5,796
Views
190
CrossRef citations to date
0
Altmetric
Reviews

Can dynamic in vitro digestion systems mimic the physiological reality?

, , , , , , , , , , , , , , , & show all

References

  • Adouard, N., L. Magne, T. Cattenoz, H. Guillemin, B. Foligne, D. Picque, and P. Bonnarme. 2016. Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract. Food Microbiology 53:30–40.
  • Aguirre, M., A. Eck, M. E. Koenen, P. H. M. Savelkoul, A. E. Budding, and K. Venema. 2015. Evaluation of an optimal preparation of human standardized fecal inocula for in vitro fermentation studies. Journal of Microbiological Methods 117:78–84.
  • Aguirre, M., D. Jonkers, F. J. Troost, G. Roeselers, and K. Venema. 2014a. In Vitro Characterization of the Impact of Different Substrates on Metabolite Production, Energy Extraction and Composition of Gut Microbiota from Lean and Obese Subjects. Plos One 9.
  • Aguirre, M., J. Ramiro-Garcia, M. E. Koenen, and K. Venema. 2014b. To pool or not to pool? Impact of the use of individual and pooled fecal samples for in vitro fermentation studies. Journal of Microbiological Methods 107:1–7.
  • Alric, M., and S. Denis. 2009. Dispositif de simulation d'un estomac d'un mammifère monogastrique ou d'un être humain. Patent n°W02009087314,
  • Anson, N. M., A. M. Aura, E. Selinheimo, I. Mattila, K. Poutanen, R. van den Berg, R. Havenaar, A. Bast, and G. Haenen. 2011a. Bioprocessing of Wheat Bran in Whole Wheat Bread Increases the Bioavailability of Phenolic Acids in Men and Exerts Antiinflammatory Effects ex Vivo. Journal of Nutrition 141:137–143.
  • Anson, N. M., R. Havenaar, A. Bast, and G. Haenen. 2010. Antioxidant and anti-inflammatory capacity of bioaccessible compounds from wheat fractions after gastrointestinal digestion. Journal of Cereal Science 51:110–114.
  • Anson, N. M., R. Havenaar, W. Vaes, L. Coulier, K. Venema, E. Selinheimo, A. Bast, and G. Haenen. 2011b. Effect of bioprocessing of wheat bran in wholemeal wheat breads on the colonic SCFA production in vitro and postprandial plasma concentrations in men. Food Chemistry 128:404–409.
  • Avantaggiato, G., R. Havenaar, and A. Visconti. 2007. Assessment of the multi-mycotoxin-binding efficacy of a carbon/aluminosilicate-based product in an in vitro gastrointestinal model. Journal of Agricultural and Food Chemistry 55:4810–4819.
  • Barbe, F., S. Le Feunteun, D. Remond, O. Menard, J. Jardin, G. Henry, B. Laroche, and D. Dupont. 2014. Tracking the in vivo release of bioactive peptides in the gut during digestion:Mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrix fed mini-pigs. Food Research International 63:147–156.
  • Barroso, E., C. Cueva, C. Pelaez, M. C. Martinez-Cuesta, and T. Requena. 2015a. The computer-controlled multicompartmental dynamic model of the gastrointestinal system (SIMGI). 319–327.
  • Barroso, E., C. Cueva, C. Pelaez, M. C. Martinez-Cuesta, and T. Requena. 2015b. Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT-Food Science and Technology 61:283–289.
  • Bellmann, S., J. Lelieveld, T. Gorissen, M. Minekus, and R. Havenaar. 2016. Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Research International. 88:191–198.
  • Bellmann, S., M. Minekus, E. Zeijdner, M. Verwei, P. Sanders, W. Basten, and R. Havenaar. 2010. TIM-Carbo: a rapid, cost-efficient and reliable in vitro method for glycemic response after carbohydrate ingestion. Wageningen: Wageningen Acad Publ.
