890
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Curcumin against advanced glycation end products (AGEs) and AGEs-induced detrimental agents

&

References

  • “American Heart Association”. Retrieved 5 May 2016.
  • Abe, R., T. Shimizu, H. Sugawara, H. Watanabe, H. Nakamura, H. Choei, N. Sasaki, S. Yamagishi, M. Takeuchi, and H. Shimizu. 2004. Regulation of human melanoma growth and metastasis by AGE-AGE receptor interactions. J Invest Dermatol. 122:461–7.
  • Akhand, A. A., K. Hossain, H. Mitsui, M. Kato, T. Miyata, R. Inagi, J. Du, K. Takeda, Y. Kawamoto, H. Suzuki, et al. 2001. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic Biol Med. 31:20–30.
  • Awad, A. S., and A. A. El-Sharif. 2011. Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. Int Immunopharmacol. 11:992–6.
  • Berrou, J., I. Tostivint, F. Verrecchia, C. Berthier, E. Boulanger, A. Mauviel, H. P. Marti, M. P. Wautier, J. L. Wautier, E. Rondeau, et al. 2009. Advanced glycation end products regulate extracellular matrix protein and protease expression by human glomerular mesangial cells. Int J Mol Med. 23:513–20.
  • Chan, W. H., H. J. Wu, and Y. D. Hsuuw. 2005. Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells. Ann N Y Acad Sci. 1042:372–8.
  • Chan, W. H., and H. J. Wu. 2006. Protective effects of curcumin on methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells. Acta Pharmacol Sin. 27:1192–8.
  • Chilelli, N. C., E. Ragazzi, R. Valentini, C. Cosma, S. Ferraresso, A. Lapolla, and G. Sartore. 2016. Curcumin and Boswellia serrata modulate the glyco-Oxidative status and lipo-oxidation in master athletes. Nutrients. 8(pii):E745.
  • Chu, J. M., D. K. Lee, D. P. Wong, G. T. Wong, and K. K. Yue. 2016. Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals. Metab Brain Dis. 31:1055–64.
  • Del Turco, S. and G. Basta. 2012. An update on advanced glycation endproducts and atherosclerosis. Biofactors. 38:266–74.
  • Desai, K. M., and L. Wu. 2008. Free radical generation by methylglyoxal in tissues. Drug Metabol Drug Interact. 23:151–73.
  • Du, J., H. Suzuki, F. Nagase, A. A. Akhand, T. Yokoyama, T. Miyata, K. Kurokawa, and I. Nakashima. 2000. Methylglyoxal induces apoptosis in Jurkat leukemia T cells by activating c-Jun N-terminal kinase. J Cell Biochem. 77:333–44.
  • Fleenor, B. S., A. L. Sindler, N. K. Marvi, K. L. Howell, M. L. Zigler, M. Yoshizawa, and D. R. Seals. 2013. Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp Gerontol. 48:269–76.
  • Gaens, K. H., P. M. Niessen, S. S. Rensen, W. A. Buurman, J. W. Greve, A. Driessen, M. G. Wolfs, M. H. Hofker, J. G. Bloemen, C. H. Dejong, et al. 2012. Endogenous formation of Nϵ-(carboxymethyl) lysine is increased in fatty livers and induces inflammatory markers in an in vitro model of hepatic steatosis. J Hepatol. 56:647–55.
  • Hassan, N., H. M. El-Bassossy, and M. N. Zakaria. 2013. Heme oxygenase-1 induction protects against hypertension associated with diabetes: effect on exaggerated vascular contractility. Naunyn Schmiedebergs Arch Pharmacol. 386:217–26.
  • Hsuuw, Y. D., C. K. Chang, W. H. Chan, and J. S. Yu. 2005. Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J Cell Physiol. 205:379–86.
  • Hu, T. Y., C. L. Liu, C. C. Chyau, and M. L. Hu. 2012. Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells. J Agric Food Chem. 60:8190–6.
  • Huang, S. M., C. L. Hsu, H. C. Chuang, P. H. Shih, C. H. Wu, and G. C. Yen. 2008. Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells. Neurotoxicology. 29: 1016–22.
  • Kalousová, M., M. Hodková, M. Kazderová, J. Fialová, V. Tesař, D. Dusilová-Sulková, and T. Zima. 2006. Soluble receptor for advanced glycation end products in patients with decreased renal function. Am J Kidney Dis. 47:406–11.
  • Li, J. L., D. N. Liu, L. Sun, Y. Lu, and Z. Zhang. 2012. Advanced glycation end products and neurodegenerative diseases: Mechanisms and perspective. J Neurol Sci. 317:1–5.
  • Li, M., Z. Liu, Z. Zhang, and L. Ma. 2006. Inhibitory effects of curcumin derivatives on nonenzymatic glucosylation in vitro. Front Chem China. 2:227–31.
  • Lin (a), J., Y. Tang, Q. Kang, and A. Chen. 2012. Curcumin eliminates the inhibitory effect of advanced glycation end-products (AGEs) on gene expression of AGE receptor-1 in hepatic stellate cells in vitro. Lab Invest. 92:827–41.
  • Lin (b), J., Y. Tang, Q. Kang, Y. Feng, and A. Chen. 2012. Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br J Pharmacol.166:2212–27.
  • Lip, H., K. Yang, S. L. MacAllister, and P. J. O'Brien. 2013. Glyoxal and methylglyoxal: autoxidation from dihydroxyacetone and polyphenol cytoprotective antioxidant mechanisms. Chem Biol Interact. 202:267–74.
