8,379
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract

, , , , &

References

  • Abad, M. C., K. Binderup, J. Rios-Steiner, R. K. Arni, J. Preiss, and J. H. Geiger. 2002. The X-ray crystallographic structure of Escherichia coli branching enzyme. Journal of Biological Chemistry 277(44):42164–70. doi: 10.1074/jbc.M205746200.
  • Adisakwattana, S., P. Chantarasinlapin, H. Thammarat, and S. Yibchok-Anun. 2009. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. Journal of Enzyme Inhibition and Medicinal Chemistry 24 (5):1194–200. doi: 10.1080/14756360902779326.
  • Albenne, C., L. K. Skov, O. Mirza, M. Gajhede, G. Feller, S. D'Amico, G. Andre, G. Potocki-Veronese, B. A. van der Veen, P. Monsan, and M. Remaud-Simeon. 2004. Molecular basis of the amylose-like polymer formation catalyzed by Neisseria polysaccharea amylosucrase. Journal of Biological Chemistry 279(1):726–34. doi: 10.1074/jbc.M309891200.
  • Almdal, T., H. Scharling, J. S. Jensen, and H. Vestergaard. 2004. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: A population-based study of 13,000 men and women with 20 years of follow-up. Archives of Internal Medicine 164 (13):1422–6. doi: 10.1001/archinte.164.13.1422.
  • Ao, Z., R. Quezada-Calvillo, L. Sim, B. L. Nichols, D. R. Rose, E. E. Sterchi, and B. R. Hamaker. 2007. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). FEBS Letters 581 (13):2381–8. doi: 10.1016/j.febslet.2007.04.035.
  • Ao, Z., S. Simsek, G. Zhang, M. Venkatachalam, B. L. Reuhs, and B. R. Hamaker. 2007. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. Journal of Agricultural and Food Chemistry 55 (11):4540–7. doi: 10.1021/jf063123x.
  • Astray, G., Gonzalez-Barreiro, C. Mejuto, J. C. Rial-Otero, R. Simal. G. J, and 2009. A review on the use of cyclodextrins in foods. Food Hydrocolloids 23 (7):1631–40. doi: 10.1016/j.foodhyd.2009.01.001.
  • Bai, Y., J. Gangoiti, B. W. Dijkstra, L. Dijkhuizen, and T. Pijning. 2017. Crystal structure of 4,6-α-glucanotransferase supports diet-driven evolution of gh70 enzymes from α-amylases in oral bacteria. Structure 25(2):231–42.
  • Bender, H., J. Lehmann, and K. Wallenfels. 1959. Pullulan, an extracellular glucan from pullularia pullulans. Biochimica et Biophysica Acta 36 :309–16.
  • Bengs, H., and Brunner, A. (2000). α-amylase-resistant starch for producing foodstuff and medicaments. US 7097831 B1.
  • Binderup, K., R. Mikkelsen, and J. Preiss. 2000. Limited proteolysis of branching enzyme from Escherichia coli. Archives of Biochemistry and Biophysics 377(2):366–71. doi: 10.1006/abbi.2000.1815.
  • Boos, W., and H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiology and Molecular Biology Reviews 62(1):204–29.
  • Bornet, F. R., A. M. Fontvieille, S. Rizkalla, P. Colonna, A. Blayo, C. Mercier, and G. Slama. 1989. Insulin and glycemic responses in healthy humans to native starches processed in different ways: Correlation with in vitro alpha-amylase hydrolysis. The American Journal of Clinical Nutrition 50 (2):315–23.
  • Breitmeier, D., S. Günther, and H. Heymann. 1997. Acarbose and 1-deoxynojirimycin inhibit maltose and maltooligosaccharide hydrolysis of human small intestinal glucoamylase–maltase in two different substrate-induced modes. Arch Biochem Biophys 346 (1):7–14.
  • Brison, Y., E. Fabre, C. Moulis, J. C. Portais, P. Monsan, and S. M. Remaud. 2010. Synthesis of dextrans with controlled amounts of alpha-1,2 linkages using the transglucosidase GBD-CD2. Applied Microbiology and Biotechnology 86 (2):545–54. doi: 10.1007/s00253-009-2241-z.
  • Brison, Y., T. Pijning, Y. Malbert, É. Fabre, L. Mourey, S. Morel, G. Potocki-Véronèse, P. Monsan, S. Tranier, M. Remaud-Siméon, and B. W. Dijkstra. 2012. Functional and structural characterization of alpha-(1->2) branching sucrase derived from DSR-E glucansucrase. Journal of Biological Chemistry 287 (11):7915–24. doi: 10.1074/jbc.M111.305078.
  • Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414 (6865):813–20. doi: 10.1038/414813a.
  • Buckley, J. D., A. A. Thorp, K. J. Murphy, and P. R. Howe. 2006. Dose-dependent inhibition of the post-prandial glycaemic response to a standard carbohydrate meal following incorporation of alpha-cyclodextrin. Annals of Nutrition and Metabolism 50 (2):108–14.
  • Büttcher, V., T. Welsh, L. Willmitzer, and J. Kossmann. 1997. Cloning and characterization of the gene for amylosucrase from Neisseria polysaccharea: Production of a linear a-1,4-glucan. Journal of Bacteriology 179(10):3324–30.
  • Cambon, E., S. Barbe, S. Pizzut-Serin, M. Remaud-Simeon, and I. Andre. 2014. Essential role of amino acid position 226 in oligosaccharide elongation by amylosucrase from Neisseria polysaccharea. Biotechnology and Bioengineering 111(9):1719–28. doi: 10.1002/bit.25236.
  • Campos, C. 2012. Chronic hyperglycemia and glucose toxicity: Pathology and clinical sequelae. Postgraduate Medical Journal 124 (6):90–7. doi: 10.3810/pgm.2012.11.2615.
  • Ceriello, A., M. Hanefeld, L. Leiter, L. Monnier, A. Moses, D. Owens, N. Tajima, and J. Tuomilehto. 2004. Postprandial glucose regulation and diabetic complications. Archives of Internal Medicine 164 (19):2090–5. doi: 10.1001/archinte.164.19.2090.
  • Chaen, H., T. Nishimoto, T. Nakada, S. Fukuda, M. Kurimoto, and Y. Tsujisaka. 2001. Enzymatic synthesis of kojioligosaccharides using kojibiose phosphorylase. Journal of Bioscience and Bioengineering 92(2):177–82. doi:DOI 10.1263/jbb.92.177.
  • Claverie, M., G. Cioci, M. Vuillemin, N. Monties, P. Roblin, G. Lippens, M. Remaud-Simeon, and C. Moulis. 2017. Investigations on the determinants responsible for low molar mass dextran formation by DSR-M dextransucrase. ACS Catalysis 7 (10):7106–19. doi: 10.1021/acscatal.7b02182.
  • CODEX Alimentarius Commission for International Food Standards. (2017). General standard for food additive. 192-1995.
  • Colleoni, C.,. Dauvill, D. e G. Mouille, A. Bul On, D. Gallant, B. Bouchet, M. Morell, M. Samuel, B. Delrue, C. d'Hulst, C., et al. 1999. Genetic and biochemical evidence for the involvement of alpha-1,4 glucanotransferases in amylopectin synthesis. Plant Physiology 120 (4):993–1004.
  • Côté, G. L., and C. D. Skory. 2012. Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Applied Microbiology and Biotechnology 93(6):2387–94.
  • Côté, G. L., and J. F. Robyt. 1982. Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1 goes to 6), (1 goes to 3)-alpha-D-glucan. Carbohydrate Research 101(1):57–74.
  • Côté, G. L., and S. Sheng. 2006. Penta-, hexa-, and heptasaccharide acceptor products of alternansucrase. Carbohydrate Research 341 (12):2066–72. doi: 10.1016/j.carres.2006.04.044.
  • Dahlqvist, A. 1961. The location of carbohydrases in the digestive tract of the pig. Biochemical Journal 78 (2):282–8. doi: 10.1042/bj0780282.
