4,580
Views
190
CrossRef citations to date
0
Altmetric
Reviews

Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects

, , , , , & show all

References

  • Abe, K., H. Hattori, and M. Hirano. 2007. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chemistry 100:656–661. doi:10.1016/j.foodchem.2005.10.026.
  • Abomohra, A. E. F., M. El-Sheekh, and D. Hanelt. 2014. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass and Bioenergy 64:237–244. doi:10.1016/j.biombioe.2014.03.049.
  • Abreu, A. P., B. Fernandes, A. A. Vicente, J. Teixeira, and G. Dragone. 2012. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology 118:61–66. doi:10.1016/j.biortech.2012.05.055.
  • Alexandre, M., K. Gundermann, A. Pascal, R. Van Grondelle, C. Büchel, and B. Robert. 2014. Probing the carotenoid content of intact Cyclotella cells by resonance raman spectroscopy. Photosynthesis Research 119:273–281. doi:10.1007/s11120-013-9942-y.
  • Aronow, M. E., and E. Y. Chew. 2014. Age-related eye disease study 2: perspectives, recommendations, and unanswered questions. Current Opinion in Ophthalmology 25:186–190. doi:10.1097/ICU.0000000000000046.
  • Asai, A., T. Sugawara, H. Ono, and A. Nagao. 2004. Biotransformation of fucoxanthinol into amarouciaxanthin a in mice and HepG2 cells: Formation and cytotoxicity of fucoxanthin metabolites. Drug Metabolism and Disposition 32:205–211. doi:10.1124/dmd.32.2.205.
  • Bae, J. H., and S. B. Hur. 2011. Selection of suitable species of Chlorella, Nannochloris, and Nannochloropsis in high and low temperature seasons for mass culture of the rotifer Bachionus plicatilis. Fisheries and Aquatic Sciences 14:323–332. doi:10.5657/FAS.2011.0323.
  • Bajhaiya, A. K., M. J. Ziehe, and J. K. Pittman. 2017. Transcriptional engineering of microalgae: Prospects for high value chemicals. Trends in Biotechnology 35:95–99. doi:10.1016/j.tibtech.2016.06.001.
  • Banerjee, A., R. Sharma, Y. Chisti, and U. C. Banerjee. 2002. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology 22:245–279. doi:10.1080/07388550290789513.
  • Bar, E., M. Rise, M. Vishkautsan, and S. Arad. 1995. Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. Journal of Plant Physiology 146:527–534. doi:10.1016/S0176-1617(11)82019-5.
  • Bayona, K. C. D., and L. A. Graces. 2014. Effect of different media on exo-polysaccharide and biomass production by the green microalga Botryococcus braunii. Journal of Applied Phycology 26:2087–2095. doi:10.1007/s10811-014-0242-5.
  • Beer, A., M. Juhas, and C. Buchel. 2011. Influence of different light intensities and different iron nutrition on the photosynthetic apparatus in the diatom Cyclotella meneghiniana (Bacillariophyceae). Journal of Phycology 47:1266–1273. doi:10.1111/j.1529-8817.2011.01060.x.
  • Ben-Amotz, A., and Y. Levy. 1996. Bioavailability of a natural isomer mixture compared with synthetic all-trans β-carotene in human serum. American Journal of Clinical Nutrition 63:729–734. doi:10.1093/ajcn/63.5.729.
  • Bhagavathy, S., and P. Sumathi. 2012. Stabilization of membrane bound ATPases and lipid peroxidation by carotenoids from Chlorococcum humicolain benzo(a)pyrene induced toxicity. Asian Pacific Journal of Tropical Biomedicine 2:380–384 doi:10.1016/S2221-1691(12)60060-4.
  • Bhagavathy, S., P. Sumathi and B. I. Jancy Sherene. 2011a. Green algae Chlorococcum humicola-a new source of bioactive compounds with anti-microbial activity. Asian Pacific Journal of Tropical Biomedicine 1:S1–S7 doi:10.1016/S2221-1691(11)60111-1.
  • Bhagavathy, S., P. Sumathi, and M. Madhushree. 2011b. Antimutagenic assay of carotenoids from green algae Chlorococcum humicola using Salmonella typhimurium TA98, TA100 and TA102. Asian Pacific Journal of Tropical Biomedicine 1:308–316. doi:10.1016/S2222-1808(11)60073-X.
  • Bilbao, P. G. S., C. Damiani, G. A. Salvador, and P. Leonardi. 2016. Haematococcus pluvialis as a source of fatty acids and phytosterols: Potential nutritional and biological implications. Journal of Applied Phycology 28:3283–3294. doi:10.1007/s10811-016-0899-z.
  • Bishop, W. M., and H. M. Zubeck. 2012. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. Journal of Nutrition and Food Sciences 2:147. doi:10.4172/2155-9600.1000147.
  • Borowitzka, L. J., and M. A. Borowitzka. 1989. β-Carotene (pro-vitamin A) production with algae. In Biotechnology of Vitamins, Pigments and Growth Factors, Ed. E. J. Vandamme, pp. 15–26. London: Elsevier Applied Science.
  • Borowitzka, M. A. 2010. Carotenoid production using microorganisms. In Single Cell Oils: Microbial and Algal oils, Eds. Z. Cohen and C. Ratledge, pp. 225–240. Urbana: AOCS Press.
  • Bozarth, A., U. G. Maier, and S. Zauner. 2009. Diatoms in biotechnology: Modern tools and applications. Applied Microbiology and Biotechnology 82:195–201. doi:10.1007/s00253-008-1804-8.
  • Brotas, V., and M. R. Plante-Cuny. 2003. The use of HPLC pigment analysis to study microphytobenthos communities. Acta Oecologica 24:109–115 doi:10.1016/S1146-609X(03)00013-4.
  • Brown, J. S. 1987. Functional organization of chlorophyll a and carotenoids in alga, Nannochloropsis salina. Plant Physiology 83:434–437. doi:10.1104/pp.83.2.434.
  • Brunet, C., R. Chandrasekaran, L. Barra, V. Giovagnetti, F. Corato, and A. V. Ruban. 2014. Spectral radiation dependent photo-protective mechanism in the diatom Pseudo-nitzschiamultistriata. Plos One 9:1–10. doi:10.1371/journal.pone.0087015.
  • Buono, S., A. L. Langellotti, F. Rinna, A. Martello, and V. Fagliano. 2014. Functional ingredients from microalgae. Food and Function 5:1669–1685. doi:10.1039/C4FO00125G.
  • Burczyk, J., H. Szkawran, I. Zontek, and F. C. Czygan. 1981. Carotenoids in the outer cell-wall layer of Scenedesmus (Chlorophyceae). Planta 151:247–250. doi:10.1007/BF00395176.
  • Burton-Freeman, B., J. Talbot, E. Park, S. Krishnankutty, and I. Edirisinghe. 2012. Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Molecular Nutrition and Food Research 56:622–631. doi:10.1002/mnfr.201100649.
  • Campenni, L., B. P. Nobre, C. A. Santos, A. C. Oliveira, M. R. Aires-Barros, A. M. F. Palavra, and L. Gouveia. 2013. Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Applied Microbiology and Biotechnology 97:1383–1393. doi:10.1007/s00253-012-4570-6.
  • Carbonell-Capella, J. M., M. Buniowska, F. J. Barba, M. J. Esteve, and A. Frigola. 2014. Analytical methods for determining bio-availability and bio-accessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety 13:155–171. doi:10.1111/1541-4337.12049.
  • Careri, M., L. Furlattini, A. Mangia, M. Musci, E. Anklam, A. Theobald, and C. Von Holst. 2001. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina pacifica algae: A chemometric approach. Journal of Chromatography A 12:61–71. doi:10.1016/S0021-9673(01)00545-3.
  • Castenmiller, J. J. M., and C. E. West. 1998. Bioavailability and bioconversion of carotenoids. Annual Review of Nutrition 18:19–38. doi:10.1146/annurev.nutr.18.1.19.
  • Ceron, M. C., I. Campos, J. F. Sánchez, F. G. Acien, E. Molina, and J. M. Fernández-Sevill. 2008. Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. Journal of Agricultural and Food Chemistry 56:11761–11766. doi:10.1021/jf8025875.
  • Ceron, M. C., M. C. Garcia-Malea, J. Rivas, F. G. Acien, J. M. Fernandez, E. del Rio, M. G. Guerrero, and E. Molina. 2007. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Applied Microbiology and Biotechnology 74:1112–1119. doi:10.1007/s00253-006-0743-5.
  • Cesarini, J. P., L. Michel, J. M. Maurette, H. Adhoute, and M. Bejot. 2003. Immediate effects of UV radiation on the skin: Modification by an antioxidant complex containing carotenoids. Photodermatology, Photoimmunology and Photomedicine 19:182–189. doi:10.1034/j.1600-0781.2003.00044.x.
  • Cha, K. H., S. Y. Koo, and D. U. Lee. 2008. Anti-proliferative effects of carotenoids extracted from chlorella ellipsoidea and chlorella vulgaris on human colon cancer cells. Journal of Agricultural and Food Chemistry 56:10521–10526. doi:10.1021/jf802111x.
  • Cha, K. H., H. J. Lee, S. Y. Koo, D. G. Song, D. U. Lee, and C. H. Pan. 2010. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. Journal of Agricultural and Food Chemistry 58:793–797. doi:10.1021/jf902628j.
  • Chacon-Lee, T. L., and E. Gonzalez-MarinoG. 2010. Microalgae for healthy foods-possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety 9:655–675. doi:10.1111/j.1541-4337.2010.00132.x.
  • Chan, K. C., P. J. Pen, and M. C. Yin. 2012. Anti-coagulatory and anti-inflammatory effects of astaxanthin in diabetic rats. Journal of Food Science 77:H76–H80. doi:10.1111/j.1750-3841.2011.02558.x.