  • Liu, W., H. Ma, N. A. DaSilva, K. N. Rose, S. L. Johnson, L. Zhang, C. Wan, J. A. Dain, and N. P. Seeram. 2016. Development of a neuroprotective potential algorithm for medicinal plants. Neurochem Int. 100:164–77.
  • Liu, J. P., L. Feng, M. M. Zhu, R. S. Wang, M. H. Zhang, S. Y. Hu, X. B. Jia, and J. J. Wu. 2012. The in vitro protective effects of curcumin and demethoxycurcumin in Curcuma longa extract on advanced glycation end products-induced mesangial cell apoptosis and oxidative stress. Planta Med. 78:1757–60.
  • Lu, C., J. C. He, W. Cai, H. Liu, L. Zhu, and H. Vlassara. 2004. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci U S A. 101:11767–72.
  • Margina, D., D. Gradinaru, G. Manda, I. Neagoe, and M. Ilie. 2013. Membranar effects exerted in vitro by polyphenols – quercetin, epigallocatechin gallate and curcumin – on HUVEC and Jurkat cells, relevant for diabetes mellitus. Food Chem Toxicol. 61:86–93.
  • Meng, B., J. Li, and H. Cao. 2013. Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Curr Pharm Des. 19:2101–13.
  • Miyazawa, N., M. Abe, T. Souma, M. Tanemoto, T. Abe, M. Nakayama, and S. Ito. 2010. Methylglyoxal augments intracellular oxidative stress in human aortic endothelial cells. Free Radic Res. 44:101–7.
  • Nankali, M., J. Karimi, M. T. Goodarzi, M. Saidijam, I. Khodadadi, A. N. Razavi, and F. Rahimi. 2016. Increased Expression of the Receptor for Advanced Glycation End-Products (RAGE) Is Associated with Advanced Breast Cancer Stage. Oncol Res Treat. 39:622–8.
  • Peterszegi, G., J. Molinari, V. Ravelojaona, and L. Robert. 2006. Effect of advanced glycation end-products on cell proliferation and cell death. Pathol Biol (Paris). 54:396–404.
  • Prasad, A., P. Bekker, and S. Tsimikas. 2012. Advanced Glycation End Products and Diabetic Cardiovascular Disease. Cardiol Rev. 20:177–83.
  • Rasheed, Z., N. Akhtar, and T. M. Haqqi. 2011. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology (Oxford). 50:838–51.
  • Sajithlal, G. B., P. Chithra, and G. Chandrakasan. 1998. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem Pharmacol. 56:1607–14.
  • Schmidt, A. M., S. D. Yan, S. F. Yan, and D. M. Stern. 2000. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta. 1498:99–111.
  • Semba, R. D., L. Ferrucci, K. Sun, J. Beck, M. Dalal, R. Varadhan, J. Walston, J. M. Guralnik, and L. P. Fried. 2009. Advanced glycation end products and their circulating receptors predict cardiovascular disease mortality in older community-dwelling women. Aging Clin Exp Res. 21:182–90.
  • Sun, Y. P., J. F. Gu, X. B. Tan, C. F. Wang, X. B. Jia, L. Feng, and J. P. Liu. 2016. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal. Mol Med Rep. 13:1475–86.
  • Suryanarayana, P., K. Krishnaswamy, and G. B. Reddy. 2003. Effect of curcumin on galactose-induced cataractogenesis in rats. Mol Vis. 9:223–30.
  • Tang, Y., and A. Chen. 2014. Curcumin eliminates the effect of advanced glycation end-products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Lab Invest. 94:503–16.
  • Vlassara, H., H. Fuh, T. Donnelly, and M. Cybulsky. 1995. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med. 1:447–56.
  • Wetzels, S., K. Wouters, C. G. Schalkwijk, T. Vanmierlo, and J. J. Hendriks. 2017. Methylglyoxal-Derived Advanced Glycation Endproducts in Multiple Sclerosis. Int J Mol Sci. 18(pii):E421.
  • Wilken, R., M. S. Veena, M. B. Wang, and E. S. Srivatsan. 2011. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer. 10:12.
  • Yamagishi, S., S. Maeda, T. Matsui, S. Ueda, K. Fukami, and S. Okuda. 2012. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim Biophys Acta. 1820:663–71.
  • Yamagishi, S., N. Nakamura, M. Suematsu, K. Kaseda, and T. Matsui. 2015. Advanced Glycation End Products: A Molecular Target for Vascular Complications in Diabetes. Mol Med. 21(Suppl 1):S32–40.
  • Yang, Q., S. Wu, X. Mao, W. Wang, and H. Tai. 2013. Inhibition effect of curcumin on TNF-α and MMP-13 expression induced by advanced glycation end products in chondrocytes. Pharmacology. 91:77–85.
  • Yap, F. Y. T., P. Kantharidis, M. T. Coughlan, R. Slattery, and J. M. Forbes. 2012. Advanced glycation end products as environmental risk factors for the development of type 1 diabetes. Curr Drug Targets. 13:526–40.
  • Yu, W., J. Wu, F. Cai, J. Xiang, W. Zha, D. Fan, S. Guo, Z. Ming, and C. Liu. 2012. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS One. 7:e52013.
  • Zhang, D. W., M. Fu, S. H. Gao, and J. L. Liu. 2013. Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med. 2013:636053.
  • Zieman, S., and D. Kass. 2004. Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease. Congest Heart Fail. 10:144–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.