  • Blanquet-Diot, S., S. Denis, S. Chalancon, F. Chaira, J.-M. Cardot, and M. Alric. 2012. Use of Artificial Digestive Systems to Investigate the Biopharmaceutical Factors Influencing the Survival of Probiotic Yeast During Gastrointestinal Transit in Humans. Pharmaceutical Research 29:1444–1453.
  • Bolca, S., S. Possemiers, V. Maervoet, I. Huybrechts, A. Heyerick, S. Vervarcke, H. Depypere, D. De Keukeleire, M. Bracke, S. De Henauw, W. Verstraete, and T. Van de Wiele. 2007. Microbial and dietary factors associated with the 8-prenylnaringenin producer phenotype: a dietary intervention trial with fifty healthy post-menopausal Caucasian women. British Journal of Nutrition 98:950–959.
  • Bornhorst, G. M., L. Q. Chang, S. M. Rutherfurd, P. J. Moughan, and R. P. Singh. 2013a. Gastric emptying rate and chyme characteristics for cooked brown and white rice meals in vivo. Journal of the Science of Food and Agriculture 93:2900–2908.
  • Bornhorst, G. M., M. J. Ferrua, S. M. Rutherfurd, D. R. Heldman, and R. P. Singh. 2013b. Rheological Properties and Textural Attributes of Cooked Brown and White Rice During Gastric Digestion in Vivo. Food Biophysics 8:137–150.
  • Bornhorst, G. M., S. M. Rutherfurd, M. J. Roman, B. J. Burri, P. J. Moughan, and R. P. Singh. 2014. Gastric pH Distribution and Mixing of Soft and Rigid Food Particles in the Stomach using a Dual-Marker Technique. Food Biophysics 9:292–300.
  • Cordonnier, C., J. Thevenot, L. Etienne-Mesmin, S. Denis, M. Alric, V. Livrelli, and S. Blanquet-Diot. 2015. Dynamic in vitro models of the human gastrointestinal tract as relevant tools to assess the survival of probiotic strains and their interactions with gut microbiota. Microorganisms 3:725–745.
  • Cueva, C., A. Jimenez-Giron, I. Munoz-Gonzalez, A. Esteban-Fernandez, I. Gil-Sanchez, M. Duenas, P. J. Martin-Alvarez, M. A. Pozo-Bayon, B. Bartolome, and M. V. Moreno-Arribas. 2015. Application of a new Dynamic Gastrointestinal Simulator (SIMGI) to study the impact of red wine in colonic metabolism. Food Research International 72:149–159.
  • de Oliveira, S. C., C. Bourlieu, O. Ménard, A. Bellanger, G. Henry, F. Rousseau, E. Dirson, F. Carrière, D. Dupont, and A. Deglaire. 2016a. Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chemistry 211:171–179.
  • de Oliveira, S. C., A. Deglaire, O. Menard, A. Bellanger, F. Rousseau, G. Henry, E. Dirson, F. Carriere, D. Dupont, and C. Bourlieu. 2016b. Holder pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Research International 88:263–275.
  • De Smet, I., P. De Boever, and W. Verstraete. 1998. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. British Journal of Nutrition 79:185–194.
  • Déat, E., S. Blanquet-Diot, J.-F. Jarrige, S. Denis, E. Beyssac, and M. Alric. 2009. Combining the Dynamic TNO-Gastrointestinal Tract System with a Caco-2 Cell Culture Model: Application to the Assessment of Lycopene and a-Tocopherol Bioavailability from a Whole Food. Journal of Agricultural and Food Chemistry 57:11314–11320.
  • Deglaire, A., S. C. De Oliveira, J. Jardin, V. Briard-Bion, M. Emily, O. Menard, C. Bourlieu, and D. Dupont. 2016. Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic term newborn digestion. Electrophoresis 37:1839–1850.