  • Dahlqvist, A. 1963. Rat-intestinal dextranase. Localisation and relation to the other carbohydrates of the digestive tract. Biochemical Journal 86(1):72–6.
  • Dermaux, L.P., and D. Wills. 2007. Soluble, highly branched glucose polymers for enteral and parenteral nutrition for peritoneal dialysis. US Patent 8445460 B2.
  • Dobruchowska, J. M., X. Meng, H. Leemhuis, G. J. Gerwig, L. Dijkhuizen, and J. P. Kamerling. 2013. Gluco-oligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides. Glycobiology 23(9):1084–96. doi: 10.1093/glycob/cwt048.
  • Du, X. L., D. Edelstein, L. Rossetti, I. G. Fantus, H. Goldberg, F. Ziyadeh, J. Wu, and M. Brownlee. 2000. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proceedings of the National Academy of Sciences of the United States of America 97 (22):12222–6. doi: 10.1073/pnas.97.22.12222.
  • EFSA Panel on Dietetic Products, Nutrition and Allergies. 2012. Scientific opinion on the substantiation of health claims related to alpha-cyclodextrin and reduction of post-prandial glycaemic responses (ID 2926, further assessment) pursuant to article 13(1) of regulation 21. No. 1924/20061. EFSA Journal 10 (6):2713.
  • EFSA. 2007. Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the safety of alpha-cyclodextrin. EFSA Journal 537 :1–21.
  • Ekhart, P., van Geel-Schutten, G. H., Van Binsbergen, M., and Timmerman, E. 2006. Branched alpha-glucans for weight management. US Patent 20060100171 A1.
  • Englyst, H. N., S. M. Kingman, and J. H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46 Suppl 2:S33–S50.
  • Expert Panel Evaluation of Sucromalt for Cargill, lncorporated. 2008. GRAS expert panel evaluation of sucromalt https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM264259.pdf.
  • Fabre, E., S. Bozonnet, A. Arcache, R.-M. Willemot, M. Vignon, P. Monsan, and M. Remaud-Simeon. 2005. Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly alpha-1,2 branched dextran. Journal of Bacteriology 187 (1):296–303. doi: 10.1128/Jb.187.1.296-303.2005.
  • Falconer, D. J., R. Mukerjea, and J. F. Robyt. 2011. Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydrate Research 346(2):280–4.
  • Feng, L., R. Fawaz, S. Hovde, L. Gilbert, J. Chiou, and J. H. Geiger. 2015. Crystal structures of Escherichia coli branching enzyme in complex with linear oligosaccharides. Biochemistry 54(40):6207–18. doi: 10.1021/acs.biochem.5b00228.
  • Ferreira, L. M., A. D. Velasquez, S. R. Schaffazick, and L. Cruz. 2015. Pullulan: An advantageous natural polysaccharide excipient to formulate tablets of alendronate-loaded microparticles. Brazilian Journal of Pharmaceutical Sciences 51 (1):27–33. doi: 10.1590/S1984-82502015000100003.
  • Gangoiti, J., L. Lamothe, S. van Leeuwen, C. Vafiadi, and L. Dijkhuizen. 2017. Characterization of the paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. Plos ONE 12(4):e0172622.
  • Gangoiti, J., S. S. van Leeuwen, C. Vafiadi, and L. Dijkhuizen. 2016. The gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-alpha-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Biochimica et Biophysica Acta 1860(6):1224–36. doi: 10.1016/j.bbagen.2016.02.005.
  • Gangoiti, J., S. S. van Leeuwen, G. J. Gerwig, S. Duboux, C. Vafiadi, T. Pijning, and L. Dijkhuizen. 2017. Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-h. Scientific Reports 7(1):39761. 3-alpha doi: 10.1038/srep39761.
  • Gangoiti, J., S. S. van Leeuwen, X. Meng, S. Duboux, C. Vafiadi, T. Pijning, and L. Dijkhuizen. 2017. Mining novel starch-converting glycoside hydrolase 70 enzymes from the nestlé culture collection genome database: the Lactobacillus reuteri NCC 2613 GTFB. Scientific Reports 7(1):9947. doi: 10.1038/s41598-017-07190-z.
  • Gangoiti, J., T. Pijning, and L. Dijkhuizen. 2015. The Exiguobacterium sibiricum 255-15 GtfC enzyme represents a novel glycoside hydrolase 70 subfamily of 4,6-alpha-glucanotransferase enzymes. Applied and Environmental Microbiology 82(2):756–66. doi: 10.1128/AEM.03420-15.
  • Gentilcore, D., L. Vanis, J. C. Teng, J. M. Wishart, J. D. Buckley, C. K. Rayner, M. Horowitz, and K. L. Jones. 2011. The oligosaccharide alpha-cyclodextrin has modest effects to slow gastric emptying and modify the glycaemic response to sucrose in healthy older adults. British Journal of Nutrition 106 (04):583–7. doi: 10.1017/S0007114511000444.
  • Evoxx Technologies GmbH. 2017. Product fibermalt syrup. Certificate of analysis. Potsdam, Germany http://www.evoxx.com/en/products/carbohydrates/maos-fibermalt/.
  • Goffin, D., N. Delzenne, C. Blecker, E. Hanon, C. Deroanne, and M. Paquot. 2011. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Critical Reviews in Food Science and Nutrition 51(5):394–409.
  • Grimaud, F., C. Lancelon-Pin, A. Rolland-Sabaté, X. Roussel, S. Laguerre, A. Viksø-Nielsen, J.-L. Putaux, S. Guilois, A. Buléon, C. D’Hulst, and G. Potocki-Véronèse. 2013. In vitro synthesis of hyperbranched a-glucans using a biomimetic enzymatic toolbox. Biomacromolecules 14(2):438–47. doi: 10.1021/bm301676c.
  • Grysman, A., T. Carlson, and T. M. Wolever. 2008. Effects of sucromalt on postprandial responses in human subjects. European Journal of Clinical Nutrition 62 (12):1364–71. doi: 10.1038/sj.ejcn.1602890.
  • Gu, Q., Y. Yang, G. Jiang, and G. Chang. 2003. Study on the regulative effect of isomaltooligosaccharides on human intestinal flora. Wei Sheng Yan Jiu 32 (1):54–5.
  • Guérin, F., S. Barbe, S. Pizzut-Serin, G. Potocki-Véronèse, D. Guieysse, V. Guillet, P. Monsan, L. Mourey, M. Remaud-Siméon, I. André, and S. Tranier. 2012. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. Journal of Biological Chemistry 287(9):6642–54. doi: 10.1074/jbc.M111.322917.
  • Han, R., J. Li, H. D. Shin, R. R. Chen, G. Du, L. Liu, and J. Chen. 2014. Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnology Advances 32 (2):415–28. doi: 10.1016/j.biotechadv.2013.12.004.
  • Hanada, N., and H. K. Kuramitsu. 1989. Isolation and characterization of the Streptococcus mutans GTFD gene, coding for primer-dependent soluble glucan synthesis. Infection and Immunity 57(7):2079–85.
  • Hanefeld, M., and F. Schaper. 2007. The role of alpha-glucosidase inhibitors (acarbose). In: Pharmacotherapy of diabetes: New developments, (13), ed. C. E. Mogensen, 143–152. Boston, MA: Springer US.
  • Hanefeld, M., S. Fischer, U. Julius, J. Schulze, U. Schwanebeck, H. Schmechel, H. J. Ziegelasch, and J. Lindner. 1996. Risk factors for myocardial infarction and death in newly detected NIDDM: the diabetes intervention study, 11-year follow-up. Diabetologia 39 (12):1577–83. doi: 10.1007/s001250050617.
  • Hansen, M. R., A. Blennow, S. Pedersen, L. Norgaard, and S. B. Engelsen. 2008. Gel texture and chain structure of amylomaltase-modified starches compared to gelatin. Food Hydrocoll 22 (8):1551–66. doi: 10.1016/j.foodhyd.2007.10.010.
  • Hasek, L. Y., R. J. Phillips, G. Zhang, K. P. Kinzig, C. Y. Kim, T. L. Powley, and B. R. Hamaker. 2017. Dietary slowly digestible starch triggers the gut-brain axis in obese rats with reduced food intake. Molecular Nutrition & Food Research in press.