  • Chan, M. M. C., S. S. H. Ho, D. D. J. Lee, C. C. Y. Chen, C. C. Huang, and J. S. Chang. 2013. Characterization, extraction and purification of lutein produced by an Indigenous microalga Scenedesmus obliquus CNW-N. Biochemical Engineering Journal 78:24–31. doi:10.1016/j.bej.2012.11.017.
  • Chen, C. Y., K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102:71–81. doi:10.1016/j.biortech.2010.06.159.
  • Chew, W., B. D. Mathison, L. L. Kimble, P. F. Mixter, and B. P. Chew. 2013. Astaxanthin decreases inflammatory biomarkers associated with cardiovascular disease in human umbilical vein endothelial cells. American Journal of Advanced Food Science and Technology 1:1–17. doi:10.7726/ajafst.2013.1001.
  • Chidambara Murthy, K. N., J. Rajesha, A. Vanitha, M. M. Swamy, and G. A. Ravishankar. 2005. Protective effect of Dunaliella salina-A marine microalga, against carbon tetrachloride-induced hepatotoxicity in rats. Hepatology Research 33:313–319. doi:10.1016/j.hepres.2005.08.008.
  • Choi, H. D., H. E. Kang, S. H. Yang, M. G. Lee, and W. G. Shin. 2011. Pharmacokinetics and first-pass metabolism of astaxanthin in rats. British Journal of Nutrition 105:220–227. doi:10.1017/S0007114510003454.
  • Christaki, E., E. Bonos, I. Giannenas, and P. Florou-Paneri. 2012. Functional properties of carotenoids originating from algae. Journal of the Science of Food and Agriculture 93:5–11. doi:10.1002/jsfa.5902.
  • Chu, W. L. 2012. Biotechnological applications of microalgae. IeJSME 6:S24–S37.
  • Coca, M., V. M. Barrocal, S. Lucas, G. González-Benito, and M. T. Garcia-Cubero. 2014. Protein production in Spirulina platensis biomass using beet vinasse supplemented culture media. Food and Bioproducts Processing 94:306–312. doi:10.1016/j.fbp.2014.03.012.
  • Coesel, S., M. Obornik, J. Varela, A. Falciatore, and C. Bowler. 2008. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. Plos One 3:e2896. doi:10.1371/journal.pone.0002896.
  • Cooperstone, J. L., and S. J. Schwartz. 2016. Recent insights into health benefits of carotenoids. In Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color, Eds. R. Carle and R. M. Schweiggert, pp. 473–497, Duxford, UK: Woodhead Publishing, Elsevier.
  • Cooperstone, J. L., R. A. Ralston, K. M. Riedl, T. C. Haufe, R. M. Schweiggert, S. A. King, C. D. Timmers, D. M. Francis, G. B. Lesinski, S. K. Clinton, and S. J. Schwartz. 2015. Enhanced bioavailability of lycopene in humans when consumed as cis-isomers from tangerine tomatoes compared to red tomato juices, a randomized, cross-over clinical trial. Molecular Nutrition and Food Research 59:658–669. doi:10.1002/mnfr.201400658.
  • Costa, B. S., A. Jungandreas, T. Jakob, W. Weisheit, M. Mittag, and C. Wilhelm. 2013. Blue light is essential for high light acclimation and methylation and chromatin patterning photoprotection in the diatom Phaeodactylum tricornutum. Journal of Experimental Botany 64:483–493. doi:10.1093/jxb/ers340.
  • Curtain, C. 2000. Plant biotechnology the growth of Australia's algal β-carotene industry. Australasian Biotechnology 10:19–23.
  • D'Alessandro, E. B., and N. R. Antoniosi Filho. 2016. Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews 58:832–841. doi:10.1016/j.rser.2015.12.162.
  • Dambek, M., U. Eilers, J. Breitenbach, S. Steiger, C. Büchel, and G. Sandmann. 2012. Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. Journal of Experimental Botany 63:5607–5612. doi:10.1093/jxb/ers211.
  • Deenu, A., S. Naruenartwongsakul, and S. M. Kim. 2013. Optimization and economic evaluation of ultrasound extraction of lutein from Chlorella vulgaris. Biotechnology and Bioprocess Engineering 18:1151–1162. doi:10.1007/s12257-013-0213-8.
  • Degen, J., A. Uebele, A. Retze, U. Schmid-Staiger, and W. Trosch. 2001. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. Journal of Biotechnology 92:89–94. doi:10.1016/S0168-1656(01)00350-9.
  • Del Campo, J. A., M. García-González, and M. G. Guerrero. 2007. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Applied Microbiology and Biotechnology 74:1163–1174. doi:10.1007/s00253-007-0844-9.
  • Del Campo, J. A., J. Moreno, H. Rodriguez, M. A. Vargas, J. Rivas, and M. G. Guerrero. 2000. Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology 76:51–59. doi:10.1016/S0168-1656(99)00178-9.
  • Del Campo, J. A., J. Moreno, H. Rodriguez, M. A. Vargas, J. Rivas, and M. G. Guerrero. 2001. Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. Journal of Biotechnology 85:289–295. doi:10.1016/S0168-1656(00)00380-1.
  • Del Campo, J. A., H. Rodríguez, J. Moreno, M. á. Vargas, J. Rivas, and M. G. Guerrero. 2004. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology 64:848–854. doi:10.1007/s00253-003-1510-5.
  • Domingues, N., A. R. Matos, J. M. da Silva, and P. Cartaxana. 2012. Response of the diatom Phaeodactylum tricornutum to photo oxidative stress resulting from high light exposure. Plos One 7:1–6. doi:10.1371/journal.pone.0038162.
  • Dominguez-Bocanegra, A. R., L. I. Guerrero, F. M. Jeronimo, and A. T. Campocosio. 2004. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresource Technology 92:209–214 doi:10.1016/j.biortech.2003.04.001.
  • Dong, L. Y., J. Jin, G. Lu, and X. L. Kang. 2013. Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Marine Drugs 11:960–974. doi:10.3390/md11030960.
  • Donhowe, E. G., and F. Kong. 2014. β-carotene: Digestion, microencapsulation, and in vitro bioavailability. Food and Bioprocess Technology 7:338–354. doi:10.1007/s11947-013-1244-z.
  • Dufosse, L., P. Galaup, A. Yaron, S. M. Arad, P. Blanc, K. N. Chidambaram Murthy, and G. A. Ravishankar. 2005. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology 16:389–406. doi:10.1016/j.tifs.2005.02.006.
  • El-Baky, H. H. A., F. K. El-Baz, and G. S. El-Baroty. 2003. Spirulina species as a source of carotenoids and α-tocopherol and its anti-carcinoma factors. Biotechnol 2:222–240. doi:10.3923/biotech.2003.222.240.
  • El-Baz, F. K., A. M. Abdoul-Enein, G. S. El-Baroty, A. M. Youssef, and H. H. A. El-Baky. 2002. Accumulation of antioxidant vitamins in Dunaliella salina. Journal of Biological Sciences 2:220–223. doi:10.3923/jbs.2002.220.223.
  • Eriksen, N. T. 2008. Production of phycocyanin a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology 80:1–14. doi:10.1007/s00253-008-1542-y.
  • Faheed, F., and Z. Abd el Fattah. 2008. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture and Social Sciences 4:165–169.
  • Feng, S., X. Li, Z. Xu, and J. Qi. 2014. Dunaliella salina as a novel host for the production of recombinant proteins. Applied Microbiology and Biotechnology 98:4293–4300. doi:10.1007/s00253-014-5636-4.
  • Fernandez-Sevilla, J. M., F. G. Acien-Fernandez, and E. Molina-Grima. 2010. Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology 86:27–40. doi:10.1007/s00253-009-2420-y.
  • Forjan, L. E., N. I. Garbayo, B. C. Casal, and L. C. Vilchez. 2007. Enhancement of carotenoid production in Nannochloropsis by phosphate and sulphur limitation. In: Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Ed. A. Mendez-Vilas, pp. 356–364, Espana: Microbiology Book Series, Formatex, Badajoz, Spain. ISBN-13: 978-84-611-9421-6(Series), ISBN-13: 978-84-611-9422-3(vol.1 ).
  • Fu, W., O. Guomundsson, G. Paglia, G. Herjolfsson, O. S. Andresson, B. Q. Palsson, and S. Brynjolfsson. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology. 97:2395–2403. doi:10.1007/s00253-012-4502-5.
  • Fu, W., G. Paglia, M. Magnusdottir, E. A. Steinarsdottir, S. Gudmundsson, B. Q. Palsson, O. S. Andresson, and S. Brynjolfsson. 2014. Effect of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microbial Cell Factories 13:3. doi:10.1186/1475-2859-13-3.
  • Fu, W., K. Wichuk, and S. Brynjolfsson. 2015. Developing diatoms for value-added products: Challenges and opportunities. New Biotechnology 32:547–551. doi:10.1016/j.nbt.2015.03.016.
  • Fujii, Y., A. Ben-Amotz, S. Sakamoto, and H. Nagasawa. 1993. Effects of β-carotene rich algae Dunaliella bardawil on the dynamic changes of normal and neoplastic mammary cells and general metabolism in mice. Anticancer Research 13:389–393.
  • Gantar, M., and Z. Svircev. 2008. Microalgae and cyanobacteria: Food for thought. Journal of Phycology 44:260–268. doi:10.1111/j.1529-8817.2008.00469.x.
  • Garcia-Gonzalez, M., J. Moreno, J. C. Manzano, F. J. Florencio, and M. G. Guerrero. 2005. Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology 115:81–90. doi:10.1016/j.jbiotec.2004.07.010.
  • Garcia-Malea, M. C., F. G. Acien, E. del Río, J. M. Fernandez, M. C. Ceron, M. G. Guerrero, and E. Molina-Grima. 2009. Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnology and Bioengineering 102:651–657. doi:10.1002/bit.22076.