  • Denis, S., T. Sayd, A. Georges, C. Chambon, S. Chalancon, V. Sante-Lhoutellier, and S. Blanquet-Diot. 2016. Digestion of cooked meat proteins is slightly affected by age as assessed using the dynamic gastrointestinal TIM model and mass spectrometry. Food & Function. 7:2682–2691.
  • Elashoff, J. D., T. J. Reedy, and J. H. Meyer. 1982. Analysis of Gastric-Emptying Data. Gastroenterology 83:1306–1312.
  • Ferrua, M. J., and R. P. Singh. 2010. Modeling the Fluid Dynamics in a Human Stomach to Gain Insight of Food Digestion. Journal of Food Science. 75:R151–R162.
  • Gao, K., A. L. Xu, C. Krul, K. Venema, Y. Liu, Y. T. Niu, J. X. Lu, L. Bensoussan, N. P. Seeram, D. Heber, and S. M. Henning. 2006. Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. Journal of Nutrition 136:52–57.
  • Geigy. 1981. Geigy Scientific Tables. Units of measurement, body fluids, composition of the body, nutrition. Basel, Switzerland: CIBA-GEIGY.
  • Gerard-Champod, M., S. Blanquet-Diot, J. M. Cardot, D. Bravo, and M. Alric. 2010. Development and Validation of a Continuous In Vitro System Reproducing Some Biotic and Abiotic Factors of the Veal Calf Intestine. Applied and Environmental Microbiology 76:5592–5600.
  • Guerra, A., S. Denis, O. le Goff, V. Sicardi, O. Francois, A. F. Yao, G. Garrait, A. P. Manzi, E. Beyssac, M. Alric, and S. Blanquet-Diot. 2016. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine. Biotechnology and Bioengineering 113:1325–1335.
  • Guerra, A., L. Etienne-Mesmin, V. Livrelli, S. Denis, S. Blanquet-Diot, and M. Alric. 2012. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in biotechnology 30:591–600.
  • Guillemin, H., B. Perret, D. Picque, O. Menard, and T. Cattenoz. 2010. Logiciel StoRM – Stomach and duodenum Regulation and Monitoring. IDDN.FR.001.230009.000.R.P.2010.000.31235: 290.
  • Guo, Q., A. Ye, M. Lad, D. Dalgleish, and H. Singh. 2014. Effect of gel structure on the gastric digestion of whey protein emulsion gels. Soft matter 10:1214–1223.
  • Haraldsson, A. K., L. Rimsten, M. Alminger, R. Andersson, P. Aman, and A. S. Sandberg. 2005. Digestion of barley malt porridges in a gastrointestinal model: Iron dialysability, iron uptake by Caco-2 cells and degradation of beta-glucan. Journal of Cereal Science 42:243–254.
  • Havenaar, R., B. Anneveld, L. M. Hanff, S. N. de Wildt, B. A. E. de Koning, M. G. Mooij, J. P. A. Lelieveld, and M. Minekus. 2013a. In vitro gastrointestinal model. TIM) with predictive power, even for infants and children? International Journal of Pharmaceutics 457:327–332.
  • Havenaar, R., A. de Jong, M. E. Koenen, J. van Bilsen, A. M. Janssen, E. Labij, and H. J. M. Westerbeek. 2013b. Digestibility of Transglutaminase Cross-Linked Caseinate versus Native Caseinate in an In Vitro Multicompartmental Model Simulating Young Child and Adult Gastrointestinal Conditions. Journal of Agricultural and Food Chemistry 61:7636–7644.
  • Havenaar, R., A. Maathuis, A. De Jong, D. Mancinelli, A. Berger, and S. Bellmann. 2016. Herring roe protein has a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model. Nutrition Research 36:798–807.
  • Hocke, M., U. Schöne, H. Richert, P. Görnert, J. Keller, P. Layer, and A. Stallmach. 2009. Every slow-wave impulse is associated with motor activity of the human stomach. American Journal of Physiology – Gastrointestinal and Liver Physiology 296:G709–G716.
