749–52.
  • Vissac, C., D. Lémery, L. Le Corre, P. Fustier, P. Déchelotte, J.-C. Maurizis, Y.-J. Bignon, and D. J. Bernard-Gallon. 2002. Presence of BRCA1 and BRCA2 proteins in human milk fat globules after delivery. Biochim. Biophys. Acta BBA – Mol. Basis Dis. 1586:50–56.
  • Vojdani, A., A. W. Campbell, E. Anyanwu, A. Kashanian, K. Bock, and E. Vojdani. 2002. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J. Neuroimmunol. 129:168–77.
  • de Vos, P., M. M. Faas, M. Spasojevic, and J. Sikkema. 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 20:292–02.
  • Walstra, P. 1985. Some comments on the isolation of fat globule membrane material. J. Dairy Res. 52:309–12.
  • Wu, J., Y. Wang, and L. Li. 2017. Functional significance of exosomes applied in sepsis: A novel approach to therapy. Biochim. Biophys. Acta BBA – Mol. Basis Dis. 1863:292–97.
  • Yang, M., F. Ming, S. X. Su, A. Ichinomiya, and M. Davis. 2001. Muc1 isolation from bovine milk and whey. CA2404289A1.
  • Ye, A., H. Singh, M. W. Taylor, and S. Anema. 2002. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 12:393–02.
  • Yolken, R. H., J. A. Peterson, S. L. Vonderfecht, E. T. Fouts, K. Midthun, and D. S. Newburg. 1992. JCI – Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90:1984–1991.
  • Zanabria, R., A. M. Tellez, M. Griffiths, and M. Corredig. 2013. Milk fat globule membrane isolate induces apoptosis in HT-29 human colon cancer cells – Food and Function (RSC Publishing) . Food Funct. 4:222–30. doi:10.1039/C2FO30189J.
  • Zavaleta, N., A. S. Kvistgaard, G. Graverholt, G. Respicio, H. Guija, N. Valencia, and B. Lönnerdal. 2011. Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. J. Pediatr. Gastroenterol. Nutr. 53:561–568.
  • Zhang, P., B. Li, S. Gao, and R.-D. Duan. 2008. Dietary Sphingomyelin Inhibits Colonic Tumorigenesis with an Up-regulation of Alkaline Sphingomyelinase Expression in ICR Mice. Anticancer Res. 28:3631–35.
  • Zhang, Y. Y., L. Q. Yang, and L. M. Guo. 2015. Effect of phosphatidylserine on memory in patients and rats with Alzheimer's disease. Genet. Mol. Res. GMR 14:9325–33.
  • Zikakis, J. P. 1979. Preparation of high purity xanthine oxidase from bovine milk. US4172763A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.