  • Gastineau, R., N. A. Davidovich, J. F. Bardeau, A. Caruso, V. Leignel, Y. Hardivillier, Y. Rince, B. Jacquette, O. I. Davidovich, P. Gaudin, E. J. Cox, and J. L. Mouget. 2012. Haslea karadagensis (Bacillariophyta): A second blue diatom, recorded from the black sea and producing a novel blue pigment. European Journal of Phycology 47:469–479. doi:10.1080/09670262.2012.741713.
  • Gastineau, R., F. Turcotte, J. B. Pouvreau, M. Morançais, J. Fleurence, E. Windarto, S. Arsad, F. S. Prasetiya, P. Jaouen, M. Babin, et al. 2014. Marennine, promising blue pigments from a widespread Haslea diatom species complex. Marine Drugs 12:3161–3189. doi:10.3390/md12063161.
  • Gaziano, J. M., J. E. Manson, L. G. Branch, G. A. Colditz, W. C. Willett, and J. E. Buring. 1995. A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. Annals of Epidemiology 5:255–260. doi:10.1016/1047-2797(94)00090-G.
  • Gelzinis, A., V. Butkus, E. Songaila, R. Augulis, A. Gall, C. Büchel, B. Robert, D. Abramavicius, D. Zigmantas, and L. Valkunas. 2015. Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. BBA Bioenergetics 1847:241–247. doi:10.1016/j.bbabio.2014.11.004.
  • Gil-Chavez, G. J., J. A. Villa, J. Fernando Ayala-Zavala, J. Basilio Heredia, D. Sepulveda, E. M. Yahia, and G. A. Gonzalez-Aguilar. 2013. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Comprehensive Reviews in Food Science and Food Safety 12:5–23. doi:10.1111/1541-4337.12005.
  • Giuliano, G., R. Tavazza, G. Diretto, P. Beyer, and M. A. Taylor. 2008. Metabolic engineering of carotenoid biosynthesis in plants. Trends in Biotechnology 26:139–145. doi:10.1016/j.tibtech.2007.12.003.
  • Gog, A., L. Senila, M. Roman, E. Luca, C. Roman, and F. D. Irimie. 2012. Oil extraction and fatty acid characterization of Nannochloropsis oculata microalgae for biodiesel applications. Studia UBB Chemia 57:111–118.
  • Gong, M., and A. Bassi. 2016. Carotenoids from microalgae: A review of recent developments. Biotechnology Advances 34:1396–1412. doi:10.1016/j.biotechadv.2016.10.005.
  • Gonzalez, L. E., and Y. Bashan. 2000. Increased growth of the microalga Chlorella vulgaris when co-immobilized and co-cultured in alginate beads with the plant- growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology 66:1527–1531. doi:10.1128/AEM.66.4.1527-1531.2000.
  • Gorin, K. V., Y. E. Sergeeva, V. V. Butylin, A. V. Komova, V. M. Pojidaev, G. U. Badranova, A. A. Shapovalova, I. A. Konova, and P. M. Gotovtsev. 2015. Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae. Bioresource Technology 193:178–184. doi:10.1016/j.biortech.2015.06.097.
  • Gouveia, L., A. P. Batista, I. Sousa, A. Ray-mundo, and N. M. Bandarra. 2008. Micro-algae in novel food products. In Food Chemistry Research Developments, Ed. K. Papa-doupoulos, pp. 75–112. New York: Nova Science Publishers.
  • Gouveia, L., G. Choubert, N. Pereira, J. Santinha, J. Empis, and E. Gomes. 2002. Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta,Volvocales) microalga. Journal of Aquaculture Research and Development 33:987–993. doi:10.1046/j.1365-2109.2002.00751.x.
  • Gouveia, L., A. Raymundo, A. P. Batista, I. Sousa, and J. Empis. 2006. Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology 222:362–367. doi:10.1007/s00217-005-0105-z.
  • Gouveia, L., V. Veloso, A. Reis, H. Fernandes, J. Novais, and J. Empis. 1995. Evolution of pigment composition in Chlorella vulgaris. Bioresource Technology 57:157–163. doi:10.1016/0960-8524(96)00058-2.
  • Gouveia, L., V. Veloso, A. Reis, H. Fernandes, J. Novais, and J. Empis. 1996. Chlorella vulgaris used to colour egg yolk. Journal of the Science of Food and Agriculture 70:167–172. doi:10.1002/(SICI)1097-0010(199602)70:2%3c167::AID-JSFA472%3e3.0.CO;2-2.
  • Grima, E. M., E. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti. 2003. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances 20:491–515. doi:10.1016/S0734-9750(02)00050-2.
  • Grobbelaar, J. U. 2003. Quality control and assurance: crucial for the sustainability of the applied phycology industry. Journal of Applied Phycology 15:209–215. doi:10.1023/A:1023820711706.
  • Grung, M., P. Metzger, and S. Liaaen Jensen. 1989. Primary and secondary carotenoids in two races of green Botryococcus braunii. Biochemical Systematics and Ecology 17:263–269. doi:10.1016/0305-1978(89)90001-X.
  • Grung, M., P. Metzger, and S. Liaaen Jensen. 1994. Algal carotenoids 53; secondary carotenoids of algae 4; secondary carotenoids in the green alga Botryococcus braunii, race L, new strain. Biochemical Systematics and Ecology 22:25–29. doi:10.1016/0305-1978(94)90111-2.
  • Guedes, A. C., H. M. Amaro, and F. X. Malcata. 2011b. Microalgae as sources of carotenoids. Marine Drugs 9:625–644. doi:10.3390/md9040625.
  • Guedes, A. C., M. S. Giao, A. A. Matias, A. V. M. Nunes, M. E. Pintado, C. M. M. Duarte, and F. X. Malcata. 2013. Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus obliquus for use in food processing. Journal of Food Engineering 116:478–482. doi:10.1016/j.jfoodeng.2012.12.015.
  • Guedes, A., H. M. Amaro, and F. X. Malcata. 2011a. Microalgae as sources of high added value compounds-A brief review of recent work. Biotechnology Progress 27:597–613. doi:10.1002/btpr.575.
  • Guerin, M., M. E. Huntley, and M. Olaizola. 2003. Haematococcus astaxanthin: Applications for human health and nutrition. Trends in Biotechnology 21:210–216. doi:10.1016/S0167-7799(03)00078-7.
  • Guo, B., B. Liu, B. Yang, P. Sun, X. Lu, J. Liu, and F. Chen. 2016. Screening of diatom strain and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Marine Drugs 14:125. doi:10.3390/md14070125.
  • Halim, R., M. K. Danquah, and P. A. Webley. 2012a. Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances 30:709–732. doi:10.1016/j.biotechadv.2012.01.001.
  • Halim, R., R. Harun, M. K. Danquah and P. A. Webley. 2012b. Microalgal cell disruption for biofuel development. Applied Energy 91:116–121. doi:10.1016/j.apenergy.2011.08.048.
  • Hamed, I. 2016. The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety 15:1104–1123. doi:10.1111/1541-4337.12227.
  • Hanaa, H. A. E. B., K. D. B. Farouk, and G. S. E. Baroty. 2003. Spirulina species as a source of carotenoid and tocopherol and its anti-carcinoma factors. Biotechnology 2:222–240. doi:10.3923/biotech.2003.222.240.
  • Hata, N., J. C. Ogbonna, Y. Hasegawa, H. Taroda, and H. Tanaka. 2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. Journal of Applied Phycology 13:395–402. doi:10.1023/A:1011921329568.
  • Havlik, I., P. Lindner, T. Scheper, and K. F. Reardon. 2013. On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends in Biotechnology 31:406–414. doi:10.1016/j.tibtech.2013.04.005.
  • Henriquez, V., C. Escobar, J. Galarza, and J. Gimpel. 2016. Carotenoids in microalgae. In Carotenoids in Nature, Ed. S. Claudia, pp. 219–237, Switzerland: Springer International Publishing.
  • Heo, S. J., S. C. Ko, S. M. Kang, H. S. Kang, J. P. Kim, S. H. Kim, K. W. Lee, M. G. Cho, and Y. J. Jeon. 2008. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. European Food Research and Technology 228:145–151. doi:10.1007/s00217-008-0918-7.
  • Heo, S. J., W. J. Yoon, K. N. Kim, G. N. Ahn, S. M. Kang, D. H. Kang, C. Oh, W. K. Jung, and Y. J. Jeon. 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology 48:2045–2051. doi:10.1016/j.fct.2010.05.003.
  • Higuera-Ciapara, I., L. Felix-Valenzuela, and F. M. Goycoolea. 2006. Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition 46:185–196. doi:10.1080/10408690590957188.
  • Ho, S. H., M. C. Chan, C. C. Liu, C. Y. Chen, W. L. Lee, D. J. Lee, and J. S. Chang. 2014. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology 152:275–282. doi:10.1016/j.biortech.2013.11.031.
  • Holman, B. W. B., and A. E. O. Malau-Aduli. 2013. Spirulina as a livestock supplement and animal feed. Journal of Animal Physiology and Animal Nutrition 97:615–623. doi:10.1111/j.1439-0396.2012.01328.x.
  • Hoseini, S. M., K. Khosravi-Darani, and M. R. Mozafari. 2013. Nutritional and medical applications of Spirulina microalgae. Mini Reviews in Medicinal Chemistry 13:1231–1237. doi:10.2174/1389557511313080009.
  • Hosokawa, M., S. Wanezaki, K. Miyauchi, H. Kurihara, H. Kohno, J. Kawabata, S. Odashima, and K. Takahashi. 1999. Apoptosis-inducing effect of fucoxanthin on human leukemia cell line HL-60. Food Science and Technology Research 5:243–246. doi:10.3136/fstr.5.243.
  • Hosseini, T. A., and M. Shariati. 2009. Dunaliella biotechnology: Methods and applications. Journal of Applied Microbiology 107:14–35. doi:10.1111/j.1365-2672.2009.04153.x.
  • Hsu, Y. W., C. F. Tsai, W. H. Chang, Y. C. Ho, W. K. Chen, and F. J. Lu. 2008. Protective effects of Dunaliella salina-a carotenoid rich alga, against carbon tetrachloride induced hepatoxicity in mice. Food and Chemical Toxicology 46:3311–3317. doi:10.1016/j.fct.2008.07.027.
