1,764
Views
73
CrossRef citations to date
0
Altmetric
Review

How probiotics face food stress: They get by with a little help

ORCID Icon, , , , &

References

  • Abd El-Gawad, I. A., E. M. El-Sayed, S. A. Hafez, H. M. El-Zeini, and F. A. Saleh. 2005. The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet. International Dairy Journal 15 (1):37–44. doi: 10.1016/j.idairyj.2004.06.001.
  • Abee, T., and J. A. Wouters. 1999. Microbial stress response in minimal processing. International Journal of Food Microbiology 50 (1–2):65–91. doi: 10.1016/S0168-1605(99)00078-1.
  • Acker, J. P., and L. E. McGann. 2001. Membrane damage occurs during the formation of intracellular ice. Cryo Letters 22 (4):241–54.
  • Adamberg, S., I. Sumeri, R. Uusna, P. Ambalam, K. K. Kondepudi, K. Adamberg, T. Wadström, and Å. Ljungh. 2014. Survival and synergistic growth of mixed cultures of bifidobacteria and lactobacilli combined with prebiotic oligosaccharides in a gastrointestinal tract simulator. Microbial Ecology in Health and Disease 25 (1):23062. https://doi.org/10.3402/mehd.v25.23062.
  • Adebola, O. O., O. Corcoran, and W. A. Morgan. 2014. Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. Journal of Functional Foods 10 (9):75–84. doi: 10.1016/j.jff.2014.05.010.
  • Agrawal, A., L. A. Houghton, J. Morris, B. Reilly, D. Guyonnet, N. Goupil Feuillerat, A. Schlumberger, S. Jakob, and P. J. Whorwell. 2009. Clinical trial: The effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Alimentary Pharmacology & Therapeutics 29 (1):104–14. doi: 10.1111/j.1365-2036.2008.03853.x.
  • Alakomi, H. L., E. Skyttä, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, and I. M. Helander. 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology 66 (5):2001–5. doi: 10.1128/AEM.66.5.2001-2005.2000.
  • Alcántara, C., and M. Zúñiga. 2012. Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23. Microbiology (Reading, England) 158 (Pt 5):1206–18. doi: 10.1099/mic.0.055657-0.
  • Al-Mahin, A., S. Sugimoto, C. Higashi, S. Matsumoto, and K. Sonomoto. 2010. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Applied and Environmental Microbiology 76 (13):4277–85. https://doi.org/10.1128/AEM.02878-09.
  • Aloisio, I., F. Prodam, E. Giglione, N. B. Cionci, A. Solito, S. Bellone, L. Baffoni, L. Mogna, M. Pane, G. Bona, and D. Di Gioia. 2018. Three-month feeding integration with bifidobacterium strains prevents gastrointestinal symptoms in healthy newborns. Frontiers in Nutrition 5 (5):39. 10.3389/fnut.2018.00039.
  • Alp, G., and B. Aslim. 2010. Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk. Anaerobe 16 (2):101–5. doi: 10.1016/j.anaerobe.2009.06.006.
  • Amakiri, A. C., and M. S. Thantsha. 2016. Survival of Bifidobacterium longum LMG 13197 microencapsulated in vegetal or vegetal-inulin matrix in simulated gastrointestinal fluids and yoghurt. SpringerPlus 5 (1):1343. https://doi.org/10.1186/s40064-016-3010-y.
  • Ambalam, P., K. K. Kondepudi, I. Nilsson, T. Wadström, and Å. Ljungh. 2012. Bile stimulates cell surface hydrophobicity, Congo red binding and biofilm formation of Lactobacillus strains. FEMS Microbiology Letters 333 (1):10–9. doi: 10.1111/j.1574-6968.2012.02590.x.
  • Amund, O. D. 2016. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria. Canadian Journal of Microbiology 62 (9):715–25. doi: 10.1139/cjm-2016-0186.
  • An, H., F. P. Douillard, G. Wang, Z. Zhai, J. Yang, S. Song, J. Cui, F. Ren, Y. Luo, and B. Zhang. 2014. Integrated transcriptomic and proteomic analysis of the bile stress response in a centenarian-originated probiotic Bifidobacterium longum BBMN68. Molecular & Cellular Proteomics 13 (10):2558–72. doi: 10.1074/mcp.M114.039156.
  • An, H., Z. Zhai, S. Yin, Y. Luo, B. Han, and Y. Hao. 2011. Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus. Journal of Agricultural and Food Chemistry 59 (8):3851–6. doi: 10.1021/jf200251k.
  • Anal, A. K., and H. Singh. 2007. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology 18 (5):240–51. doi: 10.1016/j.tifs.2007.01.004.
  • Ananta, E., M. Volkert, and D. Knorr. 2005. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal 15 (4):399–409. doi: 10.1016/j.idairyj.2004.08.004.