  • Jansson, E. T., C. L. Trkulja, J. Olofsson, M. Millingen, J. Wikstrom, A. Jesorka, A. Karlsson, R. Karlsson, M. Davidson, and O. Orwar. 2012. Microfluidic Flow Cell for Sequential Digestion of Immobilized Proteoliposomes. Analytical Chemistry 84:5582–5588.
  • Kecskemeti, A., and A. Gaspar. 2017. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion. Talanta. 166:275–283.
  • Kong, F., and R. P. Singh. 2008. Disintegration of solid foods in human stomach. Journal of Food Science 73:R67–80.
  • Kong, F., and R. P. Singh. 2010. A Human Gastric Simulator. HGS) to Study Food Digestion in Human Stomach. Journal of Food Science 75:E627–E635.
  • Kovatcheva-Datchary, P., M. Egert, A. Maathuis, M. Rajilic-Stojanovic, A. A. de Graaf, H. Smidt, W. M. de Vos, and K. Venema. 2009. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environmental Microbiology 11:914–926.
  • Larsson, M., M. Minekus, and R. Havenaar. 1997. Estimation of the bioavailability of iron and phosphorus in cereals using a dynamic in vitro gastrointestinal model. Journal of the Science of Food and Agriculture 74:99–106.
  • Marciani, L., R. Faulks, M. S. J. Wickham, D. Bush, B. Pick, J. Wright, E. F. Cox, A. Fillery-Travis, P. A. Gowland, and R. C. Spiller. 2009. Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety. British Journal of Nutrition 101:919–928.
  • Marciani, L., P. A. Gowland, A. Fillery-Travis, P. Manoj, J. Wright, A. Smith, P. Young, R. Moore, and R. C. Spiller. 2001a. Assessment of antral grinding of a model solid meal with echo-planar imaging. American Journal of Physiology-Gastrointestinal and Liver Physiology 280:G844–G849.
  • Marciani, L., P. A. Gowland, R. C. Spiller, P. Manoj, R. J. Moore, P. Young, and A. J. Fillery-Travis. 2001b. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. American Journal of Physiology-Gastrointestinal and Liver Physiology 280:G1227–G1233.
  • Marciani, L., P. Young, J. Wright, R. Moore, N. Coleman, P. A. Gowland, and R. C. Spiller. 2001c. Antral motility measurements by magnetic resonance imaging. Neurogastroenterology and Motility 13:511–518.
  • Marteau, P., M. Minekus, R. Havenaar, and J. Veld. 1997. Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile. Journal of Dairy Science 80:1031–1037.
  • Martinez, R. C. R., H. R. Cardarelli, W. Borst, S. Albrecht, H. Schols, O. P. Gutierrez, A. J. H. Maathuis, B. Franco, E. C. P. De Martinis, E. G. Zoetendal, K. Venema, S. M. I. Saad, and H. Smidt. 2013. Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure, and metabolite production in an in vitro colonic model set up with human or pig microbiota. Fems Microbiology Ecology 84:110–123.
  • Marze, S., H. Algaba, and M. Marquis. 2014. A microfluidic device to study the digestion of trapped lipid droplets. Food & Function 5:1481–1488.
  • Marzorati, M., B. Vanhoecke, T. De Ryck, M. S. Sadabad, I. Pinheiro, S. Possemiers, P. Van den Abbeele, L. Derycke, M. Bracke, J. Pieters, T. Hennebel, H. J. Harmsen, W. Verstraete, and T. Van de Wiele. 2014. The HMI (TM) module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro. Bmc Microbiology 14.
  • Menard, O., T. Cattenoz, H. Guillemin, I. Souchon, A. Deglaire, D. Dupont, and D. Picque. 2014. Validation of a new in vitro dynamic system to simulate infant digestion. Food Chemistry 145:1039–1045.