  • Hu, H., and K. Gao. 2006. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnology Letters 28:987–992. doi:10.1007/s10529-006-9026-6.
  • Hu, Y. R., F. Wang, S. K. Wang, C. Z. Liu, and C. Guo. 2013. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresource Technology 138:387–390. doi:10.1016/j.biortech.2013.04.016.
  • Huangfu, J., J. Liu, Z. Sun, M. Wang, Y. Jiang, Z. Y. Chen, and F. Chen. 2013. Anti-ageing effects of astaxanthin-rich alga Haematococcus pluvialis on fruit flies under oxidative stress. Journal of Agricultural and Food Chemistry 61:7800–7804. doi:10.1021/jf402224w.
  • Hussein, G., U. Sankawa, H. Goto, K. Matsumoto, and H. Watanabe. 2006. Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products 69:443–449. doi:10.1021/np050354+.
  • Ip, P. F., and F. Chen. 2005. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochemistry (Barking, Uk) 40:733–738. doi:10.1016/j.procbio.2004.01.039.
  • Ishida, B. K., and M. H. Chapman. 2009. Carotenoid extraction from plants using a novel, environmentally friendly solvent. Journal of Agricultural and Food Chemistry 57:1051–1059.
  • Ishiki, M., Y. Nishida, H. Ishibashi, T. Wada, S. Fujisaka, A. Takikawa, M. Urakaze, T. Sasaoka, I. Usui, and K. Tobe. 2013. Impact of divergent effects of astaxanthin on insulin signaling in l6 cells. Endocrinol 154:2600–2612. doi:10.1021/jf8026292. doi:10.1210/en.2012-2198.
  • Jaime, L., J. A. Mendiola, M. Herrero, C. Soler-Rivas, S. Santoyo, F. J. Señorans, A. Cifuentes, and E. Ibanez. 2005. Separation and characterization of antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC, and HPLC-DAD. Journal of Separation Science 28:2111–2119. doi:10.1002/jssc.200500185.
  • Jayappriyan, K. R., R. Rajkumar, V. Venkatakrishnan, S. Nagaraj, and R. Rengasamy. 2013. In vitro anticancer activity of natural-carotene from Dunaliella salina EU5891199 in PC-3 cells. Biomedicine and Preventive Nutrition 3:99–105. doi:10.1016/j.bionut.2012.08.003.
  • Jeffrey, S., and M. Vesk. 1997. Introduction to marine phytoplankton and their pigment signatures. In Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, Eds. S. Jeffrey, R. Mantoura, and S. Wright, pp. 37–84, Paris, France: UNESCO Publishing.
  • Jungandreas, A., B. S. Costa, T. Jakob, M. von Bergen, S. Baumann, and C. Wilhelm. 2014. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. Plos One 9:1–14. doi:10.1371/journal.pone.0099727.
  • Kadam, S. U., B. K. Tiwari, and C. P. O'Donnell. 2013. Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry 61:4667–4675. doi:10.1021/jf400819p.
  • Kang, C. D., and S. J. Sim. 2008. Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnology Letters 30:441–444. doi:10.1007/s10529-007-9578-0.
  • Kang, C. D., and S. J. Sim. 2007. Selective extraction of free astaxanthin from Haematococcus culture using a tandem organic solvent system. Biotechnology Progress 23:866–871. doi:10.1021/bp0700354.
  • Kang, C. D., J. S. Lee, T. H. Park, and S. J. Sim. 2005. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Applied Microbiology and Biotechnology 68:237–241. doi:10.1007/s00253-005-1889-2.
  • Kar, H. K. 2002. Efficacy of β-carotene topical application in melisma: An open clinical trial. Indian Journal of Dermatology, Venereology and Leprology 68:320–322.
  • Kent, M., H. M. Welladsen, A. Mangott, and Y. Li. 2015. Nutritional evaluation of Australian microalgae as potential human health supplements. Plos One. 10:e0118985. doi:10.1371/journal.pone.0118985.
  • Kidd, P. 2011. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Alternative Medicine Review 16:355–364.
  • Kim, D. Y., D. Vijayan, R. Praveenkumar, J. I. Han, K. Lee, J. Y. Park, W. S. Chang, J. S. Lee, and Y. K. Oh. 2015. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresource Technology 199:300–310. doi:10.1016/j.biortech.2015.08.107.
  • Kim, J. H., M. J. Chang, H. D. Choi, Y. K. Youn, J. T. Kim, J. M. Oh, and W. G. Shin. 2011. Protective effects of Haematococcus astaxanthin on oxidative stress in healthy smokers. Journal of Medicinal Food 14:1469–1475. doi:10.1089/jmf.2011.1626.
  • Kim, K. N., S. J. Heo, W. J. Yoon, S. M. Kang, G. Ahn, T. H. Yi, and Y. J. Jeon. 2010. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. European Journal of Pharmacology 649:369–375. doi:10.1016/j.ejphar.2010.09.032.
  • Kim, S. M., Y. J. Jung, O. N. Kwon, K. H. Cha, B. H. Um, D. Chung, and C. H. A. Pan. 2012. Potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Applied Biochemistry and Biotechnology 166:1843–1855. doi:10.1007/s12010-012-9602-2.
  • Kim, S. M., S. W. Kang, O. N. Kwon, D. Chung, and C. H. Pan. 2012. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. Journal of the Korean Society for Applied Biological 55:477–483 doi:10.1007/s13765-012-2108-3.
  • Kishimoto, Y., H. Yoshida, and K. Kondo. 2016. Potential anti-atherosclerotic properties of astaxanthin. Marine Drugs 14:35. doi:10.3390/md14020035.
  • Kitada, K., S. Machmudah, M. Sasaki, M. Goto, Y. Nakashima, S. Kumamoto, and T. Hasegawa. 2009. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. Journal of Chemical Technology and Biotechnology 84:657–661. doi:10.1002/jctb.2096.
  • Kleinegris, D. M. M., M. Janssen, W. A. Brandenburg, and R. H. Wijffels. 2011. Continuous production of carotenoids from Dunaliella salina. Enzyme and Microbial Technology 48:253–259. doi:10.1016/j.enzmictec.2010.11.005.
  • Klok, A. J., P. P. Lamers, D. E. Martens, R. B. Draaisma, and R. H. Wijffels. 2014. Edible oils from microalgae: Insights in TAG accumulation. Trends in Biotechnology 32:521–528. doi:10.1016/j.tibtech.2014.07.004.
  • Kobayashi, M., Y. Kurimura, Y. Sakamoto, and Y. Tsuji. 1997. Selective extraction of astaxanthin and chlorophyll from the green alga Haematococcus pluvialis. Biotechnology Techniques 11:657–660. doi:10.1023/A:1018455209445.
  • Kong, W., N. Liu, J. Zhang, Q. Yang, S. Hua, H. Song, and C. Xia. 2014. Optimization of ultrasound assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. Journal of Food Science and Technology 51:2006–2013 doi:10.1007/s13197-012-0706-z.
  • Koo, S., K. Cha, D. G. Song, D. Chung, and C. H. Pan. 2012. Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. Journal of Applied Phycology 24:725–730 doi:10.1007/s10811-011-9691-2.
  • Kraay, G. W., M. Zapata, and M. J. W. Veldhuis. 1992. Separation of chlorophylls c1, c2, and c3 of marine phytoplankton by reversed-phase-C18-high-performance liquid chromatography. Journal of Phycology 28:708–712. doi:10.1111/j.0022-3646.1992.00708.x.
  • Krinsky, N. I. 1989. Antioxidant functions of carotenoids. Free Radical Biology and Medicine 7:617–635. doi:10.1016/0891-5849(89)90143-3.
  • Krinsky, N. I. 1991. Effects of carotenoids in cellular and animal systems. American Journal of Clinical Nutrition 53:238S–246S. doi:10.1093/ajcn/53.1.238S.
  • Krinsky, N. I., J. T. Landrum, and R. A. Bone. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annual Review of Nutrition 23:171–201. doi:10.1146/annurev.nutr.23.011702.073307.
  • Kroger, N., and N. Poulsen. 2008. Diatoms-from cell wall biogenesis to nanotechnology. Annual Review of Genetics 42:83–107. doi:10.1146/annurev.genet.41.110306.130109.
  • Kuczynska, P., M. Jemiola-Rzeminska, and K. Strzalka. 2015. Photosynthetic pigments in diatoms. Marine Drugs 13:5847–5881. doi:10.3390/md13095847.
  • Kuddus, M., P. Singh, G. Thomas, and A. Al-Hazimi. 2013. Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Research International 2013:1–9. doi:10.1155/2013/742859.
  • Kumar, D., N. Kumar, S. Pabbi, S. Walia, and D. W. Dhar. 2013. Protocol optimization for enhanced production of pigments in Spirulina. Indian Journal of Plant Physiology 18:308–312. doi:10.1007/s40502-013-0045-8.
  • Kumar, S. A., M. W. Magnusson, L. C. Ward, N. A. Paul, and L. Brown. 2015. A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats. Nutrients 7:2771–2787. doi:10.3390/nu7042771.
  • Lai, Y. S., P. Parameswaran, A. Li, M. Baez and B. E. Rittmann. 2014. Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus. Bioresource Technology 173:457–461. doi:10.1016/j.biortech.2014.09.124.
  • Lamers, P. P., M. Janssen, R. C. De Vos, R. J. Bino, and R. H. Wijffels. 2008. Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends in Biotechnology 26:631–638. doi:10.1016/j.tibtech.2008.07.002.
  • Landrum, J. T., and R. A. Bone. 2001. Lutein, zeaxanthin, and the macular pigment. Archives of Biochemistry and Biophysics 385:28–40. doi:10.1006/abbi.2000.2171.