  • Ananta, E., and D. Knorr. 2003. Pressure-induced thermotolerance of Lactobacillus rhamnosus GG. Food Research International 36 (9–10):991–7. ( doi: 10.1016/j.foodres.2003.07.001.
  • Anderson, R. C., A. L. Cookson, W. C. McNabb, Z. Park, M. J. McCann, W. J. Kelly, and N. C. Roy. 2010. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiology 10 (1):316. doi: 10.1186/1471-2180-10-316.
  • Annan, N. T., A. D. Borza, and L. T. Hansen. 2008. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Research International 41 (2):184–93. doi: 10.1016/j.foodres.2007.11.001.
  • Aoudia, N., A. Rieu, R. Briandet, J. Deschamps, J. Chluba, G. Jego, C. Garrido, and J. Guzzo. 2016. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology 53 (2):51–9. doi: 10.1016/j.fm.2015.04.009.
  • Archibald, F. S., and I. Fridovich. 1981. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. Journal of Bacteriology 146 (3):928–36.
  • Archibald, F. S., and I. Fridovich. 1981. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. Journal of Bacteriology 145 (1):442–51.
  • Arena, M. E., D. Fiocco, M. C. Manca de Nadra, I. Pardo, and G. Spano. 2007. Characterization of a Lactobacillus plantarum strain able to produce tyramine and partial cloning of a putative tyrosine decarboxylase gene. Current Microbiology 55 (3):205–10. doi: 10.1007/s00284-006-0647-8.
  • Arena, M. P., V. Capozzi, G. Spano, and D. Fiocco. 2017. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Applied Microbiology and Biotechnology 101 (7):2641–57. doi: 10.1007/s00253-017-8182-z.
  • Arihara, K., and M. Itoh. 2000. UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation. International Journal of Food Microbiology 56 (2–3):227–30. doi: 10.1016/S0168-1605(99)00206-8.
  • Azcarate-Peril, M. A., E. Altermann, Y. J. Goh, R. Tallon, R. B. Sanozky-Dawes, E. A. Pfeiler, S. O'Flaherty, B. L. Buck, A. Dobson, and T. Duong. 2008. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Applied and Environmental Microbiology 74 (15):4610–25. doi: 10.1128/AEM.00054-08.
  • Bagarolli, R. A., N. Tobar, A. G. Oliveira, T. G. Araújo, B. M. Carvalho, G. Z. Rocha, J. F. Vecina, K. Calisto, D. Guadagnini, P. O. Prada, et al. 2017. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. The Journal of Nutritional Biochemistry 50 (12):16–25. doi: 10.1016/j.jnutbio.2017.08.006.
  • Barnese, K., E. B. Gralla, J. S. Valentine, and D. E. Cabelli. 2012. Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds. Proceedings of the National Academy of Sciences of the United States of America 109 (18):6892–7. doi: 10.1073/pnas.1203051109.
  • BCC Research. 2016. The probiotics market: ingredients, supplements, foods. Accessed June, 2018. https://www.bccresearch.com/market-research/food-and-beverage/probiotics-market-ingredients-supplements-foods-report-fod035e.html
  • Becerra, J. E., M. J. Yebra, and V. Monedero. 2015. An L-fucose operon in the probiotic Lactobacillus rhamnosus GG is involved in adaptation to gastrointestinal conditions. Applied and Environmental Microbiology 81 (11):3880–8. doi: 10.1128/AEM.00260-15.
  • Begley, M., C. Hill, and C. G. M. Gahan. 2006. Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology 72 (3):1729–38. doi: 10.1128/AEM.72.3.1729-1738.2006.
  • Bekkali, N. L. H., M. E. J. Bongers, M. M. Van den Berg, O. Liem, and M. A. Benninga. 2007. The role of a probiotics mixture in the treatment of childhood constipation: A pilot study. Nutrition Journal 6 (1):17. doi: 10.1186/1475-2891-6-17.
  • Berger, B., D. Moine, R. Mansourian, and F. Arigoni. 2010. HspR mutations are naturally selected in Bifidobacterium longum when successive heat shock treatments are applied. Journal of Bacteriology 192 (1):256–63. doi: 10.1128/JB.01147-09.
  • Bi, J., S. Liu, G. Du, and J. Chen. 2016. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells. Biotechnology Letters 38 (4):659–65. doi: 10.1007/s10529-015-2018-7.
  • Bircher, L., A. Geirnaert, F. Hammes, C. Lacroix, and C. Schwab. 2018. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microbial Biotechnology 11 (4):721–33. doi: 10.1111/1751-7915.13265.
  • Blaszczak, A., M. Zylicz, C. Georgopoulos, and K. Liberek. 1995. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase. The EMBO Journal 14 (20):5085–93. doi: 10.1002/j.1460-2075.1995.tb00190.x.
