1,348
Views
29
CrossRef citations to date
0
Altmetric
Review

Radio frequency pasteurization and disinfestation techniques applied on low-moisture foods

, , , & ORCID Icon

References

  • Alfaifi, B., S. J. Wang, J. M. Tang, B. Rasco, S. Sablani, and Y. Jiao. 2013. Radio frequency disinfestation treatments for dried fruit: Dielectric properties. LWT - Food Science and Technology 50:746–54. doi: 10.1016/j.lwt.2012.07.012.
  • Alfaifi, B., J. Tang, Y. Jiao, S. Wang, B. Rasco, S. Jiao, and S. Sablani. 2014. Radio frequency disinfestation treatments for dried fruit: Model development and validation. Journal of Food Engineering 120:268–76. doi: 10.1016/j.jfoodeng.2013.07.015.
  • Alfaifi, B., J. Tang, B. Rasco, S. Wang, and S. Sablani. 2016. Computer simulation analyses to improve radio frequency (RF) heating uniformity in dried fruits for insect control. Innovative Food Science and Emerging Technologies 37:125–37. doi: 10.1016/j.ifset.2016.08.012.
  • Beuchat, L. R., D. A. Mann, and W. Q. Alali. 2013. Efficacy of sanitizers in reducing salmonella on pecan nutmeats during cracking and shelling. Journal of Food Protection 76 (5):770–8. doi: 10.4315/0362-028X.JFP-12-541.
  • Chen, S. D., C. C. Huang, Y. F. Yen, and M. C. Yao. 2016. Study of radio frequency heating for disinfestation of vacuum packed brown rice. Taiwanese Journal of Agricultural Chemistry and Food Science 54 (1):45–52.
  • Chen, J., S. K. Lau, L. Chen, S. Wang, and J. Subbiah. 2017. Modeling radio frequency heating of food moving on a conveyor belt. Food and Bioproducts Processing 102:307–19. doi: 10.1016/j.fbp.2017.01.009.
  • Datta, A. K., and R. C. Anantheswaran. 2001. Handbook of microwave technology for food application. London: CRC Press.
  • Desai, R. A., A. J. Lowery, C. Christopoulos, P. Naylor, J. M. V. Blanshard, and K. Gregson. 1992. Computer modelling of microwave cooking using the transmission-line model. IEEE Proceedings A Science, Measurement and Technology 139 (1):30–8. doi: 10.1049/ip-a-3.1992.0005.
  • Gao, M., J. Tang, Y. Wang, J. Powers, and S. Wang. 2010. Almond quality as influenced by radio frequency heat treatments for disinfestation. Postharvest Biology and Technology 58 (3):225–31. doi: 10.1016/j.postharvbio.2010.06.005.
  • Gao, M., J. Tang, R. Villa-Rojas, Y. Wang, and S. Wang. 2011. Pasteurization process development for controlling Salmonella in in-shell almonds using radio frequency energy. Journal of Food Engineering 104 (2):299–306. doi: 10.1016/j.jfoodeng.2010.12.021.
  • Guo, W., S. Wang, G. Tiwari, J. A. Johnson, and J. Tang. 2010. Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating. LWT - Food Science and Technology 43 (2):193–201. doi: 10.1016/j.lwt.2009.07.008.
  • Hou, L., J. A. Johnson, and S. Wang. 2016. Radio frequency heating for postharvest control of pests in agricultural products: A review. Postharvest Biology and Technology 113:106–18. doi: 10.1016/j.postharvbio.2015.11.011.
  • Hu, S., Y. Zhao, Z. Hayouka, D. Wang, and S. Jiao. 2018. Inactivation kinetics for Salmonella typhimurium in red pepper powders treated by radio frequency heating. Food Control 85:437–42. doi: 10.1016/j.foodcont.2017.10.034.
  • Huang, Z., L. Chen, and S. Wang. 2015. Computer simulation of radio frequency selective heating of insects in soybeans. International Journal of Heat and Mass Transfer 90:406–17. doi: 10.1016/j.ijheatmasstransfer.2015.06.071.
  • Huang, Z., F. Marra, and S. Wang. 2016. A novel strategy for improving radio frequency heating uniformity of dry food products using computational modeling. Innovative Food Science and Emerging Technologies 34:100–11. doi: 10.1016/j.ifset.2016.01.005.