  • Lao, Y. M., L. Xiao, L. X. Luo, and J. G. Jiang. 2014. Hypoosmotic expression of Dunaliella bardawil ζ-carotene desaturase is attributed to a hypoosmolarity-responsive element different from other key carotenogenic genes. Plant Physiology 165:359–372. doi:10.1104/pp.114.235390.
  • Larkum, A. W., I. L. Ross, O. Kruse, and B. Hankamer. 2012. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology 30:198–205. doi:10.1016/j.tibtech.2011.11.003.
  • Larsdotter, K. 2006. Wastewater treatment with microalgae-a literature review. Vatten 62:31–38.
  • Lee, J. B., K. Hayashi, M. Hirata, E. Kuroda, E. Suzuki, Y. Kubo, and T. Hayashi. 2006. Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biological &Amp; Pharmaceutical Bulletin 29:2135–2139. doi:10.1248/bpb.29.2135.
  • Lee, J. C., M. F. Hou, H. W. Huang, F. R. Chang, C. C. Yeh, J. Y. Tang, and H. W. Chang. 2013. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell International 13:55. doi:10.1186/1475-2867-13-55.
  • Lelyana, R. 2016. Role of marine natural ingredient fucoxanthin on body's immune response of obesity. Journal of Nanomedicine and Nanotechnology 7:2. doi:10.4172/2157-7439.1000397.
  • Li, H. B., Y. Jiang, and F. Chen. 2002. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. Journal of Agricultural and Food Chemistry 50:1070–1072. doi:10.1021/jf010220b.
  • Lian, F., and X. D. Wang. 2008. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase-II detoxifying/antioxidant enzymes in human bronchial epithelial cells. International Journal of Cancer 123:1262–1268. doi:10.1002/ijc.23696.
  • Liang, Y., N. Sarkany, and Y. Cui. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 31:1043–1049. doi:10.1007/s10529-009-9975-7.
  • Liau, B. C., C. T. Shen, F. P. Liang, S. E. Hong, S. L. Hsu, T. T. Jong, and C. M. J. Chang. 2010. Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. Journal of Supercritical Fluids 55:169–175. doi:10.1016/j.supflu.2010.07.002.
  • Liu, J., and Q. Hu. 2013. Chlorella: Industrial production of cell mass and chemicals. In Hand Book of Microalgal Culture: Applied Phycology and Biotechnology, Eds. A. Richmond, and Q. Hu, pp. 329–338. 2 ed. Oxford, UK: John Wiley & Sons, Ltd.
  • Liu, J., Z. Sun, H. Gerken, Z. Liu, Y. Jiang, and F. Chen. 2014. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs 12:3487–3515. doi:10.3390/md12063487.
  • Lohr, M., and C. Wilhelm. 1999. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proceedings of the National Academy of Sciences (USA) 96:8784–8789. doi:10.1073/pnas.96.15.8784.
  • Lorenz, R. T., and G. R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 18:160–167. doi:10.1016/S0167-7799(00)01433-5.
  • Lu, Y. P., S. Y. Liu, H. Sun, X. M. Wu, J. J. Li, and L. Zhu. 2010. Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Research 1360:40–48. doi:10.1016/j.brainres.2010.09.016.
  • Lubian, L. M., O. Montero, I. Moreno-Garrido, I. Emma Huertas, C. Sobrino, M. G. Valle, and G. Pares. 2000. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology 12:249–255. doi:10.1023/A:1008170915932.
  • Luvizotto, R. D. A. M., A. F. Nascimento, E. Imaizumi, D. T. Pierine, S. J. Conde, C. R. Correa, K. J. Yeum, and A. L. A. Ferreira. 2013. Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin and IL-6 in diet-induced obese rats. British Journal of Nutrition 110:1803–1809. doi:10.1017/S0007114513001256.
  • Ma, L., H. L. Dou, Y. Q. Wu, Y. M. Huang, Y. B. Huang, X. R. Xu, Z. Y. Zou, and X. M. Lin. 2012. Lutein and zeaxanthin intake and the risk of age-related macular degeneration: A systematic review and meta-analysis. British Journal of Nutrition. 107:350–359. doi:10.1017/S0007114511004260.
  • Macias-Sanchez, M. D., C. Mantell, M. Rodriguez, E. Martinez de la Ossa, L. M. Lubian, and O. Montero. 2009. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll-a from Dunaliella salina. Talanta 77:948–952. doi:10.1016/j.talanta.2008.07.032.
  • Macias-Sanchez, M. D., C. Mantell, M. Rodriguez, E. Martínez de la Ossa, L. M. Lubián, and O. Montero. 2007. Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp. Journal of Supercritical Fluids 39:323–329. doi:10.1016/j.supflu.2006.03.008.
  • Macias-Sanchez, M. D., C. Mantell, M. Rodríguez, E. Martínez de la Ossa, L. M. Lubián, and O. Montero. 2005. Supercritical fluid extraction of carotenoids and chlorophyll-afrom Nannochloropsis gaditana. Journal of Food Engineering 66:245–251. doi:10.1016/j.jfoodeng.2004.03.021.
  • Maeda, H., M. Hosokawa, T. Sashima, K. Funayama, and K. Miyashita. 2005. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows anti-obesity effect through UCP1 expression in white adipose tissues. Biochemical and Biophysical Research Communications 332:392–397. doi:10.1016/j.bbrc.2005.05.002.
  • Maeda, H., M. Hosokawa, T. Sashima, K. Murakami-Funayama, and K. Miyashita. 2009. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Molecular Medicine Reports 2:897–902. doi:10.3892/mmr_00000189.
  • Mandotra, S. K., P. Kumar, M. R. Suseela, and P. W. Ramteke. 2014. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production. Bioresource Technology 156:42–47. doi:10.1016/j.biortech.2013.12.127.
  • Maoka, T., H. Tokuda, N. Suzuki, H. Kato, and H. Etoh. 2012. Anti-oxidative, anti-tumor promoting, and anti-carcinogenesis activities of nitroastaxanthin and nitrolutein, the reaction products of astaxanthin and lutein with peroxynitrite. Marine Drugs 10:1391–1399. doi:10.3390/md10061391.
  • Markovits, A., R. Conejeros, L. López, and M. Lutz. 1992. Evaluation of marine microalga Nannochloropsis sp as a potential dietary supplement, chemical, nutritional and short term toxicological evaluation in rats. Nutrition Research 12:1273–1284. doi:10.1016/S0271-5317(05)80784-5.
  • Martinez, F., C. Ascaso, and M. I. Orus. 1991. Morphometric and stereologic analysis of Chlorella vulgaris under heterotrophic growth conditions. Annals of Botany 67:239–245. doi:10.1093/oxfordjournals.aob.a088128.
  • Martin-Jezequel, V., M. Hildebrand, and M. A. Brzezinski. 2000. Silicon metabolism in diatoms: Implications for growth. Journal of Phycology 36:821–840. doi:10.1046/j.1529-8817.2000.00019.x.
  • Masojidek, J., G. Torzillo, J. Kopecky, M. Koblizek, L. Nidiaci, J. Komenda, and A. Sacchi. 2000. Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. Journal of Applied Phycology 12:417–426. doi:10.1023/A:1008165900780.
  • McMillan, J. R., I. A. Watson, M. Ali, and W. Jaafar. 2013. Evaluation and comparison of algal cell disruption methods: Microwave, water bath, blender, ultrasonic and laser treatment. Applied Energy 103:128–134. doi:10.1016/j.apenergy.2012.09.020.
  • Medlin, L. K. 2016. Evolution of the diatoms: Major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55:79–103. doi:10.2216/15-105.1.
  • Mendes, R. L., H. L. Fernandes, J. P. Coelho, E. C. Reis, J. M. S. Cabral, J. M. Novais, and A. F. Palabra. 1995. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chemistry 53:99–103. doi:10.1016/0308-8146(95)95794-7.
  • Mendes, R. L., B. P. Nobre, M. T. Cardoso, A. P. Pereira, and A. F. Palavra. 2003. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta 356:328–334. doi:10.1016/S0020-1693(03)00363-3.
  • Merchant, R. E., and C. A. Andre. 2001. A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Alternative Therapies in Health and Medicine 7:79–91.
  • Merchant, R. E., C. A. Andre, and D. A. Sica. 2002. Nutritional supplementation with Chlorella pyrenoidosa for mild to moderate hypertension. Journal of Medicinal Food 5:141–152. doi:10.1089/10966200260398170.
  • Metzger, P., and C. Largeau. 2005. Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology 66:486–496. doi:10.1007/s00253-004-1779-z.
  • Minhas, A. K., P. Hodgson, C. J. Barrow, and A. Adholeya. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology 7:546. doi:10.3389/fmicb.2016.00546.
  • Miranda, M. S., R. G. Cintra, S. B. Barros, J. Mancini-Filho. 1998. Antioxidant activity of the microalga Spirulina maxima. Brazilian Journal of Medical and Biological Research 31:1075–1079. doi:10.1590/S0100-879X1998000800007.
  • Mogedas, B., C. Casal, E. Forjan, and C. Vilchez. 2009. β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. Journal of Bioscience and Bioengineering 108:47–51. doi:10.1016/j.jbiosc.2009.02.022.
  • Mohammed, M. K., and M. K. Mohd. 2011. Production of carotenoids in Spirulina platensis in response to indole acetic acid (IAA). International Journal of Engineering Science and Technology 3:4973–4979.
  • Muntean, E., N. Muntean, N. Dragos, and V. Bercea. 2008. Carotenoids as biomarkers in Botryococcus braunii algae. Agricultural Science Research Journal 40:49–54.
  • Murthy, K. N., A. Vanitha, J. Rajesha, M. M. Swamy, P. R. Sowmya, and G. A. Ravishankar. 2005. In vivo antioxidant activity of carotenoids from Dunaliella salina a green microalga. Life Sciences 76:1381–1390. doi:10.1016/j.lfs.2004.10.015.