  • Hasselwander, O., R. DiCosimo, Z. You, Q. Cheng, S. C. Rothman, S. Suwannakham, Z. C. Baer, B. M. Roesch, K. D. Ruebling-Jass, J. P. Lai., et al. 2017. Development of dietary soluble fibres by enzymatic synthesis and assessment of their digestibility in in vitro, animal and randomised clinical trial models. International Journal of Food Sciences and Nutrition 68(7):849–64. doi: 10.1080/09637486.2017.1295027.
  • Hayashi, M., R. Suzuki, C. Colleoni, S. G. Ball, N. Fujita, and E. Suzuki. 2015. Crystallization and crystallographic analysis of branching enzymes from cyanothece sp. ATCC 51142. Acta Crystallographica Section F Structural Biology Communications 71(8):1109–13. doi: 10.1107/S2053230X1501198X.
  • Hayashi, M., R. Suzuki, C. Colleoni, S. G. Ball, N. Fujita, and E. Suzuki. 2017. Bound substrate in the structure of cyanobacterial branching enzyme supports a new mechanistic model. Journal of Biological Chemistry 292 (13):5465–75. doi: 10.1074/jbc.M116.755629.
  • Heymann, H., D. Breitmeier, and S. Gunther. 1995. Human small intestinal sucrase-isomaltase: Different binding patterns for malto- and isomaltooligosaccharides. Biol Chem Hoppe Seyler 376 (4):249–53.
  • Hodoniczky, J., C. A. Morris, and A. L. Rae. 2012. Oral and intestinal digestion of oligosaccharides as potential sweeteners: a systematic evaluation. Food Chemistry 132 (4):1951–8. doi: 10.1016/j.foodchem.2011.12.031.
  • Imamura, H., S. Fushinobu, M. Yamamoto, T. Kumasaka, B. S. Jeon, T. Wakagi, and H. Matsuzawa. 2003. Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. Journal of Biological Chemistry 278(21):19378–86. doi: 10.1074/jbc.M213134200.
  • Irwin, W. E., and P. J. Sträter. 1991. Alternative sweeteners. New York: M. Dekker.
  • Ishikawa, A.,. H. Yamashita, M. Hiemori, E. Inagaki, M. Kimoto, M. Okamoto, H. Tsuji, A. N. Memon, A. Mohammadi, and Y. Natori. 2007. Characterization of inhibitors of postprandial hyperglycemia from the leaves of nerium indicum. Journal of Nutritional Science and Vitaminology 53(2):166–73. doi: 10.3177/jnsv.53.166.
  • Ito, K., S. Ito, T. Shimamura, S. Weyand, Y. Kawarasaki, T. Misaka, K. Abe, T. Kobayashi, A. D. Cameron, and S. Iwata. 2011. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. Journal of Molecular Biology 408(2):177–86. doi: 10.1016/j.jmb.2011.02.028.
  • Jackson, C. A., J. S. Yudkin, and R. D. Forrest. 1992. A comparison of the relationships of the glucose tolerance test and the glycated haemoglobin assay with diabetic vascular disease in the community. The islington diabetes survey. Diabetes Research and Clinical Practice 17 (2):111–23.
  • Janecek, S., B. Svensson, and E. A. MacGregor. 2007. A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Letters 581 (7):1261–8. doi: 10.1016/j.febslet.2007.02.036.
  • Jeanes, A. 1975. Digestibility of food polysaccharides by man: A review. In: Physiological effects of food carbohydrates, 336–347. Washington, D.C.: American Chemical Society.
  • Jeanes, A., W. C. Haynes, C. A. Wilham, J. C. Rankin, E. H. Melvin, M. J. Austin, J. E. Cluskey, B. E. Fisher, H. M. Tsuchiya, and C. E. Rist. 1954. Characterization and classification of dextrans from ninety-six strains of bacteria 1b. Journal of the American Chemical Society 76 (20):5041–52.
  • Jensen, M. H., O. Mirza, C. Albenne, M. Remaud-Simeon, P. Monsan, M. Gajhede, and L. K. Skov. 2004. Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea. Biochemistry 43(11):3104–10. doi: 10.1021/bi0357762.
  • Jiang, H., J. Lio, M. Blanco, M. Campbell, and J. L. Jane. 2010. Resistant-starch formation in high-amylose maize starch during kernel development. Journal of Agricultural and Food Chemistry 58 (13):8043–7. doi: 10.1021/jf101056y.
  • Jiang, H., M. Miao, F. Ye, B. Jiang, and T. Zhang. 2014. Enzymatic modification of corn starch with 4-α-glucanotransferase results in increasing slow digestible and resistant starch. International Journal of Biological Macromolecules 65 :208–14. doi: 10.1016/j.ijbiomac.2014.01.044.
  • Jo, H. J., S. Park, H. G. Jeong, J. W. Kim, and J. T. Park. 2015. Vibrio vulnificus glycogen branching enzyme preferentially transfers very short chains: N1 domain determines the chain length transferred. FEBS Letters 589(10):1089–94. doi: 10.1016/j.febslet.2015.03.011.
  • Joint FAO/WHO Expert Committee on Food Additives (JECFA). 1993. WHO food additives series 32: Beta-cyclodextrin.
  • Joint FAO/WHO Expert Committee on Food Additives (JECFA). 1995. WHO food additives series 35: Beta-cyclodextrin.
  • Joint FAO/WHO Expert Committee on Food Additives (JECFA). 1999. WHO food additives series 42: Gamma-cyclodextrin.
  • Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2002. WHO food additives series 48: Alpha-cyclodextrin.
  • Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2006. WHO food additives series 54: Alpha-cyclodextrin.
  • Kadota, K.,. A. Senda, T. Ito, and Y. Tozuka. 2015. Feasibility of highly branched cyclic dextrin as an excipient matrix in dry powder inhalers. European Journal of Pharmaceutical Sciences 79 :79–86. doi: 10.1016/j.ejps.2015.09.006.
  • Kajiura, H., Takata, H., Takaha, T., and Kuriki, T. (2006). Method of producing glycogen. EP 1813678 A.
  • Kang, H. K., J. S. Oh, and D. Kim. 2009. Molecular characterization and expression analysis of the glucansucrase DSRWC from Weissella cibaria synthesizing a alpha(1->6) glucan. FEMS Microbiology Letters 292(1):33–41. doi: 10.1111/j.1574-6968.2008.01460.x.
  • Kaper, T., H. Leemhuis, J. C. Uitdehaag, B. A. van der Veen, B. W. Dijkstra, M. J. van der Maarel, and L. Dijkhuizen. 2007. Identification of acceptor substrate binding subsites +2 and +3 in the amylomaltase from Thermus thermophilus HB8. Biochemistry 46(17):5261–9. doi: 10.1021/bi602408j.
  • Kawai, K.,. Y. Okuda, and K. Yamashita. 1985. Changes in blood glucose and insulin after an oral palatinose administration in normal subjects. Endocrinologia Japonica 32 (6):933–6.
  • Khan, T., J. K. Park, and J. H. Kwon. 2007. Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean Journal of Chemical Engineering 24 (5):816–26. doi:DOI 10.1007/s11814-007-0047-1.
  • Kim, B. K., H. I. Kim, T. W. Moon, and S. J. Choi. 2014. Branch chain elongation by amylosucrase: Production of waxy corn starch with a slow digestion property. Food Chemistry 152 :113–20. doi: 10.1016/j.foodchem.2013.11.145.
  • Kim, D., J. F. Robyt, S. Y. Lee, J. H. Lee, and Y. M. Kim. 2003. Dextran molecular size and degree of branching as a function of sucrose concentration, ph, and temperature of reaction of Lactobacillus reuteri B-512 FMCM dextransucrase. Carbohydrate Research 338(11):1183–9. doi: 10.1016/S0008-6215(03)00148-4.