  • Boesmans, L., M. Valles-Colomer, J. Wang, V. Eeckhaut, G. Falony, R. Ducatelle, F. Van Immerseel, J. Raes, and K. Verbeke. 2018. Butyrate producers as potential next-generation probiotics: Safety assessment of the administration of Butyricicoccus pullicaecorum to healthy volunteers. MSystems 3 (6):e00094–18. https://doi.org/10.1128/mSystems.00094-18.
  • Bolduc, M. P., Y. Raymond, P. Fustier, C. P. Champagne, and J. C. Vuillemard. 2006. Sensitivity of bifidobacteria to oxygen and redox potential in non-fermented pasteurized milk. International Dairy Journal 16 (9):1038–48. doi: 10.1016/j.idairyj.2005.10.030.
  • Booth, I. R. 2007. The regulation of intracellular pH in bacteria. In Bacterial responses to pH: Novartis foundation symposium 221, ed. D. J. Chadwick, and G. Cardew, 19–37. Hoboken: Wiley & Sons, Ltd. https://doi.org/10.1002/9780470515631.ch3.
  • Botes, M., C. A. van Reenen, and L. M. T. Dicks. 2008. Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with infant milk formulations as substrate. International Journal of Food Microbiology 128 (2):362–70. doi: 10.1016/j.ijfoodmicro.2008.09.016.
  • Bove, P., P. Russo, V. Capozzi, A. Gallone, G. Spano, and D. Fiocco. 2013. Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiological Research 168 (6):351–9. doi: 10.1016/j.micres.2013.01.004.
  • Bove, P., A. Gallone, P. Russo, V. Capozzi, M. Albenzio, G. Spano, and D. Fiocco. 2012. Probiotic features of Lactobacillus plantarum mutant strains. Applied Microbiology and Biotechnology 96 (2):431–41. doi: 10.1007/s00253-012-4031-2.
  • Bravo, D., and J. M. Landete. 2017. Genetic engineering as a powerful tool to improve probiotic strains. Biotechnology and Genetic Engineering Reviews 33 (2):173–89. doi: 10.1080/02648725.2017.1408257.
  • Broadbent, J. R., R. L. Larsen, V. Deibel, and J. L. Steele. 2010. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. Journal of Bacteriology 192 (9):2445–58. doi: 10.1128/JB.01618-09.
  • Broadbent, J. R., and C. Lin. 1999. Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiology 39 (1):88–102. doi: 10.1006/cryo.1999.2190.
  • Broadbent, J. R., C. J. Oberg, H. Wang, and L. Wei. 1997. Attributes of the heat shock response in three species of dairy Lactobacillus. Systematic and Applied Microbiology 20 (1):12–9. doi: 10.1016/S0723-2020(97)80043-4.
  • Broeckx, G., D. Vandenheuvel, I. J. J. Claes, S. Lebeer, and F. Kiekens. 2016. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. International Journal of Pharmaceutics 505 (1–2):303–18. doi: 10.1016/j.ijpharm.2016.04.002.
  • Bron, P. A., D. Molenaar, W. M. Vos, and M. Kleerebezem. 2006. DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. Journal of Applied Microbiology 100 (4):728–38. doi: 10.1111/j.1365-2672.2006.02891.x.
  • Bron, P. A., C. Grangette, A. Mercenier, W. M. de Vos, and M. Kleerebezem. 2004. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. Journal of Bacteriology 186 (17):5721–9. doi: 10.1128/JB.186.17.5721-5729.2004.
  • Brul, S., and P. Coote. 1999. Preservative agents in foods: Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology 50 (1–2):1–17. doi: 10.1016/S0168-1605(99)00072-0.
  • Burgain, J., C. Gaiani, M. Linder, and J. Scher. 2011. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering 104 (4):467–83. doi: 10.1016/j.jfoodeng.2010.12.031.
  • Buriti, F. C. A., I. A. Castro, and S. M. I. Saad. 2010. Viability of Lactobacillus acidophilus in synbiotic guava mousses and its survival under in vitro simulated gastrointestinal conditions. International Journal of Food Microbiology 137 (2–3):121–9. doi: 10.1016/j.ijfoodmicro.2009.11.030.
  • Buriti, F. C. A., T. R. Komatsu, and S. M. I. Saad. 2007. Activity of passion fruit (Passiflora edulis) and guava (Psidium guajava) pulps on Lactobacillus acidophilus in refrigerated mousses. Brazilian Journal of Microbiology 38 (2):315–7. doi: 10.1590/S1517-83822007000200025.
  • Burns, P., B. Sánchez, G. Vinderola, P. Ruas-Madiedo, L. Ruiz, A. Margolles, J. Reinheimer, and C. G. de los Reyes-Gavilán. 2010. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. International Journal of Food Microbiology 142 (1–2):132–41. doi: 10.1016/j.ijfoodmicro.2010.06.013.