  • Minekus, M., P. Marteau, R. Havenaar, and J. H. J. Huisintveld. 1995. A Multicompartmental Dynamic Computer-Controlled Model Simulating the Stomach and Small-Intestine. Atla-Alternatives to Laboratory Animals 23:197–209.
  • Minekus, M., M. Smeets-Peeters, A. Bernalier, S. Marol-Bonnin, R. Havenaar, P. Marteau, M. Alric, G. Fonty, and J. Veld. 1999. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Applied Microbiology and Biotechnology 53:108–114.
  • Miralles, B., R. del Barrio, C. Cueva, I. Recio, and L. Amigo. 2017. Dynamic gastric digestion of a commercial whey protein concentrate†. Journal of the Science of Food and Agriculture n/a-n/a.
  • Molly, K., M. Vandewoestyne, I. Desmet, and W. Verstraete. 1994. Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microbial Ecology in Health and Disease 7:191–200.
  • Molly, K., M. V. Woestyne, and W. Verstraete. 1993. Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology 39:254–258.
  • Munoz-Gonzalez, I., A. Jimenez-Giron, P. J. Martin-Alvarez, B. Bartolome, and M. V. Moreno-Arribas. 2013. Profiling of Microbial-Derived Phenolic Metabolites in Human Feces after Moderate Red Wine Intake. Journal of Agricultural and Food Chemistry 61:9470–9479.
  • Naylor, T. A., P. C. Connolly, L. G. Martini, D. P. Elder, M. Minekus, R. Havenaar, and E. Zeijdner. 2006. Use of a gastro-intestinal model and GastroPLUS for the prediction of in vivo performance. Journal of Applied Therapeutic Research 6:15–19.
  • Phinney, D. M. 2013. Design, Construction, and Evaluation of a Reactor Designed to Mimic Human Gastric Digestion. Davis: University of California.
  • Possemiers, S., S. Bolca, C. Grootaert, A. Heyerick, K. Decroos, W. Dhooge, D. De Keukeleire, S. Rabot, W. Verstraete, and T. Van de Wiele. 2006. The prenylflavonoid isoxanthohumol from hops. Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. Journal of Nutrition 136:1862–1867.
  • Possemiers, S., S. Rabot, J. C. Espin, A. Bruneau, C. Philippe, A. Gonzalez-Sarrias, A. Heyerick, F. A. Tomas-Barberan, D. De Keukeleire, and W. Verstraete. 2008. Eubacterium limosum activates isoxanthohumol from hops. Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in the rat intestine. Journal of Nutrition 138:1310–1316.
  • Possemiers, S., K. Verthe, S. Uyttendaele, and W. Verstraete. 2004. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology 49:495–507.
  • Rajilic-Stojanovic, M., A. Maathuis, H. G. Heilig, K. Venema, W. M. de Vos, and H. Smidt. 2010. Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. Microbiology 156:3270–3281.
  • Ribnicky, D. M., D. E. Roopchand, A. Oren, M. Grace, A. Poulev, M. A. Lila, R. Havenaar, and I. Raskin. 2014. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chemistry 142:349–357.
  • Rose, D. J., K. Venema, A. Keshavarzian, and B. R. Hamaker. 2010. Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. British Journal of Nutrition 103:1514–1524.
  • Roussel, C., C. Cordonnier, W. Galia, O. Le Goff, J. Thévenot, S. Chalancon, M. Alric, D. Thevenot-Sergentet, F. Leriche, T. Van de Wiele, V. Livrelli, and S. Blanquet-Diot. 2016. Increased EHEC survival and virulence gene expression indicate an enhanced pathogenicity upon simulated pediatric gastrointestinal conditions. Pediatric Research 80:734.
  • Russell, W. R., S. W. Gratz, S. H. Duncan, G. Holtrop, J. Ince, L. Scobbie, G. Duncan, A. M. Johnstone, G. E. Lobley, R. J. Wallace, G. G. Duthie, and H. J. Flint. 2011. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. American Journal of Clinical Nutrition 93:1062–1072.