  • Kittisuban, P., B. H. Lee, M. Suphantharika, and B. R. Hamaker. 2014. Slow glucose release property of enzyme-synthesized highly branched maltodextrins differs among starch sources. Carbohydrate Polymers 107 :182–91. doi: 10.1016/j.carbpol.2014.02.033.
  • Kobayashi, I., M. Tokuda, H. Hashimoto, T. Konda, H. Nakano, and S. Kitahata. 2003. Purification and characterization of a new type of a-glucosidase from Paecilomyces lilacinus that has transglucosylation activity to produce α-(1,3)- and α-(1,2)-linked oligosaccharides. Bioscience, Biotechnology, and Biochemistry 67(1):29–35.
  • Koh, D. W., M. O. Park, S. W. Choi, B. H. Lee, and S. H. Yoo. 2016. Efficient biocatalytic production of cyclodextrins by combined action of amylosucrase and cyclodextrin glucanotransferase. Journal of Agricultural and Food Chemistry 64 (21):4371–5. doi: 10.1021/acs.jafc.6b01080.
  • Kohmoto, T., K. Tsuji, T. Kaneko, M. Shiota, F. Fukui, H. Takaku, Y. Nakagawa, T. Ichikawa, and S. Kobayash. 1992. Metabolism of (13)C-isomalto-oligosaccharides in healthy men. Bioscience, Biotechnology, and Biochemistry 56 (6):937–40. doi: 10.1271/bbb.56.937.
  • Konishi, Y., and K. Shindo. 1997. Production of nigerose, nigerosyl glucose, and nigerosyl maltose by Acremonium sp. S4G13. Bioscience, Biotechnology, and Biochemistry 61(3):439–42.
  • Koukiekolo, R., V. Desseaux, Y. Moreau, G. Marchis-Mouren, and M. Santimone. 2001. Mechanism of porcine pancreatic alpha-amylase. Inhibition of amylose and maltopentaose hydrolysis by alpha-, beta- and gamma-cyclodextrins. European Journal of Biochemistry 268(3):841–8.
  • Kralj, S., E. Stripling, P. Sanders, G. H. van Geel-Schutten, and L. Dijkhuizen. 2005. Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Applied and Environmental Microbiology 71(7):3942–50. doi: 10.1128/AEM.71.7.3942-3950.2005.
  • Kralj, S., G. H. van Geel-Schutten, H. Rahaoui, R. J. Leer, E. J. Faber, M. J. van der Maarel, and L. Dijkhuizen. 2002. Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with alpha-(1->4) and alpha-(1->6) glucosidic bonds. Applied and Environmental Microbiology 68(9):4283–91.
  • Kralj, S., P. Grijpstra, S. S. van Leeuwen, H. Leemhuis, J. M. Dobruchowska, R. M. van der Kaaij, A. Malik, A. Oetari, J. P. Kamerling, and L. Dijkhuizen. 2011. Glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70. Applied and Environmental Microbiology 77(22):8154–63. 4,6-alpha doi: 10.1128/AEM.05735-11.
  • Kralj, S., van, G.-S. Dondorff, G. H. M. M. Kirsanovs, S. van der, M. M. J. Dijkhuizen. and L. 2004. Glucan synthesis in the genus lactobacillus: Isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology 150(11):3681–90. doi: 10.1099/mic.0.27321-0.
  • Larson, S. B., J. S. Day, and A. McPherson. 2010. X-ray crystallographic analyses of pig pancreatic alpha-amylase with limit dextrin, oligosaccharide, and alpha-cyclodextrin. Biochemistry 49 (14):3101–15. doi: 10.1021/bi902183w.
  • Le, Q. T., C. K. Lee, Y. W. Kim, S. J. Lee, R. Zhang, S. G. Withers, Y. R. Kim, J. H. Auh, and K. H. Park. 2009. Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohydrate Polymers 75 (1):9–14. doi: 10.1016/j.carbpol.2008.06.001.
  • Leathers, T. D., Hayman, G. T., and Côté, G. L. (1997). Microorganism strains that produce a high proportion of alternan to dextran. US Patent 5702942.
  • Lee, B. H., A. H. Lin, B. L. Nichols, K. Jones, D. R. Rose, R. Quezada-Calvillo, and B. R. Hamaker. 2014. Mucosal c-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Molecular Nutrition & Food Research 58 (5):1111–21. doi: 10.1002/mnfr.201300599.
  • Lee, B. H., D. R. Rose, A. H. Lin, R. Quezada-Calvillo, B. L. Nichols, and B. R. Hamaker. 2016. Contribution of the individual small intestinal alpha-glucosidases to digestion of unusual alpha-linked glycemic disaccharides. Journal of Agricultural and Food Chemistry 64 (33):6487–94. doi: 10.1021/acs.jafc.6b01816.
  • Lee, B. H., R. Eskandari, K. Jones, K. R. Reddy, R. Quezada-Calvillo, B. L. Nichols, D. R. Rose, B. R. Hamaker, and B. M. Pinto. 2012. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal alpha-glucosidases. Journal of Biological Chemistry 287 (38):31929–38. doi: 10.1074/jbc.M112.351858.
  • Lee, B.-H., L. Yan, R. J. Phillips, B. L. Reuhs, K. Jones, D. R. Rose, B. L. Nichols, R. Quezada-Calvillo, S.-H. Yoo, and B. R. Hamaker. 2013. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. Purdue University.
  • Lee, H. S., J. H. Auh, H. G. Yoon, M. J. Kim, J. H. Park, S. S. Hong, M. H. Kang, T. J. Kim, T. W. Moon, J. W. Kim, and K. H. Park. 2002. Cooperative action of alpha-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (Imo) production. Journal of Agricultural and Food Chemistry 50 (10):2812–7. doi:jf011529y [pii].
  • Lee, S. J., S. H. Yoo, M. J. Kim, J. W. Kim, H. M. Seok, and K. H. Park. 1995. Production and characterization of branched oligosaccharides from liquefied starch by the action of bacillus-licheniformis amylase. Starch - Stärke 47(4):127–34. doi:DOI 10.1002/star.19950470403.
  • Leemhuis, H., J. M. Dobruchowska, M. Ebbelaar, F. Faber, P. L. Buwalda, M. J. E. C. van der Maarel, J. P. Kamerling, and L. Dijkhuizen. 2014. Isomalto/malto-polysaccharide, a novel soluble dietary fiber made via enzymatic conversion of starch. Journal of Agricultural and Food Chemistry 62 (49):12034–44. doi: 10.1021/jf503970a.
  • Leemhuis, H., R. M. Kelly, and L. Dijkhuizen. 2010. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Applied Microbiology and Biotechnology 85 (4):823–35. doi: 10.1007/s00253-009-2221-3.
  • Leemhuis, H., T. Pijning, J. M. Dobruchowska, S. S. van Leeuwen, S. Kralj, B. W. Dijkstra, and L. Dijkhuizen. 2013. Glucansucrases: Three-dimensional structures, reactions, mechanism, alpha-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology 163 (2):250–72. doi: 10.1016/j.jbiotec.2012.06.037.
  • Leemhuis, H., W. P. Dijkman, J. M. Dobruchowska, T. Pijning, P. Grijpstra, S. Kralj, J. P. Kamerling, and L. Dijkhuizen. 2013. 4,6-alpha-glucanotransferase activity occurs more widespread in lactobacillus strains and constitutes a separate GH70 subfamily. Applied Microbiology and Biotechnology 97(1):181–93. doi: 10.1007/s00253-012-3943-1.
  • Lehman, U., and F. Robin. 2007. Slowly digestible starch – its structure and health implications: A review. Trends in Food Science & Technology 18(7):346–55.
  • Light, S. H., L. A. Cahoon, K. V. Mahasenan, M. Lee, B. Boggess, A. S. Halavaty, S. Mobashery, N. E. Freitag, and W. F. Anderson. 2017. Transferase versus hydrolase: the role of conformational flexibility in reaction specificity. Structure 25 (2):295–304. doi: 10.1016/j.str.2016.12.007.