  • Huang, Z., B. Zhang, F. Marra, and S. Wang. 2016. Computational modelling of the impact of polystyrene containers on radio frequency heating uniformity improvement for dried soybeans. Innovative Food Science and Emerging Technologies 33:365–80. doi: 10.1016/j.ifset.2015.11.022.
  • Huang, Z., F. Marra, J. Subbiah, and S. Wang. 2018. Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review. Critical Reviews in Food Science and Nutrition 58 (6):1033–57. doi: 10.1080/10408398.2016.1253000.
  • Jiang, H., M. Zhang, Z. Fang, A. S. Mujumdar, and B. Xu. 2016. Effect of different dielectric drying methods on the physic-chemical properties of a starch–water model system. Food Hydrocolloid 52:192–200. doi: 10.1016/j.foodhyd.2015.06.021.
  • Jiang, H., Z. Liu, and S. Wang. 2018. Microwave processing: Effects and impacts on food components. Critical Reviews in Food Science and Nutrition 58 (14):2476–89. doi: 10.1080/10408398.2017.1319322.
  • Jiao, S., J. Tang, J. A. Johnson, G. Tiwari, and S. Wang. 2011. Determining radio frequency heating uniformity of mixed beans for disinfestation treatments. Transactions of the ASABE 54 (5):1847–55. doi: 10.13031/2013.39824.
  • Jiao, S., J. A. Johnson, J. Tang, G. Tiwari, and S. Wang. 2011. Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments. Biosystems Engineering 108 (3):280–91. doi: 10.1016/j.biosystemseng.2010.12.010.
  • Jiao, S., Y. Deng, Y. Zhong, D. Wang, and Y. Zhao. 2015. Investigation of radio frequency heating uniformity of wheat kernels by using the developed computer simulation model. Food Research International 71:41–9. doi: 10.1016/j.foodres.2015.02.010.
  • Jiao, S., Y. Zhong, and Y. Deng. 2016. Hot air-assisted radio frequency heating effects on wheat and corn seeds: Quality change and fungi inhibition. Journal of Stored Products Research 69:265–71. doi: 10.1016/j.jspr.2016.09.005.
  • Jiao, S., W. Sun, T. Yang, Y. Zou, X. Zhu, and Y. Zhao. 2017. Investigation of the feasibility of radio frequency energy for controlling insects in milled rice. Food and Bioprocess Technology 10 (4):781–8. doi: 10.1007/s11947-017-1865-8.
  • Jiao, Y., J. Tang, and S. Wang. 2014. A new strategy to improve heating uniformity of low moisture foods in radio frequency treatment for pathogen control. Journal of Food Engineering 141:128–38. doi: 10.1016/j.jfoodeng.2014.05.022.
  • Jiao, Y., J. Tang, S. Wang, and T. Koral. 2014. Influence of dielectric properties on the heating rate in free-running oscillator radio frequency systems. Journal of Food Engineering 120:197–203. doi: 10.1016/j.jfoodeng.2013.07.032.
  • Jiao, Y., H. Shi, J. Tang, F. Li, and S. Wang. 2015. Improvement of radio frequency (RF) heating uniformity on low moisture foods with polyetherimide (PEI) blocks. Food Research International (Ottawa, Ont.) 74:106–14. doi: 10.1016/j.foodres.2015.04.016.
  • Johnson, J., S. Wang, and J. Tang. 2003. Thermal death kinetics of fifth-instar plodia interpunctella (Lepidoptera: Pyralidae). Journal of Economic Entomology 96 (2):519–24. doi: 10.1093/jee/96.2.519.
  • Johnson, J. A., S. Wang, and J. Tang. 2010. Radio frequency treatments for insect disinfestation of dried legumes. Julius-Kühn-Archiv—weitere Zeitschriften des JKI 425:691–7.
  • Jones, P. L., and A. T. Rowley. 1996. Dielectric drying. Drying Technology 14 (5):1063–98. doi: 10.1080/07373939608917140.
  • Kim, J., E. Lee, E. Choi, and Y. Kim. 2014. Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science and Emerging Technologies 22:124–30. doi: 10.1016/j.ifset.2013.12.012.
  • Kou, X., R. Li, L. Hou, L. Zhang, and S. Wang. 2018. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms. International Journal of Food Microbiology 269:89–97. doi: 10.1016/j.ijfoodmicro.2018.01.025.
  • Li, Y. C., S. D. Chen, and M. C. Yao. 2015. Effects of radio frequency heating on disinfestation and sterilization of rice flour. Taiwanese Journal of Agricultural Chemistry and Food Science 53 (4):125–34.