  • Sanchez-Rivera, L., O. Menard, I. Recio, and D. Dupont. 2015. Peptide mapping during dynamic gastric digestion of heated and unheated skimmed milk powder. Food Research International 77:132–139.
  • Schaafsma, G. 2005. The protein digestibility-corrected amino acid score (PDCAAS) – A concept for describing protein quality in foods and food ingredients: A critical review. Journal of AOAC International. 88:988–994.
  • Siegel, J. A., J. L. Urbain, L. P. Adler, N. D. Charkes, A. H. Maurer, B. Krevsky, L. C. Knight, R. S. Fisher, and L. S. Malmud. 1988. BIPHASIC NATURE OF GASTRIC-EMPTYING. Gut. 29:85–89.
  • Smeets-Peeters, M. J. E., M. Minekus, R. Havenaar, G. Schaafsma, and M. W. A. Verstegen. 1999. Description of a dynamic in vitro model of the dog gastrointestinal tract and an evaluation of various transit times for protein and calcium. Atla-Alternatives to Laboratory Animals 27:935–949.
  • Souliman, S., E. Beyssac, J. M. Cardot, S. Denis, and M. Alric. 2007. Investigation of the biopharmaceutical behavior of theophylline hydrophilic matrix tablets using USP methods and an artificial digestive system. Drug Development and Industrial Pharmacy 33:475–483.
  • Souliman, S., S. Blanquet, E. Beyssac, and J. M. Cardot. 2006. A level A in vitro/in vivo correlation in fasted and fed states using different methods: Applied to solid immediate release oral dosage form. European Journal of Pharmaceutical Sciences 27:72–79.
  • Sullivan, L. M., J. J. Kehoe, L. Barry, M. J. M. Buckley, F. Shanahan, K. H. Mok, and A. Brodkorb. 2014. Gastric digestion of alpha-lactalbumin in adult human subjects using capsule endoscopy and nasogastric tube sampling. British Journal of Nutrition 112:638–646.
  • Tabernero, M., K. Venema, A. J. H. Maathuis, and F. D. Saura-Calixto. 2011. Metabolite Production during in Vitro Colonic Fermentation of Dietary Fiber: Analysis and Comparison of Two European Diets. Journal of Agricultural and Food Chemistry 59:8968–8975.
  • Thevenot, J., C. Cordonnier, A. Rougeron, O. Le Goff, H. T. T. Nguyen, S. Denis, M. Alric, V. Livrelli, and S. Blanquet-Diot. 2015. Enterohemorrhagic Escherichia coli infection has donor-dependent effect on human gut microbiota and may be antagonized by probiotic yeast during interaction with Peyer's patches. Applied Microbiology and Biotechnology 99:9097–9110.
  • Thevenot, J., L. Etienne-Mesmin, S. Denis, S. Chalancon, M. Alric, V. Livrelli, and S. Blanquet-Diot. 2013. Enterohemorrhagic Escherichia coli O157:H7 Survival in an In Vitro Model of the Human Large Intestine and Interactions with Probiotic Yeasts and Resident Microbiota. Applied and Environmental Microbiology 79:1058–1064.
  • Van de Wiele, T., N. Boon, S. Possemiers, H. Jacobs, and W. Verstraete. 2004. Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology 51:143–153.
  • Van de Wiele, T. R., A. G. Oomen, J. Wragg, M. Cave, M. Minekus, A. Hack, C. Cornelis, C. J. M. Rompelberg, L. L. De Zwart, B. Klinck, J. Van Wijnen, W. Verstraete, and A. Sips. 2007. Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 42:1203–1211.
  • Van den Abbeele, P., C. Belzer, M. Goossens, M. Kleerebezem, W. De Vos, O. Thas, R. De Weirdt, F. Kerckhof, and T. Van de Wiele. 2013a. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. Isme Journal 7:949–961.