  • Nobre, B. P., F. Villalobos, B. E. Barragan, A. C. Oliveira, A. P. Batista, P. A. S. S. Marques, and L. Gouveia. 2013. A biorefinery from Nannochloropsis sp. microalga extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresource Technology 135:128–136. doi:10.1016/j.biortech.2012.11.084.
  • Nobre, B., F. Marcelo, R. Passos, L. Beirao, A. Palavra, L. Gouveia, and R. Mendes. 2006. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology 223:787–790. doi:10.1007/s00217-006-0270-8.
  • Odjadjare, E. C., T. Mutanda, and A. O. Olaniran. 2015. Potential biotechnological application of microalgae: A critical review. Critical Reviews in Biotechnology 37:37–52. doi:10.3109/07388551.2015.1108956.
  • Ogawa, T., and S. Aiba. 1981. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnology and Bioengineering 23:1121–1132. doi:10.1002/bit.260230519.
  • Okada, S., M. Mastuda, M. Murakami, and K. Yamaguchi. 1996. Botryoxanthin-A a new member of the new class of carotenoids from green microalga Botryococcus braunii, Berkeley. Tetrahedron Letters 37:1065–1068. doi:10.1016/0040-4039(95)02349-6.
  • Okada, S., I. Tonegawa, M. Mastuda, M. Murakami, and K. Yamaguchi. 1997. Braunixanthins 1 and 2, new carotenoids from the green microalga Botryococcus braunii. Tetrahedron 53:11307–11316. doi:10.1016/S0040-4020(97)00705-9.
  • Okada, S., I. Tonegawa, M. Mastuda, M. Murakami, and K. Yamaguchi. 1998. Botryoxanthin-B and alpha-botryoxanthin-A from green microalga Botryococcus braunii. Phytochemistry 47:1111–1115. doi:10.1016/S0031-9422(98)80082-4.
  • Olaizola, M. 2000. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology 12:499–506. doi:10.1023/A:1008159127672.
  • Omenn, G. S., G. E. Goodman, M. D. Thornquist, J. Balmes, M. R. Cullen, A. Glass, J. P. Keogh, F. L. Meyskens, B. Valanis, J. H. Williams, S. Barnhart, and S. Hammar. 1996. Effects of a combination of β-carotene and vitamin A on lung cancer and cardiovascular disease. The New England Journal of Medicine 334:1150–1155. doi:10.1056/NEJM199605023341802.
  • Orosa, M., J. F. Valero, C. Herrero, and J. Abalde. 2001. Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnology Letters 23:1079–1085. doi:10.1023/A:1010510508384.
  • Palozza, P., and N. I. Krinsky. 1992. β-Carotene and α-tocopherol are synergistic antioxidants. Archives of Biochemistry and Biophysics 297:184–187. doi:10.1016/0003-9861(92)90658-J.
  • Palozza, P., S. Serini, F. Di Nicuolo, E. Piccioni, and G. Calviello. 2003. Pro-oxidant effects of β-carotene in cultured cells. Molecular Aspects of Medicine 24:353–362. doi:10.1016/S0098-2997(03)00031-1.
  • Palozza, P., R. Simone, A. Catalano, M. Russo, and V. Bohm. 2012. Lycopene modulation of molecular targets affected by smoking exposure. Current Cancer Drug Targets 12:640–657. doi:10.2174/156800912801784866.
  • Pancha, I., K. Chokshi, B. George, T. Ghosh, C. Paliwal, R. Maurya, and S. Mishra. 2014. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology 156:146–154. doi:10.1016/j.biortech.2014.01.025.
  • Pangestuti, R., and S. K. Kim. 2011. Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods 3:255–266. doi:10.1016/j.jff.2011.07.001.
  • Panis, G., and J. R. Carreon. 2016. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research 18:175–190. doi:10.1016/j.algal.2016.06.007.
  • Park, J. S., J. H. Chyun, Y. K. Kim, L. L. Line, and B. P. Chew. 2010. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition and Metabolism 7:1–10.
  • Park, J. Y., M. S. Park, Y. C. Lee, and J. W. Yang. 2015. Advances in direct transesterification of algal oils from wet biomass. Bioresource Technology 184:267–275. doi:10.1016/j.biortech.2014.10.089.
  • Pashkow, F. J., D. G. Watumull, and C. L. Campbell. 2008. Astaxanthin: A novel potential treatment for oxidative stress and inflammation in cardiovascular disease. American Journal of Cardiology 101:58D–68D. doi:10.1016/j.amjcard.2008.02.010.
  • Pasquet, V., J. R. Cherouvrier, F. Farhat, V. Thiery, J. M. Piot, J. B. Berard, R. Kaas, B. Serive, T. Patrice, J. P. Cadoret, and L. Picot. 2011. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry (Barking, Uk) 46:59–67. doi:10.1016/j.procbio.2010.07.009.
  • Pelah, D., A. Sintov, and E. Cohen. 2004. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World Journal of Microbiology and Biotechnology 20:483–486. doi:10.1023/B:WIBI.0000040398.93103.21.
  • Peng, J., J. P. Yuan, C. F. Wu, and J. H. Wang. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs 9:1806–1828. doi:10.3390/md9101806.
  • Peng, K. T. 2014. Delta-5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. Journal of Agricultural and Food Chemistry 62:8773–8776. doi:10.1021/jf5031086.
  • Perl, T. M., L. Bedard, T. Kosatsky, J. C. Hockin, E. C. Todd, and R. S. Remis. 1990. An out break of toxic encephalopathy caused by eating mussels contaminated with domoic acid. New England Journal of Medicine 322:1775–1780. doi:10.1056/NEJM199006213222504.
  • Phang, S. M., E. M. Mustafa, R. R. Ambati, N. M. Nik Sulaiman, P. E. Lim, X. Dommange, C. Schwob, and K. E. Liew. 2015. Check list of microalgae collected from different habitats in peninsular Malaysia for selection of algal biofuel feed stocks. Malaysian Journal of Science 34:148–174.
  • Pignolet, O., S. Jubeau, C. Vaca-Garcia, and P. Michaud. 2013. Highly valuable microalgae: Biochemical and topological aspects. Journal of Industrial Microbiology and Biotechnology 40:781–96. doi:10.1007/s10295-013-1281-7.
  • Pirastru, L., M. Darwish, F. L. Chu, F. Perreault, L. Sirois, L. Sleno, and R. Popovic. 2012. Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment. Journal of Applied Phycology 24:117–124. doi:10.1007/s10811-011-9657-4.
  • Plaza, M., A. Cifuentes, and E. Ibanez. 2008. In the search of new functional food ingredients from algae. Trends in Food Science and Technology 19:31–39. doi:10.1016/j.tifs.2007.07.012.
  • Plaza, M., M. Herrero, A. Cifuentes, and E. Ibanez. 2009. Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry 57:7159–7170. doi:10.1021/jf901070g.
  • Poonkum, W., S. Powtongsook, and P. Pavasant. 2015. Astaxanthin induction in microalga Haematococcus pluvialis with flat panel airlift photobioreactors under indoor and outdoor conditions. Preparative Biochemistry and Biotechnology 45:1–17. doi:10.1080/10826068.2013.867871.
  • Pragya, N., K. K. Pandey, and P. K. Sahoo. 2013. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable and Sustainable Energy Reviews 24:159–171. doi:10.1016/j.rser.2013.03.034.
  • Prestegard, S. K., L. Oftedal, G. Nygaard, K. H. Skjaerven, G. Knutsen, S. O. Doskeland, R. T. Coyne, and L. Herfindal. 2009. Marine benthic diatoms contain compounds able to induce leukemia cell death and modulate blood platelet activity. Marine Drugs 7:605–623. doi:10.3390/md7040605.
  • Qin, S., G. X. Liu, and Z. Y. Hu. 2008. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochemistry (Barking, Uk) 43:795–802. doi:10.1016/j.procbio.2008.03.010.
  • Ragni, M., and M. R. Dalcala. 2007. Circadian variability in the photobiology of Phaeodactylum tricornutum: Pigment content. Journal of Plankton Research 29:141–156. doi:10.1093/plankt/fbm002.
  • Ramel, F., S. Birtic, S. Cuine, C. Triantaphylides, J. L. Ravanat, and M. Havaux. 2012. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiology 159:1267–1278. doi:10.1104/pp.111.182394.
  • Ranga Rao, A. 2011. Production of astaxanthin from cultured green alga Haematococcus pluvialis and its biological activities. Ph.D Thesis, University of Mysore, Mysore, India.
  • Ranga Rao, A., V. Baskaran, R. Sarada, and G. A. Ravishankar. 2013b. In vivo bioavailability and antioxidant activity of carotenoids from micro algal biomass- a repeated dose study. Food Research International 54:711–777. doi:10.1016/j.foodres.2013.07.067.
  • Ranga Rao, A., C. Dayananda, R. Sarada, T. R. Shamala, and G. A. Ravishankar. 2007a. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology 98:560–564. doi:10.1016/j.biortech.2006.02.007.
  • Ranga Rao, A., G. Deepika, G. A. Ravishankar, R. Sarada, B. P. Narasimha Rao, Y. Su, and B. Lei. 2017. Botryococcus as an alternative source of carotenoids and its possible applications- an overview. Critical Reviews in Biotechnology 22:1–18 ( In press).
  • Ranga Rao, A., S. M. Phang, R. Sarada, and G. A. Ravishankar. 2014a. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications-A review. Marine Drugs 12:128–152. doi:10.3390/md12010128.
  • Ranga Rao, A., R. L. Raghunath Reddy, V. Baskaran, R. Sarada, and G. A. Ravishankar. 2010a. Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. Journal of Agricultural and Food Chemistry 58:8553–8559. doi:10.1021/jf101187k.
  • Ranga Rao, A., G. A. Ravishankar, and R. Sarada. 2012a. Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresource Technology 123:528–533. doi:10.1016/j.biortech.2012.07.009.
  • Ranga Rao, A., A. H. Reddy, and S. M. Aradhya. 2010c. Antibacterial properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii micro algal extracts. Current Trends in Biotechnology and Pharmacy 4:809–819.