  • Li, R., X. X. Kou, T. Cheng, A. J. Zheng, and S. J. Wang. 2017. Verification of radio frequency pasteurization process for in-shell almonds. Journal of Food Engineering 192:103–10. doi: 10.1016/j.jfoodeng.2016.08.002.
  • Ling, B., L. Hou, R. Li, and S. Wang. 2016. Storage stability of pistachios as influenced by radio frequency treatments for postharvest disinfestations. Innovative Food Science and Emerging Technologies 33:357–64. doi: 10.1016/j.ifset.2015.10.013.
  • Ling, B., S. Ouyang, and S. Wang. 2019. Radio-frequency treatment for stabilization of wheat germ: Storage stability and physiochemical properties. Innovative Food Science and Emerging Technologies, 52: 158–65. doi: 10.1016/j.ifset.2018.12.002.
  • Liu, Y., J. Tang, Z. Mao, J. Mah, S. Jiao, and S. Wang. 2011. Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. Journal of Food Engineering 104 (4):492–8. doi: 10.1016/j.jfoodeng.2010.11.019.
  • Liu, S., J. Tang, R. Tadapaneni, R. Yang, and M. J. Zhu. 2018. Exponentially increased thermal resistance of Salmonella and Enterococcus faecium at reduced water activity. Applied and Environmental Microbiology 84 (8):e02742–17. doi: 10.1128/AEM.02742-17.
  • Liu, S., S. Ozturk, J. Xu, F. Kong, P. Gray, M. Zhu, S. S. Sablani, and J. Tang. 2018. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering 217:68–74. doi: 10.1016/j.jfoodeng.2017.08.013.
  • Lorenson, C., and C. Gallerneault. 1991. Numerical methods for the modelling of microwave fields. In Symposium on microwaves: Theory and application in materials processing, ed. D. E. Clark, F. D. Gac, and W. H. Sutton, 193–200. Westerville: American Ceramic Society.
  • Marchand, C., and T. Meunier. 1990. Recent developments in industrial radio-frequency technology. Journal of Microwave Power and Electromagnetic Energy 25 (1):39–46. doi: 10.1080/08327823.1990.11688108.
  • Marra, F., L. Zhang, and J. G. Lyng. 2009. Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering 91 (4):497–508. doi: 10.1016/j.jfoodeng.2008.10.015.
  • Mingos, D. M. P., and D. R. Baghurst. 1991. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chemical Society Reviews 20 (1):1–47. doi: 10.1039/cs9912000001.
  • Monzon, M., B. Biasi, S. J. Wang, J. Tang, G. Hallman, and E. Mitcham. 2004. Radio frequency heating of persimmon and guava fruit as an alternative quarantine treatment. HortScience 39 (4):879.
  • Mudgett, R. 1988. Electromagnetic energy and food processing. The Journal of Microwave Power and Electromagnetic Energy: A Publication of the International Microwave Power Institute 23 (4):225–30. doi: 10.1080/08327823.1988.11688061.
  • Mudgett, R. E. 2007. Electrical properties of foods. London: Taylor & Francis, Inc.
  • Mujumdar, A. S. 2007. Handbook of industrial drying. Philadelphia: Taylor & Francis.
  • Ozturk, S., F. Kong, S. Trabelsi, and R. K. Singh. 2016. Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating. Journal of Food Engineering 169:91–100. doi: 10.1016/j.jfoodeng.2015.08.008.
  • Ozturk, S., F. Kong, R. K. Singh, J. D. Kuzy, C. Li, and S. Trabelsi. 2018. Dielectric properties, heating rate, and heating uniformity of various seasoning spices and their mixtures with radio frequency heating. Journal of Food Engineering 228:128–41. doi: 10.1016/j.jfoodeng.2018.02.011.
  • Pan, L., S. Jiao, L. Gautz, K. Tu, and S. Wang. 2012. Coffee bean heating uniformity and quality as influenced by radio frequency treatments for postharvest disinfestations. Transactions of the ASABE 55 (6):2293–300. doi: 10.13031/2013.42487.
  • Pegna, F. G., P. Sacchetti, V. Canuti, S. Trapani, C. Bergesio, A. Belcari, B. Zanoni, and F. Meggiolaro. 2017. Radio frequency irradiation treatment of dates in a single layer to control Carpophilus hemipterus. Biosystems Engineering 155:1–11. doi: 10.1016/j.biosystemseng.2016.11.011.