  • Van den Abbeele, P., P. Gerard, S. Rabot, A. Bruneau, S. El Aidy, M. Derrien, M. Kleerebezem, E. G. Zoetendal, H. Smidt, W. Verstraete, T. Van de Wiele, and S. Possemiers. 2011. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ Microbiol. 13:2667–2680.
  • Van den Abbeele, P., C. Grootaert, M. Marzorati, S. Possemiers, W. Verstraete, P. Gerard, S. Rabot, A. Bruneau, S. El Aidy, M. Derrien, E. Zoetendal, M. Kleerebezem, H. Smidt, and T. Van de Wiele. 2010. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol. 76:5237–5246.
  • Van den Abbeele, P., S. Roos, V. Eeckhaut, D. A. MacKenzie, M. Derde, W. Verstraete, M. Marzorati, S. Possemiers, B. Vanhoecke, F. Van Immerseel, and T. Van de Wiele. 2012. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microbial Biotechnology 5:106–115.
  • Van den Abbeele, P., K. Venema, T. Van de Wiele, W. Verstraete, and S. Possemiers. 2013b. Different human gut models reveal the distinct fermentation patterns of Arabinoxylan versus inulin. J Agric Food Chem. 61:9819–9827.
  • Vardakou, M., A. Mercuri, S. A. Barker, D. Q. Craig, R. M. Faulks, and M. S. Wickham. 2011a. Achieving Antral Grinding Forces in Biorelevant In Vitro Models: Comparing the USP Dissolution Apparatus II and the Dynamic Gastric Model with Human In Vivo Data. Aaps Pharmscitech 12:620–626.
  • Vardakou, M., A. Mercuri, S. A. Barker, D. Q. Craig, R. M. Faulks, and M. S. Wickham. 2011b. Achieving antral grinding forces in biorelevant in vitro models: comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. AAPS PharmSciTech. 12:620–626.
  • Venema, K., M. H. M. C. van Nuenen, E. G. Van den Heuvel, W. Pool, and J. M. B. M. van der Vossen. 2003. The effect of lactulose on the composition of the intestinal microbiota and short-chain fatty acid production in human volunteers and a computer-controlled model of the proximal large intestine. Microbial Ecology in Health and Disease 15:94–105.
  • Venema, K., S. H. F. Vermunt, and E. J. Brink. 2005. D-Tagatose increases butyrate production by the colonic microbiota in healthy men and women. Microbial Ecology in Health and Disease 17:47–57.
  • Vermeiren, J., P. Van den Abbeele, D. Laukens, L. K. Vigsnaes, M. De Vos, N. Boon, and T. Van de Wiele. 2012. Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiology Ecology 79:685–696.
  • Verwei, M., A. P. Freidig, R. Havenaar, and J. P. Groten. 2006. Predicted serum folate concentrations based on in vitro studies and kinetic modeling are consistent with measured folate concentrations in humans. Journal of Nutrition 136:3074–3078.
  • Verwei, M., M. Minekus, E. Zeijdner, R. Schilderink, and R. Havenaar. 2016. Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract. TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. International Journal of Pharmaceutics 498:178–186.
  • Vigsnaes, L. K., P. van den Abbeele, K. Sulek, H. L. Frandsen, C. Steenholdt, J. Brynskov, J. Vermeiren, T. van de Wiele, and T. R. Licht. 2013. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize mucus. Sci Rep. 3:1110.
  • Westerhout, J., E. V. de Steeg, D. Grossouw, E. E. Zeijdner, C. A. M. Krul, M. Verwei, and H. M. Wortelboer. 2014. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. European Journal of Pharmaceutical Sciences 63:167–177.
  • Wickham, M. J. S., R. M. Faulks, J. Mann, and G. Mandalari. 2012. The Design, Operation, and Application of a Dynamic Gastric Model. Dissolution Technologies 19:15–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.