  • Lin, A. H., B. L. Nichols, R. Quezada-Calvillo, S. E. Avery, L. Sim, D. R. Rose, H. Y. Naim, and B. R. Hamaker. 2012. Unexpected high digestion rate of cooked starch by the ct-maltase-glucoamylase small intestine mucosal alpha-glucosidase subunit. PLoS One 7 (5):e35473. doi: 10.1371/journal.pone.0035473.
  • Lin, A. H.-M., B.-H. Lee, and W.-J. Chang. 2016. Small intestine mucosal α-glucosidase: a missing feature of in vitro starch digestibility. Food Hydrocolloids 53 :163–71. doi: 10.1016/j.foodhyd.2015.03.002.
  • Liu, C., W. Xiang, Y. Yu, Z. Q. Shi, X. Z. Huang, and L. Xu. 2015. Comparative analysis of 1-deoxynojirimycin contribution degree to alpha-glucosidase inhibitory activity and physiological distribution in morus Alba l. Industrial Crops and Products 70 :309–15. doi: 10.1016/j.indcrop.2015.02.046.
  • Liu, Y., X. Ban, C. Li, Z. Gu, L. Cheng, Y. Hong, and Z. Li. 2017. Met349 mutations enhance the activity of 1,4-α-glucan branching enzyme from geobacillus thermoglucosidans STB02. Journal of Agricultural and Food Chemistry 65(28):5674–80.
  • López-Munguía, A., V. Pelenc, M. Remaud, J. Biton, J. M. Michel, C. Lang, F. Paul, and P. Monsan. 1993. Production and purification of alternansucrase, a glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355, for the synthesis of oligoalternans. Enzyme and Microbial Technology 15(1):77–85.
  • MacGregor, E. A., H. M. Jespersen, and B. Svensson. 1996. A circularly permuted alpha-amylase-type alpha/beta-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Letters 378 (3):263–6.
  • Madsen, L. R., S. Stanley, P. Swann, and J. Oswald. 2017. A survey of commercially available isomaltooligosaccharide-based food ingredients. Journal of Food Science 82 (2):401–8. doi: 10.1111/1750-3841.13623.
  • Maina, N. H., L. Virkki, H. Pynno¨Nen, H. Maaheimo, and M. Tenkanen. 2011. Structural analysis of enzyme-resistant isomaltooligosaccharides reveals the elongation of alpha-(1->3)-linked branches in Weissella confusa dextran. Biomacromolecules 12(2):409–18. doi: 10.1021/bm1011536.
  • Martin, A. E., and P. A. Montgomery. 1996. Acarbose: An alpha-glucosidase inhibitor. American Journal of Health-System Pharmacy: Ajhp: Official Journal of the American Society of Health-System Pharmacists 53 (19):2277–90. quiz 2336-2277.
  • Meigs, J. B., D. M. Nathan, R. B. D'Agostino, Sr., P. W. Wilson, and S. Framingham Offspring. 2002. Fasting and postchallenge glycemia and cardiovascular disease risk: the framingham offspring study. Diabetes Care 25(10):1845–50. doi: 10.2337/diacare.25.10.1845.
  • Meng, X. F., J. Gangoiti, Y. X. Bai, T. Pijning, S. S. Van Leeuwen, and L. Dijkhuizen. 2016. Structure-function relationships of family GH70 glucansucrase and 4,6-alpha-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences 73 (14):2681–706. doi: 10.1007/s00018-016-2245-7.
  • Meng, X., J. M. Dobruchowska, G. J. Gerwig, J. P. Kamerling, and L. Dijkhuizen. 2015. Synthesis of oligo- and polysaccharides by Lactobacillus reuteri 121 reuteransucrase at high concentrations of sucrose. Carbohydrate Research 414 :85–92. doi: 10.1016/j.carres.2015.07.011.
  • Meng, X., J. M. Dobruchowska, T. Pijning, G. J. Gerwig, and L. Dijkhuizen. 2016. Synthesis of new hyperbranched alpha-glucans from sucrose by Lactobacillus reuteri 180 glucansucrase mutants. Journal of Agricultural and Food Chemistry 64(2):433–42. doi: 10.1021/acs.jafc.5b05161.
  • Meng, X., T. Pijning, J. M. Dobruchowska, G. J. Gerwig, and L. Dijkhuizen. 2015. Characterization of the functional roles of amino acid residues in acceptor-binding subsite +1 in the active site of the glucansucrase gtf180 from Lactobacillus reuteri 180. Journal of Biological Chemistry 290(50):30131–41. doi: 10.1074/jbc.M115.687558.
  • Meng, X., T. Pijning, J. M. Dobruchowska, H. Yin, G. J. Gerwig, and L. Dijkhuizen. 2016. Structural determinants of alternating (alpha1 -> 4) and (alpha1 -> 6) linkage specificity in reuteransucrase of Lactobacillus reuteri. Scientific Reports 6(1):35261. doi: 10.1038/srep35261.
  • Meng, X., T. Pijning, M. Tietema, J. M. Dobruchowska, H. Yin, G. J. Gerwig, S. Kralj, and L. Dijkhuizen. 2017. Characterization of the glucansucrase Gtf180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition. Food Chemistry 217 :81–90. doi: 10.1016/j.foodchem.2016.08.087.
  • Mirza, O., L. K. Skov, M. Remaud-Simeon, G. Potocki de Montalk, C. Albenne, P. Monsan, and M. Gajhede. 2001. Crystal structures of amylosucrase from Neisseria polysaccharea in complex with D-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry 40(30):9032–9.
  • Mitchell, H., M. H. Auerbach, and F. K. Moppet. 2001. Polydextrose. New York: L. O. Nabors. Marcel Dekker, 499–518.
  • Monchois, V., M. Remaud-Simeon, R. R. Russell, P. Monsan, and R. M. Willemot. 1997. Characterization of Lactobacillus reuteri NRRL B-512f dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Applied Microbiology and Biotechnology 48(4):465–72.
  • Monchois, V., R. M. Willemot, and P. Monsan. 1999. Glucansucrases: Mechanism of action and structure-function relationships. FEMS Microbiology Reviews 23 (2):131–51. doi:S0168-6445(98)00041-2 [pii].
  • Monnier, L., E. Mas, C. Ginet, F. Michel, L. Villon, J. P. Cristol, and C. Colette. 2006. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295 (14):1681–7. doi: 10.1001/jama.295.14.1681.
  • Monsan, P., Remaud, S. Andre. M., and I. 2010. Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Current Opinion in Microbiology 13 (3):293–300. doi: 10.1016/j.mib.2010.03.002.
  • Moulis, C., I. Andre, and M. Remaud-Simeon. 2016. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cellular and Molecular Life Sciences 73 (14):2661–79. doi: 10.1007/s00018-016-2244-8.
  • Mountzouris, K. C., S. G. Gilmour, and R. A. Rastall. 2002. Continuous production of oligodextrans via controlled hydrolysis of dextran in an enzyme membrane reactor. Journal of Food Science 67 (5):1767–71. doi:DOI 10.1111/j.1365-2621.2002.tb08720.x.
  • Na, S., M. Park, I. Jo, J. Cha, and N. C. Ha. 2017. Structural basis for the transglycosylase activity of a GH57-type glycogen branching enzyme from Pyrococcus horikoshii. Biochemical and Biophysical Research Communications 484(4):850–6. doi: 10.1016/j.bbrc.2017.02.002.
  • Naessens, M., A. Cerdobbel, W. Soetaert, and E. J. Vandamme. 2005. Dextran dextrinase and dextran of Gluconobacter oxydans. Journal of Industrial Microbiology & Biotechnology 32(8):323–34. doi: 10.1007/s10295-005-0259-5.
  • Nguyen, T. T. H., S.-H. Jung, S. Lee, H.-J. Ryu, H.-K. Kang, Y.-H. Moon, Y.-M. Kim, A. Kimura, and D. Kim. 2012. Inhibitory effects of epigallocatechin gallate and its glucoside on the human intestinal maltase inhibition. Biotechnology and Bioprocess Engineering 17 (5):966–71. doi: 10.1007/s12257-012-0242-8.