  • Ranga Rao, A., R. Sarada, V. Baskaran, and G. A. Ravishankar. 2006. Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. Journal of Agricultural and Food Chemistry 54:4593–4599. doi:10.1021/jf060799j.
  • Ranga Rao, A., R. Sarada, and G. A. Ravishankar. 2010b. Enhancement of carotenoids in green alga-Botryococcus braunii in various autotrophic media under stress conditions. International Journal of Biomedical Science 4:87–92.
  • Ranga Rao, A., R. Sarada, and G. A. Ravishankar. 2007b. Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. Journal of Microbiology and Biotechnology 17:414–419.
  • Ranga Rao, A., R. Sarada, V. Baskaran, and G. A. Ravishankar. 2009. Identification of carotenoids from green alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and their antioxidant properties. Journal of Microbiology and Biotechnology 19:1333–1341.
  • Ranga Rao, A., R. Sarada, G. A. Ravishankar, and S. M. Phang. 2016. Industrial production of microalgal cell-mass and bioactive constituents from green microalga-Botryococcus braunii. In Recent Advances in Microalgal Biotechnology. Eds. J. Liu, Z. Sun, and G. Henri, pp.103–126, 731 Gull Ave, Foster City. CA 94404, USA: OMICS Group Incorporation.
  • Ranga Rao, A., H. N. Sindhuja, S. M. Dharmesh, K. U. Sankar, R. Sarada, and G. A. Ravishankar. 2013a. Effective inhibition of skin cancer, tyrosinase, and antioxidant properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry 61:3842–3851. doi:10.1021/jf304609j.
  • Ranga Rao, A., G. Yingchun, Z. Hu, M. Sommerfeld, and Q. Hu. 2012b. Comparative study of predators in mass cultures of Chlorella zofingiensis, Scenedesmus dimorphus and Nannochloropsis oceanica in ponds and photobioreactors. Colorado, USA: Algal Biomass Organization.
  • Rao, A. V., and L. G. Rao. 2007. Carotenoids and human health. Pharmacological Research 55:207–216. doi:10.1016/j.phrs.2007.01.012.
  • Rebolloso-Fuentes, M. M., A. Navarro-Perez, F. Garcia-Camacho, J. J. Ramos-Miras, and J. L. Guil-Guerrero. 2001. Biomass nutrient profiles of the microalga Nannochloropsis. Journal of Agricultural and Food Chemistry 49:2966–2972. doi:10.1021/jf0010376.
  • Regnier, P., J. Bastias, V. Rodriguez-Ruiz, N. Caballero-Casero, C. Caballo, D. Sicilia, A. Fuentes, M. Maire, M. Crepin, and D. Letourneur, et al. 2015. Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity. Marine Drugs 13:2857–2874. doi:10.3390/md13052857.
  • Rijstenbil, J. W. 2003. Effects of UVB radiation and salt stress on growth, pigments and oxidative defence of the marine diatom Cylindrotheca closterium. Marine Ecology Progress Series 254:37–48. doi:10.3354/meps254037.
  • Roche, F. 1987. Astaxanthin: Human food safety summary. In: Astaxanthin As a Pigmenter in Salmon Feed, Color Additive Petition 7CO2 1 1, pp. 43. United States Food and Drug Administration (USFDA). Basel, Switzerland: Hoffman-La Roche Ltd.
  • Rodriguez-Amaya, D. B. 2016. Natural food pigments and colorants. Current Opinion in Food Science 7:20–26. doi:10.1016/j.cofs.2015.08.004.
  • Rodriguez-Garcia, I., and J. L. Guil-Guerrero. 2008. Evaluation of the antioxidant activity of three micro algal species for use as dietary supplements and in the preservation of foods. Food Chemistry 108:1023–1026. doi:10.1016/j.foodchem.2007.11.059.
  • Rokkaku, T., R. Kimura, C. Ishikawa, T. Yasumoto, M. Senba, F. Kanaya, and N. Mori. 2013. Anticancer effects of marine carotenoids, fucoxanthin and its deacetylated product, fucoxanthinol, on osteosarcoma. International Journal of Oncology 43:1176–1186. doi:10.3892/ijo.2013.2019.
  • Ross, A. C., and E. H. Harrison. 2014. Vitamin A: Nutrition aspects of retinoids and carotenoids. In Handbook of Vitamins, eds. J. Zempleni, W. Suttie, J. F. Gregory, and P. J. Stover, pp.1–50. Boca Raton, FL: CRC Press.
  • Roy, S. S., and R. Pal. 2015. Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proceedings of the Zoological Society 68:1–8. doi:10.1007/s12595-013-0089-9.
  • Safi, C., B. Zebib, O. Merah, P. Y. Pontalier, and C. Vaca-Garcia. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable and Sustainable Energy Reviews 35:265–278. doi:10.1016/j.rser.2014.04.007.
  • Sanchez, J. F., J. M. Fernandez, F. G. Acien, A. Rueda, J. Pérez-Parra, and E. Molina. 2008. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry (Barking, Uk) 43:398–405. doi:10.1016/j.procbio.2008.01.004.
  • Sanchez-Saavedra, M. P., and D. Voltolina. 2002. Effect of photon fluence rates of white and blue-green light on growth efficiency and pigment content of three diatom species in batch cultures. Ciencias Marinas 28:273–279. doi:10.7773/cm.v28i3.225.
  • Sandesh Kamath, B., R. Vidhyavathi, R. Sarada, and G. A. Ravishankar. 2008. Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresource Technology 99:8667–8673. doi:10.1016/j.biortech.2008.04.013.
  • Sarada, R., A. Ranga Rao, B. K. Sandesh, C. Dayananda, N. Anila, V. S. Chauhan, and G. A. Ravishankar. 2012. Influence of different culture conditions on yield of biomass and value added products in microalgae. Dynamic Biochemistry, Process Biotechnology and Molecular Biology 6:77–85.
  • Sarada, R., R. Vidhyavathi, D. Usha, and G. A. Ravishankar. 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of Agricultural and Food Chemistry 54:7585–7588. doi:10.1021/jf060737t.
  • Schweiggert, R. M., and R. Carle. 2016. Carotenoid production by bacteria, microalgae, and fungi. In Carotenoids: Nutrition, Analysis and Technology, Eds. A. Kaczor, and M. Baranska, pp.217–240. Chichester, UK: John Wiley & Sons, Ltd.
  • Seyfabadi, J., Z. Ramezanpour, and Z. A. Khoeyi. 2010. Protein, fatty acid and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology 23:721–726. doi:10.1007/s10811-010-9569-8.
  • Shah, M. M. R., Y. Liang, J. J. Cheng, and M. Daroch. 2016. Astaxanthin-producing green microalga Haematococcus pluvialis from single cell to high value commercial products. Frontiers in Plant Science 7:531. doi:10.3389/fpls.2016.00531.
  • Shaish, A., A. Harari, L. Hananshvili, H. Cohen, R. Bitzur, T. Luvish, E. Ulman, M. Golan, A. Ben-Amotz, D. Gavish, Z. Rotstein, and D. Harats. 2006. 9-cis-carotene-rich powder of the alga Dunaliella bardawil increases plasma HDL-cholesterol in fibrate-treated patients. Atherosclerosis 189:215–221. doi:10.1016/j.atherosclerosis.2005.12.004.
  • Sharma, R., G. Pal Singh, and V. K. Sharma. 2012. Effect of culture conditions on growth and biochemical profile of Chlorella vulgaris. Journal of Plant Pathology and Microbiology 3:131. doi:10.4172/2157-7471.1000131.
  • Sharoni, Y., M. Danilenko, N. Dubi, A. Ben-Dor, and J. Levy. 2004. Carotenoids and transcription. Archives of Biochemistry and Biophysics 430:89–96. doi:10.1016/j.abb.2004.03.009.
  • Sharoni, Y., K. Linnewiel-Hermoni, G. Zango, M. Khanin, H. Salman, A. Veprik, M. Danilenko, and J. Levy. 2012. The role of lycopene and its derivatives in the regulation of transcription systems: Implications for cancer prevention. American Journal of Clinical Nutrition 96S:1173S–1178S. doi:10.3945/ajcn.112.034645.
  • Shi, X. M., Y. Jiang, and F. Chen. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed batch culture. Biotechnology Progress 18:723–727. doi:10.1021/bp0101987.
  • Shim, J. Y., H. S. Shin, J. G. Han, H. S. Park, B. L. Lim, K. W. Chung, and A. S. Om. 2008. Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats. Journal of Medicinal Food 11:479–485. doi:10.1089/jmf.2007.0075.
  • Simeunovic, J., K. Beslin, Z. Svircev, D. Kovac, and O. Babic. 2013. Impact of nitrogen and drought on phycobiliprotein content in terrestrial cyanobacterial strains. Journal of Applied Phycology 25:597–607. doi:10.1007/s10811-012-9894-1.
  • Simeunovic, J., S. Markovic, D. Kovac, A. Misan, A. Mandic, and Z. Svircev. 2012. Filamentous cyanobacteria from vojvodina region as source of phycobiliprotein pigments as potential natural colorants. Food Feed Research 39:23–31.
  • Singh, J., and S. Gu. 2010. Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews 14:2596–2610. doi:10.1016/j.rser.2010.06.014.
  • Sivathanu, B., and S. Palaniswamy. 2012. Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomedicine and Preventive Nutrition 2:276–282. doi:10.1016/j.bionut.2012.04.006.
  • Solovchenko, A., A. Lukyanov, O. Solovchenko, S. Didi-Cohen, S. Boussiba, and I. Khozin-Goldberg. 2014. Interactive effects of salinity, high light, and nitrogen starvation on fatty acid and carotenoid profiles in Nannochloropsis oceanica CCALA 804. European Journal of Lipid Science and Technology 166:635–644. doi:10.1002/ejlt.201300456.
  • Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 10:87–96. doi:10.1263/jbb.101.87.