  • Peng, Z., and J. Hwang. 2015. Microwave-assisted metallurgy. International Materials Reviews 60 (1):30–63. doi: 10.1179/1743280414Y.0000000042.
  • Piyasena, P., C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah. 2003. Radio frequency heating of foods: Principles, applications and related properties—A review. Critical Reviews in Food Science and Nutrition 43 (6):587–606. doi: 10.1080/10408690390251129.
  • Ramaswamy, H., and J. Tang. 2008. Microwave and radio frequency heating. Food Science and Technology International 14 (5):423–427. doi: 10.1177/1082013208100534.
  • Robert, F. S. 2007. Microwave and dielectric drying. London: Taylor & Francis.
  • Santillana Farakos, S. M., J. F. Frank, and D. W. Schaffner. 2013. Modeling the influence of temperature, water activity and water mobility on the persistence of Salmonella in low-moisture foods. International Journal of Food Microbiology 166 (2):280–93. doi: 10.1016/j.ijfoodmicro.2013.07.007.
  • Shrestha, B., and O. Baik. 2013. Radio frequency selective heating of stored-grain insects at 27.12 MHz: A feasibility study. Biosystems Engineering 114 (3):195–204. doi: 10.1016/j.biosystemseng.2012.12.003.
  • Taflove, A. 1988. Review of the formulation and applications of the finite-difference time domain method for numerical modelling of electromagnetic wave interactions with arbitrary structures. Wave Motion 10 (6):547–82. doi: 10.1016/0165-2125(88)90012-1.
  • Tang, J., J. N. Ikediala, S. Wang, J. D. Hansen, and R. P. Cavalieri. 2000. High-temperature-short-time thermal quarantine methods. Postharvest Biology and Technology 21 (1):129–45. doi: 10.1016/S0925-5214(00)00171-X.
  • Tang, J. 2005. Dielectric properties of foods. In Microwave processing of foods, ed. H. Schubert and M. Regier, 22–40. Cambridge, UK: CRC Press, Woodhead Publishing Limited.
  • Tang, J. 2015. Unlocking potentials of microwaves for food safety and quality. Journal of Food Science 80 (8):E1776–E1793. doi: 10.1111/1750-3841.12959.
  • Villa-Rojas, R., M. Zhu, B. P. Marks, and J. Tang. 2017. Radio frequency inactivation of Salmonella enteritidis PT 30 and Enterococcus faecium in wheat flour at different water activities. Biosystems Engineering 156:7–16. doi: 10.1016/j.biosystemseng.2017.01.001.
  • Wang, J., R. G. Olsen, J. Tang, and Z. W. Tang. 2008. Influence of mashed potato dielectric properties and circulating water electric conductivity on radio frequency heating at 27 MHz. The Journal of Microwave Power & Electromagnetic Energy 42 (2):31–46. doi: 10.1080/08327823.2007.11688579.
  • Wang, S., J. N. Ikediala, J. Tang, J. D. Hansen, E. Mitcham, R. Mao, and B. Swanson. 2001. Radio frequency treatments to control codling moth in in-shell walnuts. Postharvest Biology and Technology 22 (1):29–38. doi: 10.1016/S0925-5214(00)00187-3.
  • Wang, S., J. Tang, J. A. Johnson, E. Mitcham, J. D. Hansen, G. Hallman, S. R. Drake, and Y. Wang. 2003. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosystems Engineering 85 (2):201–12. doi: 10.1016/S1537-5110(03)00042-4.
  • Wang, Y., T. D. Wig, J. Tang, and L. M. Hallberg. 2003. Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering 57 (3):257–268. doi: 10.1016/S0260-8774(02)00306-0.
  • Wang, S., M. Monzon, J. A. Johnson, E. J. Mitcham, and J. Tang. 2007. Industrial-scale radio frequency treatments for insect control in walnuts. II. Insect Mortality and Product Quality. Postharvest Biology and Technology 45 (2):247–53. doi: 10.1016/j.postharvbio.2006.12.020.
  • Wang, Y., L. Zhang, J. Johnson, M. Gao, J. Tang, J. R. Powers, and S. Wang. 2014. Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food and Bioprocess Technology 7 (1):278–88. doi: 10.1007/s11947-013-1055-2.
  • Wang, Y., L. Zhang, M. Gao, J. Tang, and S. Wang. 2014. Evaluating radio frequency heating uniformity using polyurethane foams. Journal of Food Engineering 136:28–33. doi: 10.1016/j.jfoodeng.2014.03.018.