  • Nichols, B. L., S. Avery, P. Sen, D. M. Swallow, D. Hahn, and E. Sterchi. 2003. The maltase-glucoamylase gene: Common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proceedings of the National Academy of Sciences of the United States of America 100 (3):1432–7. doi: 10.1073/pnas.0237170100.
  • Nishikawa, T., D. Edelstein, X. L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M. A. Yorek, D. Beebe, P. J. Oates, H. P. Hammes., et al. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404 (6779):787–90. doi: 10.1038/35008121.
  • Niu, D. D., J. Qiao, P. J. Li, K. M. Tian, X. G. Liu, S. Singh, and F. Lu. 2017. Highly efficient enzymatic preparation of isomalto-oligosaccharides from starch using an enzyme cocktail. Electronic Journal of Biotechnology 26 :46–51. doi: 10.1016/j.ejbt.2016.12.002.
  • Norman, B., Pedersen, S., Stanley, K., Stanley, E., and Richmond, P. (2007). Production of crystalline short chain amylase. US Patent 2007059432.
  • Nugent, A. P. 2005. Health properties of resistant starch. Nutrition Bulletin 30(1):27–54.
  • Oates, C. G. 1997. Towards an understanding of starch granule structure and hydrolysis. Trends in Food Science & Technology 8 (11):375–82. doi:Doi 10.1016/S0924-2244(97)01090-X.
  • Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition (CFSAN) Food and Drug Administration (FDA). 2010. GRAS Notice 000358: Cyclic dextrin, highly branched https://fradowner.com/d/db352e5e.
  • Ohkuma, K., and S. Wakabayashi. 2000. Fibersol-2: A soluble, non-digestible, starch-derived dietary fibre. In: Advanced dietary fibre technology, 509–523. Hoboken, NJ: Blackwell Science Ltd.
  • Pal, K., S. Kumar, S. Sharma, S. K. Garg, M. S. Alam, H. E. Xu, P. Agrawal, and K. Swaminathan. 2010. Crystal structure of full-length Mycobacterium tuberculosis H37RV glycogen branching enzyme: Insights of N-terminal beta-sandwich in substrate specificity and enzymatic activity. Journal of Biological Chemistry 285(27):20897–903. doi: 10.1074/jbc.M110.121707.
  • Palomo, M., S. Kralj, M. J. van der Maarel, and L. Dijkhuizen. 2009. The unique branching patterns of deinococcus glycogen branching enzymes are determined by their N-terminal domains. Applied and Environmental Microbiology 75 (5):1355–62. doi: 10.1128/AEM.02141-08.
  • Palomo, M., T. Pijning, T. Booiman, J. M. Dobruchowska, J. van der Vlist, S. Kralj, A. Planas, K. Loos, J. P. Kamerling, B. W. Dijkstra., et al. 2011. Thermus thermophilus glycoside hydrolase family 57 branching enzyme: Crystal structure, mechanism of action, and products formed. Journal of Biological Chemistry 286(5):3520–30. doi: 10.1074/jbc.M110.179515.
  • Panasevich, M. R., K. R. Kerr, M. C. Serao, M. R. de Godoy, L. Guerin-Deremaux, G. L. Lynch, D. Wils, S. E. Dowd, G. C. Fahey, K. S. Swanson, and R. N. Dilger. 2015. Evaluation of soluble corn fiber on chemical composition and nitrogen-corrected true metabolizable energy and its effects on in vitro fermentation and in vivo responses in dogs. Journal of Animal Science 93(5):2191–200. doi: 10.2527/jas.2014-8425.
  • Park, J. K. and T. Khan. 2009. Other microbial polysaccharides: Pullulan, scleroglucan, elsinan, levan, alternant, dextran. In: Handbook of Hydrocolloids, 592–614 Cambridge, UK:Woodhead Publishing Limited. doi: 10.1533/9781845695873.592.
  • Passerini, D., M. Vuillemin, L. Ufarte, S. Morel, V. Loux, C. Fontagne-Faucher, P. Monsan, M. Remaud-Simeon, and C. Moulis. 2015. Inventory of the GH70 enzymes encoded by Leuconostoc citreum NRRL B-1299 - identification of three novel alpha-transglucosylases. FEBS Journal 282(11):2115–30. doi: 10.1111/febs.13261.
  • Paul, F., Lopez-Munguia, A., Remaud, M., Pelenc, V., and Monsan, P. (1992). Method for the production of α-1,2 oligodextrans using Leuconostoc mesenteroides NRRL B-1299. US Patent 5141858 A.
  • Pelzer, S., Zurek, C., Rose, T., Eek, J. I., Wach, W., Klingeberg, M., and Harms, K. (2012). Microorganisms having enhanced sucrose mutase activity. US Patent 8790900 B2.
  • Peters, S., T. Rose, and M. Moser. 2010. Sucrose: a prospering and sustainable organic raw material. Topics in Current Chemistry 294 :1–23.
  • Pijning, T., A. Vujicic-Zagar, S. Kralj, L. Dijkhuizen, and B. W. Dijkstra. 2012. Structure of the alpha-1,6/alpha-1,4-specific glucansucrase GtfA from Lactobacillus reuteri 121. Acta Crystallographica Section F Structural Biology and Crystallization Communications 68(12):1448–54. doi: 10.1107/S1744309112044168.
  • Playne, M. J., and R. G. Crittenden. 2004. Prebiotics from lactose, sucrose, starch and plant polysaccharides. Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals In. F. Shahidi, eds. J. R. Neeser and J. B. German. New York: Marcel Dekker.
  • Plijter, J., Jurgens, A., Kats, M. P., Noort, M. W. J., Heddes, C. E. A., and Van, G. S. (2009). Bread improver. US Patent 20090297663 A1.
  • Potocki-Veronese, G., J. L. Putaux, D. Dupeyre, C. Albenne, M. Remaud-Simeon, P. Monsan, and A. Buleon. 2005. Amylose synthesized in vitro by amylosucrase: Morphology, structure, and properties. Biomacromolecules 6(2):1000–11. doi: 10.1021/bm049326g.
  • Przylas, I., Y. Terada, K. Fujii, T. Takaha, W. Saenger, and N. Strater. 2000. X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cyclic glucans. European Journal of Biochemistry 267(23):6903–13. doi:ejb1790 [pii].
  • Putaala, H. (2013). Polydextrose in Lipid Metabolism, Lipid Metabolism, Prof. Rodrigo Valenzuela Baez (Ed.), InTech, DOI: 10.5772/51791. https://www.intechopen.com/books/lipid-metabolism/polydextrose-in-lipid-metabolism
  • Quezada-Calvillo, R., C. C. Robayo-Torres, Z. Ao, B. R. Hamaker, A. Quaroni, G. D. Brayer, E. E. Sterchi, S. S. Baker, and B. L. Nichols. 2007. Luminal substrate " brake" on mucosal maltase- glucoamylase activity regulates total rate of starch digestion to glucose. Journal of Pediatric Gastroenterology and Nutrition 45 (1):32–43.
  • Quezada-Calvillo, R., L. Sim, Z. H. Ao, B. R. Hamaker, A. Quaroni, G. D. Brayer, E. E. Sterchi, C. C. Robayo-Torres, D. R. Rose, and B. L. Nichols. 2008. Luminal starch substrate "brake" on maltase-glucoamylase activity is located within the glucoamylase subunit. The Journal of Nutrition 138 (4):685–92.
  • Remaud-Simeon, M., A. Lopez-Munguia, V. Pelenc, F. Paul, and P. Monsan. 1994. Production and use of glucosyltransferases from Leuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing α-(1-2) linkages. Applied Biochemistry and Biotechnology 44(2):101–17.
  • Rennhard, H. H. (1973). Polysaccharides and their preparation. US Patent 3766165 A.
  • Robyt, J. F., S. H. Yoon, and R. Mukerjea. 2008. Dextransucrase and the mechanism for dextran biosynthesis. Carbohydrate Research 343 (18):3039–48. doi: 10.1016/j.carres.2008.09.012.