  • Stahl, W., and H. Sies. 2012. β-carotene and other carotenoids in protection from sunlight. American Journal of Clinical Nutrition 96:1179–1184. doi:10.3945/ajcn.112.034819.
  • Stahl, W., N. Ale-Agha, and M. C. Polidori. 2002. Non-antioxidant properties of carotenoids. Biological Chemistry 383:553–558. doi:10.1515/BC.2002.056.
  • Stahl, W., and H. Sies. 2005. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta - Molecular Basis of Disease 1740:101–107. doi:10.1016/j.bbadis.2004.12.006.
  • Stahl, W., U. Heinrich, H. Jungmann, H. Sies, and H. Tronnier. 2000. Carotenoids and carotenoids plus vitamin E protect against ultraviolet light induced erythema in humans. American Journal of Clinical Nutrition 71:795–798.
  • Stahl, W., S. Nicolai, K. Briviba, M. Hanusch, G. Broszeit, M. Peters, H. D. Martin, and H. Sies. 1997. Biological activities of natural and synthetic carotenoids: Induction of gap junctional communication and singlet oxygen quenching. Carcinogenesis 18:89–92. doi:10.1093/carcin/18.1.89.
  • Starkenburg, S. R., K. J. Kwon, R. K. Jha, C. McKay, M. Jacobs, O. Chertkov, and R. A. Cattolico. 2014. A pangenomic analysis of the Nannochloropsisorganellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics. 15:212. doi:10.1186/1471-2164-15-212.
  • Steinbrenner, J., and H. Linden. 2001. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydrolase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiology 125:810–817. doi:10.1104/pp.125.2.810.
  • Tan, G., and M. P. Suter. 2011. Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella and Dunaliella. Journal of Pharmacy and Nutrition Sciences 1:111–118.
  • Taucher, J., S. Baer, P. Schwerna, D. Hofmann, M. Hummer, R. Buchholz, and A. Becker. 2016. Cell disruption and pressurized liquid extraction of carotenoids from microalgae. Journal of Thermodynamics and Catalysis 7:1–7. doi:10.4172/2157-7544.1000158.
  • Tokusoglu, O., and M. K. Unal. 2003. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrysis galbana. Journal of Food Science 68:1144–1148. doi:10.1111/j.1365-2621.2003.tb09615.x.
  • Tominaga, K., N. Hongo, M. Karato, and E. Yamashita. 2012. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochimica Polonica 59:43–47.
  • Tonegawa, I., S. Okada, M. Murakami, and K. Yamagushi. 1998. Pigment composition of the green microalga Botryococcus braunii Kawagushi-1. Fisheries Science 64:305–308. doi:10.2331/fishsci.64.305.
  • Tran, D., N. Doan, C. Louime, M. Giordano, and S. Portilla. 2014. Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium. World Journal of Microbiology and Biotechnology 30:317–322. doi:10.1007/s11274-013-1413-2.
  • Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley. 2010. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy 2:1–15. doi:10.1063/1.3294480.
  • Ugwu, C. U., H. Aoyagi, and H. Uchiyama. 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology 99:4021–4028. doi:10.1016/j.biortech.2007.01.046.
  • Utomo, R. P., Y. R. Chang, D. J. Lee, and J. S. Chang. 2013. Lutein recovery from Chlorella sp. ESP-6 with coagulants. Bioresource Technology 139:176–180. doi:10.1016/j.biortech.2013.04.025.
  • Varela, J. C., H. Pereira, M. Vila, and R. Leon. 2015. Production of carotenoids by microalgae: Achievements and challenges. Photosynthesis Research 125:423–436. doi:10.1007/s11120-015-0149-2.
  • Vidoudez, C., and G. Pohnert. 2012. Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics 8:654–669. doi:10.1007/s11306-011-0356-6.
  • Vigani, M., C. Parisi, E. Rodríguez-Cerezo, M. J. Barbosa, L. Sijtsma, M. Ploeg, and C. Enzing. 2015. Food and feed products from microalgae: Market opportunities and challenges for the EU. Trends in Food Science and Technology 42:81–92. doi:10.1016/j.tifs.2014.12.004.
  • Vijayavel, K., C. Anbuselvam, and M. P. Balasubramanian. 2007. Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albinorats. Molecular and Cellular Biochemistry 303:39–44. doi:10.1007/s11010-007-9453-2.
  • Vilchez, C., E. Forjan, M. Cuaresma, F. Bedmar, I. Garbayo, and J. M. Vega. 2011. Marine carotenoids: biological functions and commercial applications. Marine Drugs 9:319–333. doi:10.3390/md9030319.
  • Wang, H. M. D., C. C. Chen, P. Huynh, and J. S. Chang. 2015. Exploring the potential of using algae in cosmetics. Bioresource Technology 184:355–362. doi:10.1016/j.biortech.2014.12.001.
  • Wang, J., D. Han, M. R. Sommerfeld, C. Lu, and Q. Hu. 2013. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. Journal of Applied Phycology 25:253–260. doi:10.1007/s10811-012-9859-4.
  • Weber, D., and T. Grune. 2012. The contribution of β-carotene to vitamin A supply of humans. Molecular Nutrition and Food Research 56:251–258. doi:10.1002/mnfr.201100230.
  • Wei, D., F. Chen, G. Chen, X. W. Zhang, L. J. Liu, and H. Zhang. 2008. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Science China Life Sciencesi 51:1088–1093. doi:10.1007/s11427-008-0145-2.
  • Wells, M. L., P. Potin, J. S. Craigie, J. A. Raven, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire, and S. H. Brawley. 2016. Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology 29:949–982. doi:10.1007/s10811-016-0974-5.
  • Wichuk, K., S. Brynjolfsson, and W. Fu. 2014. Biotechnological production of value-added carotenoids from microalgae. Bioengineered 5:204–208. doi:10.4161/bioe.28720.
  • Wong, Y. K. 2016. Feasibility of using Chlorella vulgaris for the production of algal lipids, for advancement towards a potential application in the manufacture of commodity chemicals and the treatment of wastewater. Theses and Dissertations pp. 254.
  • Wu, Y. H., X. Li, Y. Yu, H. Y. Hu, T. Y. Zhang, and F. M. Li. 2013. An integrated micro algal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent. Bioresource Technol 144:445–451. doi:10.1016/j.biortech.2013.06.065.
  • Wu, Z., S. Wu, and X. Shi. 2007. Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa. Journal of Food Process Engineering 30:174–185. doi:10.1111/j.1745-4530.2007.00102.x.
  • Xia, S., K. Wang, L. Wan, A. Li, Q. Hu, and C. Zhang. 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs 11:2667–2681. doi:10.3390/md11072667.
  • Yaakob, Z., E. Ali, A. Zainal, M. Mohamad, and M. S. Takriff. 2014a. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki 21:1–6. doi:10.1186/2241-5793-21-6.
  • Yaakob, Z., K. F. Kamarudin, R. Rajkumar, M. S. Takriff, and S. N. Badar. 2014b. The current methods for the biomass production of the microalgae from wastewaters: An overview. World Applied Sciences Journal 31:1744–1758.
  • Yamaguchi, K. 1996. Recent advances in micro algal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. Journal of Applied Phycology 8:487–502. doi:10.1007/BF02186327.
  • Yamashita, E. 2013. Astaxanthin as a medical food. Functional Foods in Health and Disease 3:254–258.
  • Yang, D. J., J. T. Lin, Y. C. Chen, F. J. Lu, T. J. Chang, T. J. Wang, H. W. Lin, and Y. Y. Chang. 2013. Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264.7 cells via NF-κB and JNK inactivation. Journal of Functional Foods 5:607–615. doi:10.1016/j.jff.2013.01.001.
  • Yang, Y., B. Kim, and J. Y. Lee. 2013. Astaxanthin structure, metabolism, and health benefits. Journal of Human Nutrition and Food Science 1:1003.
  • Yen, H. W., S. C. Yang, C. H. Chen, and J. S. Chang. 2015. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresource Technology 184:291–296. doi:10.1016/j.biortech.2014.10.030.
  • Yuan, J. P., F. Chen, X. Liu, and X. Z. Li. 2002. Carotenoid composition in the green microalga Chlorococcum. Food Chemistry 76:319–325. doi:10.1016/S0308-8146(01)00279-5.
  • Yun, H., I. Kim, S. H. Kwon, J. S. Kang, and A. S. Om. 2011. Protective effect of Chlorella vulgaris against lead-induced oxidative stress in rat brains. Journal of Health Sciences 57:245–254. doi:10.1248/jhs.57.245.
  • Zhang, D. H. and Y. K. Lee. 1997. Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. Journal of Applied Phycology 9:459–463. doi:10.1023/A:1007902103419.
  • Zhang, D. H., Y. K. Ng, and S. M. Phang. 1997. Composition and accumulation of secondary carotenoids in Chlorococcum sp. Journal of Applied Phycology 9:147–155. doi:10.1023/A:1007926528388.
  • Zhang, J., Z. Sun, P. Sun, T. Chen, and F. Chen. 2014. Microalgal carotenoids: Beneficial effects and potential in human health. Food and Function 5:413–425. doi:10.1039/c3fo60607d.
  • Zhang, P., Z. Li, L. Lu, Y. Xiao, J. Liu, J. Guo, and F. Fang. 2017. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 181:30–38. doi:10.1016/j.saa.2017.03.022.
  • Zhang, Z., J. J. Huang, D. Sun, Y. Lee, and F. Chen. 2017. Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresource Technology 224:515–522. doi:10.1016/j.biortech.2016.10.081.
  • Zheng, H., J. Yin, Z. Gao, H. Huang, X. Ji, and C. Dou. 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied Biochemistry and Biotechnology 164:1215–1224. doi:10.1007/s12010-011-9207-1.
  • Zhou, Y., T. Wang, Q. Meng, and S. Zhai. 2016. Association of carotenoids with risk of gastric cancer: A meta-analysis. Clinical Nutrition 35:109–116. doi:10.1016/j.clnu.2015.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.