  • Xu, J., M. Zhang, Y. An, A. S. M. Roknul, and B. Adhikari. 2018. Effects of radio frequency and high pressure steam sterilisation on the color and flavour of prepared Nostoc sphaeroides. Journal of the Science of Food and Agriculture 98 (5):1719–24. doi: 10.1002/jsfa.8644.
  • Xu, J., S. Liu, J. Tang, S. Ozturk, F. Kong, and D. H. Shah. 2018. Application of freeze-dried Enterococcus faecium NRRL B-2354 in radiofrequency pasteurization of wheat flour. LWT - Food Science and Technology 90:124–31. doi: 10.1016/j.lwt.2017.12.014.
  • Xu, J., J. Tang, Y. Jin, J. Song, R. Yang, S. S. Sablani, and M. Zhu. 2019. High temperature water activity as a key factor influencing survival of Salmonella enteritidis PT30 in thermal processing. Food Control 98:520–28. doi: 10.1016/j.foodcont.2018.11.054.
  • Yu, D., B. Shrestha, and O. Baik. 2015. Radio frequency dielectric properties of bulk canola seeds under different temperatures, moisture contents, and frequencies for feasibility of radio frequency disinfestation. International Journal of Food Properties 18 (12):2746–63. doi: 10.1080/10942912.2015.1013630.
  • Yu, D., B. Shrestha, and O. Baik. 2016. Radio frequency (RF) control of red flour beetle (Tribolium castaneum) in stored rapeseeds (Brassica napus L.). Biosystems Engineering 151:248–60. doi: 10.1016/j.biosystemseng.2016.09.006.
  • Zhang, S., L. Zhou, B. Ling, and S. Wang. 2016. Dielectric properties of peanut kernels associated with microwave and radio frequency drying. Biosystems Engineering 145:108–17. doi: 10.1016/j.biosystemseng.2016.03.002.
  • Zhang, S., Z. Huang, and S. Wang. 2017. Improvement of radio frequency (RF) heating uniformity for peanuts with a new strategy using computational modeling. Innovative Food Science and Emerging Technologies 41:79–89. doi: 10.1016/j.ifset.2017.02.009.
  • Zhang, L., X. Kou, S. Zhang, T. Cheng, and S. Wang. 2018. Effect of water activity and heating rate on Staphylococcus aureus heat resistance in walnut shells. International Journal of Food Microbiology 266:282–88. doi: 10.1016/j.ijfoodmicro.2017.12.019.
  • Zheng, A., B. Zhang, L. Zhou, and S. Wang. 2016. Application of radio frequency pasteurization to corn (Zea mays L.): Heating uniformity improvement and quality stability evaluation. Journal of Stored Products Research 68:63–72. doi: 10.1016/j.jspr.2016.04.007.
  • Zheng, A., L. Zhang, and S. Wang. 2017. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains. International Journal of Food Microbiology 249:27–34. doi: 10.1016/j.ijfoodmicro.2017.02.017.
  • Zhou, H., C. Guo, and S. Wang. 2017. Performance comparison between the free running oscillator and 50 Ω radio frequency systems. Innovative Food Science and Emerging Technologies 39:171–78. doi: 10.1016/j.ifset.2016.12.003.
  • Zhou, L., B. Ling, A. Zheng, B. Zhang, and S. Wang. 2015. Developing radio frequency technology for postharvest insect control in milled rice. Journal of Stored Products Research 62:22–31. doi: 10.1016/j.jspr.2015.03.006.
  • Zhou, L., and S. Wang. 2016a. Industrial-scale radio frequency treatments to control Sitophilus oryzae in rough, brown, and milled rice. Journal of Stored Products Research 68:9–18. doi: 10.1016/j.jspr.2016.03.002.
  • Zhou, L. Y., and S. J. Wang. 2016b. Verification of radio frequency heating uniformity and Sitophilus oryzae control in rough, brown, and milled rice. Journal of Stored Products Research 65:40–47. doi: 10.1016/j.jspr.2015.12.003.
  • Zhu, X. H., W. C. Guo, and Y. P. Jia. 2014. Temperature-dependent dielectric properties of raw cow's and goat's milk from 10 to 4,500 MHz relevant to radio-frequency and microwave pasteurization. Food and Bioprocess Technology 7 (6):1830–39. doi: 10.1007/s11947-014-1255-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.