  • Rolland-Sabaté, A., P. Colonna, G. Potocki-Veronese, P. Monsan, and V. Planchot. 2004. Elongation and insolubilisation of α-glucans by the action of Neisseria polysaccharea amylosucrase. Journal of Cereal Science 40(1):17–30.
  • Roper, H., and H. Koch. 1988. New carbohydrate-derivatives from biotechnical and chemical processes. Starch 40 (12):453–64. doi:DOI 10.1002/star.19880401203.
  • Roth, C., N. Weizenmann, N. Bexten, W. Saenger, W. Zimmermann, T. Maier, and N. Strater. 2017. Amylose recognition and ring-size determination of amylomaltase. Science Advances 3 (1):e1601386. doi: 10.1126/sciadv.1601386.
  • Roujeinikova, A., C. Raasch, J. Burke, P. J. Baker, W. Liebl, and D. W. Rice. 2001. The crystal structure of thermotoga maritima maltosyltransferase and its implications for the molecular basis of the novel transfer specificity. Journal of Molecular Biology 312(1):119–31. doi: 10.1006/jmbi.2001.4944.
  • Roujeinikova, A., C. Raasch, S. Sedelnikova, W. Liebl, and D. W. Rice. 2002. Crystal structure of Thermotoga maritima 4-alpha-glucanotransferase and its acarbose complex: Implications for substrate specificity and catalysis. Journal of Molecular Biology321(1):149–62. doi:S0022283602005703 [pii].
  • Roussel, X., C. Lancelon-Pin, A. Vikso-Nielsen, A. Rolland-Sabate, F. Grimaud, G. Potocki-Veronese, A. Buleon, J. L. Putaux, and C. D'Hulst. 2013. Characterization of substrate and product specificity of the purified recombinant glycogen branching enzyme of Rhodothermus obamensis. Biochimica et Biophysica Acta 1830(1):2167–77. doi: 10.1016/j.bbagen.2012.09.022.
  • Rycroft, C. E., M. R. Jones, G. R. Gibson, and R. A. Rastall. 2001. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Applied Microbiology 91(5):878–87.
  • Sadahiro, J., H. Mori, W. Saburi, M. Okuyama, and A. Kimura. 2015. Extracellular and cell-associated forms of Gluconobacter oxydans dextran dextrinase change their localization depending on the cell growth. Biochemical and Biophysical Research Communications 456(1):500–5. doi: 10.1016/j.bbrc.2014.11.115.
  • Sawada, T., Y. Nakamura, T. Ohdan, A. Saitoh, P. B. Francisco, Jr., E. Suzuki, N. Fujita, T. Shimonaga, S. Fujiwara, M. Tsuzuki., et al. 2014. Diversity of reaction characteristics of glucan branching enzymes and the fine structure of alpha-glucan from various sources. Archives of Biochemistry and Biophysics 562 :9–21. doi: 10.1016/j.abb.2014.07.032.
  • Schneider, J., C. Fricke, H. Overwin, B. Hofmann, and B. Hofer. 2009. Generation of amylosucrase variants that terminate catalysis of acceptor elongation at the di- or trisaccharide stage. Applied and Environmental Microbiology 75 (23):7453–60. doi: 10.1128/AEM.01194-09.
  • SCO. 2000. Opinion of the scientific committee on food on a dextran preparation, produced using Leuconostoc mesenteroides, Saccharomyces cerevisae and lactobacillus spp, as a novel food ingredient in bakery products. Brussels, Belgium.
  • Shin, H. J., S. J. Choi, C. S. Park, and T. W. P. Moon. 2010. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohydrate Polymers 82(2):489–97.
  • Shinohara, M. L., M. Ihara, M. Abo, M. Hashida, S. Takagi, and T. C. Beck. 2001. A novel thermostable branching enzyme from an extremely thermophilic bacterial species, Rhodothermus obamensis. Applied Microbiology and Biotechnology 57(5-6):653–9.
  • Shiroza, T., S. Ueda, and H. K. Kuramitsu. 1987. Sequence analysis of the GTFB gene from Streptococcus mutans. Journal of Bacteriology 169(9):4263–70.
  • Siddiqui, I. R., and B. Furgala. 1967. Isolation and characterization of oligosaccharides from honey. Part i disaccharides. Journal of Apicultural Research 6(3):139–45.
  • Sim, L., C. Willemsma, S. Mohan, H. Y. Naim, B. M. Pinto, and D. R. Rose. 2010. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. Journal of Biological Chemistry 285 (23):17763–70. doi: 10.1074/jbc.M109.078980.
  • Simpson, D. T. (2011). Printing ink base material. Google Patents.
  • Simsek, M., R. Quezada-Calvillo, M. G. Ferruzzi, B. L. Nichols, and B. R. Hamaker. 2015. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. Journal of Agricultural and Food Chemistry 63 (15):3873–9. doi: 10.1021/jf505425d.
  • Skov, L. K., S. Pizzut-Serin, M. Remaud-Simeon, H. A. Ernst, M. Gajhede, and O. Mirza. 2013. The structure of amylosucrase from Deinococcus radiodurans has an unusual open active-site topology. Acta Crystallographica Section F Structural Biology and Crystallization Communications 69(9):973–8. doi: 10.1107/S1744309113021714.
  • Srisuvor, N., N. Chinprahast, C. Prakitchaiwattana, and S. Subhimaros. 2013. Effects of inulin and polydextrose on physicochemical and sensory properties of low-fat set yoghurt with probiotic-cultured banana purée. LWT - Food Sci Technol 51 (1):30–6. doi: 10.1016/j.lwt.2012.10.018.
  • Su, D., and J. F. Robyt. 1993. Control of the synthesis of dextran and acceptor-products by Leuconostoc mesenteroides B-512FM dextransucrase. Carbohydrate Research 248 :339–48. doi:0008-6215(93)84139-W [pii].
  • Suzuki, E., and R. Suzuki. 2016. Distribution of glucan-branching enzymes among prokaryotes. Cellular and Molecular Life Sciences 73 (14):2643–60. doi: 10.1007/s00018-016-2243-9.
  • Takata, H., K. Ohdan, T. Takaha, T. Kuriki, and S. Okada. 2003. Properties of branching enzyme from hyperthermophilic bacterium, Aquifex aeolicus, and its potential for production of highly-branched cyclic dextrin. Journal of Applied Glycoscience 50(1):15–20.
  • Takata, H., T. Takaha, S. Okada, S. Hizukuri, M. Takagi, and T. Imanaka. 1996. Structure of the cyclic glucan produced from amylopectin by Bacillus stearothermophilus branching enzyme. Carbohydrate Research 295 :91–101.
  • Takazoe, I. 1985. New trends on sweeteners in Japan. International Dental Journal 35 (1):58–65.
  • Takii, H., K. Ishihara, T. Kometani, S. Okada, and T. Fushiki. 1999. Enhancement of swimming endurance in mice by highly branched cyclic dextrin. Biosci Biotechnol Biochem 63 (12):2045–52.
  • Terada, Y., K. Fujii, T. Takaha, and S. Okada. 1999. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: Production of cycloamylose. Applied and Environmental Microbiology 65(3):910–5.
  • Thiemann, V., C. D?Nges, S. G. Prowe, R. Sterner, and G. Antranikian. 2004. Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. Archives of Microbiology 182(2-3):226–35. doi: 10.1007/s00203-004-0717-x.
  • Tsuji, Y., K. Yamada, N. Hosoya, and S. Moriuchi. 1986. Digestion and absorption of sugars and sugar substitutes in rat small intestine. Journal of Nutritional Science and Vitaminology 32 (1):93–100.
  • Tsunehiro, J., K. Okamoto, Y. Furuyama, T. Yatake, and T. Kaneko. 1999. Digestibility of the hydrogenated derivative of an isomaltooligosaccharide mixture by rats. Bioscience, Biotechnology, and Biochemistry 63 (9):1515–21. doi: 10.1271/bbb.63.1515.
  • Uitdehaag, J. C. M., G. J. W. M. van Alebeek, B. A. van der Veen, L. Dijkhuizen, and B. W. Dijkstra. 2000. Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity. Biochemistry 39 (26):7772–80. doi: 10.1021/bi000340x.
  • Uitdehaag, J. C., R. Mosi, K. H. Kalk, B. A. van der Veen, L. Dijkhuizen, S. G. Withers, and B. W. Dijkstra. 1999. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nature Structural & Molecular Biology 6 (5):432–6. doi: 10.1038/8235.
  • Valette, P., V. Pelenc, Z. Djouzi, C. Andrieux, F. Paul, P. Monsan, and O. Szylit. 1993. Bioavailability of new synthesized glucooligosaccharides in the intestinal-tract of gnotobiotic-rats. Journal of the Science of Food and Agriculture 62 (2):121–7. doi: 10.1002/jsfa.2740620204.
  • Valk, V.,. W. Eeuwema, F. D. Sarian, R. M. van der Kaaij, and L. Dijkhuizen. 2015. Degradation of granular starch by the bacterium Microbacterium aurum strain B8.A involves a modular alpha-amylase enzyme system with FNiii and CBM25 domains. Applied and Environmental Microbiology 81(19):6610–20. doi: 10.1128/AEM.01029-15.
  • van Can, J. G., L. J. van Loon, F. Brouns, and E. E. Blaak. 2012. Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: Implications for postprandial substrate use in impaired glucose-tolerant subjects. British Journal of Nutrition 108 (07):1210–7. doi: 10.1017/S0007114511006714.
  • van der Maarel, M. J. E. C., B. van der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the alpha-amylase family. Journal of Biotechnology 94 (2):137–55.
  • Van der Maarel, M. J. E. C., I. Capron, G. J. W. Euverink, H. T. Bos, T. Kaper, D. J. Binnema, and P. A. M. Steeneken. 2005. A novel thermoreversible gelling product made by enzymatic modification of starch. Starch 57(10):465–72.
  • van der Maarel, M. J., and H. Leemhuis. 2013. Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydrate Polymers 93 (1):116–21. doi: 10.1016/j.carbpol.2012.01.065.
  • van der Veen, B. A., G. J. W. M. van Alebeek, J. C. M. Uitdehaag, B. W. Dijkstra, and L. Dijkhuizen. 2000. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. European Journal of Biochemistry 267(3):658–65. doi:DOI 10.1046/j.1432-1327.2000.01031.x.
  • van Leeuwen, S. S., S. Kralj, I. H. van Geel-Schutten, G. J. Gerwig, L. Dijkhuizen, and J. P. Kamerling. 2008. Structural analysis of the alpha-D-glucan (eps35-5) produced by the Lactobacillus reuteri strain 35-5 glucansucrase GtfA enzyme. Carbohydrate Research 343(7):1251–65. doi: 10.1016/j.carres.2008.01.044.
  • Van Tiegham, P. 1878. Sur la gomme de sucrerie. Annales des sciences naturelles. Botanique. Botanique 6 (7):180.
  • Vanschoonbeek, K., M. Lansink, K. M. van Laere, J. M. Senden, L. B. Verdijk, and L. J. van Loon. 2009. Slowly digestible carbohydrate sources can be used to attenuate the postprandial glycemic response to the ingestion of diabetes-specific enteral formulas. The Diabetes Educator 35 (4):631–40. doi: 10.1177/0145721709335466.
  • Voragen, A. G. J. 1998. Technological aspects of functional food-related carbohydrates. Trends in Food Science and Technology 9 (8-9):328–35. doi:https://doi.org/10.1016/S0924-2244(98)00059-4.
  • Vuillemin, M., Claverie, M. Brison, Y. Severac, E. Bondy, P. Morel, S. Monsan, P. Moulis, C. Remaud. S., and M. 2016. Characterization of the first alpha-(1->3) branching sucrases of the GH70 family. Journal of Biological Chemistry 291(14):7687–702. doi: 10.1074/jbc.M115.688044.
  • Vujicic-Zagar, A., T. Pijning, S. Kralj, C. A. Lopez, W. Eeuwema, L. Dijkhuizen, and B. W. Dijkstra. 2010. Crystal structure of a 117 kda glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proceedings of the National Academy of Sciences of the United States of America 107 (50):21406–11. doi: 10.1073/pnas.1007531107.
  • Wallander, M., M. Bartnik, S. Efendic, A. Hamsten, K. Malmberg, J. Ohrvik, L. Ryden, A. Silveira, and A. Norhammar. 2005. Beta cell dysfunction in patients with acute myocardial infarction but without previously known type 2 diabetes: a report from the GAMI study. Diabetologia 48 (11):2229–35. doi: 10.1007/s00125-005-1931-z.
  • Wattebled, F., J. P. Ral, D. Dauvillee, A. M. Myers, M. G. James, R. Schlichting, C. Giersch, S. G. Ball, and C. d'Hulst. 2003. Sta11, a Chlamydomonas reinhardtii locus required for normal starch granule biogenesis, encodes disproportionating enzyme. Further evidence for a function of alpha-1,4 glucanotransferases during starch granule biosynthesis in green algae. Plant Physiology 132(1):137–45. doi: 10.1104/pp.102.016527.
  • Welkie, D. G., B. H. Lee, and L. A. Sherman. 2015. Altering the structure of carbohydrate storage granules in the Cyanobacterium Synechocystis sp. strain PCC 6803 through branching-enzyme truncations. Journal of Bacteriology 198(4):701–10. doi: 10.1128/JB.00830-15 [doi].
  • Wolf, B. W., K. A. Garleb, Y. S. Choe, P. M. Humphrey, and K. C. Maki. 2003. Pullulan is a slowly digested carbohydrate in humans. The Journal of Nutrition 133 (4):1051–5.
  • Wolf, B., J. Chow, and C.-S. Lai. 2006. Method for using gamma-cyclodextrin to control bood glucose and insulin secretion. WO 2009/004574A2.
  • Yamamoto, K., K. Yoshikawa, and S. Okada. 1993. Structure of dextran synthesized by dextrin dextranase from acetobacter-capsulatus ATCC 11894. Bioscience, Biotechnology, and Biochemistry 57(9):1450–3.
  • Yamamoto, T., T. Unno, Y. Watanabe, M. Yamamoto, M. Okuyama, H. Mori, S. Chiba, and A. Kimura. 2004. Purification and characterization of acremonium implicatum a-glucosidase having regioselectivity for α-(1,3)- glucosidic linkage. Biochimica et Biophysica Acta 1700(2):189–98.
  • Yasuda, E., Takaku, H., and Matsumoto, H. 1986. Production of branched oligosaccharide syrup. JPS61212296 (A).
  • Yoo, S. H., M. R. Kweon, M. J. Kim, J. H. Auh, D. S. Jung, J. R. Kim, C. Yook, J. W. Kim, and K. H. Park. 1995. Branched oligosaccharides concentrated by yeast fermentation and effectiveness as a low sweetness humectant. Journal of Food Science 60 (3):516–9. doi:DOI 10.1111/j.1365-2621.1995.tb09816.x.
  • Yun, J., M. Lee, and S. Song. 1994. Continuous production of isomaltooligosaccharides from maltose syrup by immobilized cells of permeabilized aureobasidium pullulans. Biotechnology Letters 16(11):1145–50.
  • Zhang, G., and B. R. Hamaker. 2009. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Critical Reviews in Food Science and Nutrition 49 (10):852–67. doi: 10.1080/10408390903372466.
  • Zhang, G., Z. Ao, and B. R. Hamaker. 2006. Slow digestion property of native cereal starches. Biomacromolecules 7(11):3252–8.
  • Zhang, G., Z. Ao, and B. R. Hamaker. 2008. Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure. Journal of Agricultural and Food Chemistry 56 (12):4686–94. doi: 10.1021/jf072822m.
  • α-cyclodextrin. Csid392705. accessed October. http://www.chemspider.com/Chemical-Structure.392705.html.
  • β-cyclodextrin. Csid:10469496. accessed October. http://www.chemspider.com/Chemical-Structure.10469496.html.
  • γ-cyclodextrin. Csid:10469499. accessed October. http://www.chemspider.com/Chemical-Structure.10469499.html.