  • Caggianiello, G., M. Kleerebezem, and G. Spano. 2016. Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology 100 (9):3877–86. doi: 10.1007/s00253-016-7471-2.
  • Capozzi, V., S. Weidmann, D. Fiocco, A. Rieu, P. Hols, J. Guzzo, and G. Spano. 2011. Inactivation of a small heat shock protein affects cell morphology and membrane fluidity in Lactobacillus plantarum WCFS1. Research in Microbiology 162 (4):419–25. doi: 10.1016/j.resmic.2011.02.010.
  • Carr, F. J., D. Chill, and N. Maida. 2002. The lactic acid bacteria: A literature survey. Critical Reviews in Microbiology 28 (4):281–370. doi: 10.1080/1040-840291046759.
  • Carvalho, A. L., F. S. Cardoso, A. Bohn, A. R. Neves, and H. Santos. 2011. Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Applied and Environmental Microbiology 77 (12):4189–99. doi: 10.1128/AEM.02922-10.
  • Castro, J. M., M. E. Tornadijo, J. M. Fresno, and H. Sandoval. 2015. Biocheese: A food probiotic carrier. BioMed Research International 2015:1. doi: 10.1155/2015/723056.
  • Celik, O. F., and D. J. O’Sullivan. 2013. Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria. Journal of Dairy Science 96 (6):3506–16. doi: 10.3168/jds.2012-6327.
  • Chaia, A., Perez, A. M. S. De Saad, A. P. De Ruiz Holgado, and G. Oliver. 1994. Competitive inhibition of Propionibacterium acidipropionici by mixed culturing with Lactobacillus helveticus. Journal of Food Protection 57 (4):341–4. doi: 10.4315/0362-028X-57.4.341.
  • Champagne, C. P., R. P. Ross, M. Saarela, K. F. Hansen, and D. Charalampopoulos. 2011. Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. International Journal of Food Microbiology 149 (3):185–93. doi: 10.1016/j.ijfoodmicro.2011.07.005.
  • Chapuy, M. C., M. E. Arlot, F. Duboeuf, J. Brun, B. Crouzet, S. Arnaud, P. D. Delmas, and P. J. Meunier. 1992. Vitamin D3 and calcium to prevent hip fractures in elderly women. New England Journal of Medicine 327 (23):1637–42. doi: 10.1056/NEJM199212033272305.
  • Charalampopoulos, D., S. S. Pandiella, and C. Webb. 2003. Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. International Journal of Food Microbiology 82 (2):133–41. doi: 10.1016/S0168-1605(02)00248-9.
  • Charalampopoulos, D., S. S. Pandiella, and C. Webb. 2002. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. Journal of Applied Microbiology 92 (5):851–9. doi: 10.1046/j.1365-2672.2002.01592.x.
  • Charteris, W. P., P. M. Kelly, L. Morelli, and J. K. Collins. 1998. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. Journal of Applied Microbiology 84 (5):759–68. https://doi.org/10.1046/j.1365-2672.1998.00407.x.
  • Chávarri, M., I. Marañón, R. Ares, F. C. Ibáñez, F. Marzo, and M. del Carmen Villarán. 2010. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology 142 (1–2):185–9. doi: 10.1016/j.ijfoodmicro.2010.06.022.
  • Chávez, B. E., and A. M. Ledeboer. 2007. Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technology 25 (7–8):1193–201. doi: 10.1080/07373930701438576.
  • Chen, K. N., M. J. Chen, J. R. Liu, C. W. Lin, and H. Y. Chiu. 2005. Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. Journal of Food Science 70 (5):M260–6. doi: 10.1111/j.1365-2621.2005.tb09981.x.
  • Chen, M. J., H. Y. Tang, and M. L. Chiang. 2017. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food microbiology 66 (9):20–7. doi: 10.1016/j.fm.2017.03.020.
  • Chiva-Blanch, G., M. Urpi-Sarda, E. Ros, P. Valderas-Martinez, R. Casas, S. Arranz, M. Guillén, R. M. Lamuela-Raventós, R. Llorach, C. Andres-Lacueva, and R. Estruch. 2013. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clinical Nutrition 32 (2):200–6. doi: 10.1016/j.clnu.2012.08.022.
  • Chu-Ky, S., T. K. Bui, T. L. Nguyen, and P. H. Ho. 2014. Acid adaptation to improve viability and X-prolyl dipeptidyl aminopeptidase activity of the probiotic bacterium Lactobacillus fermentum HA6 exposed to simulated gastrointestinal tract conditions. International Journal of Food Science & Technology 49 (2):565–70. doi: 10.1111/ijfs.12338.
  • Cinquin, C.,. G. Le Blay, I. Fliss, and C. Lacroix. 2006. Comparative effects of exopolysaccharides from lactic acid bacteria and fructo-oligosaccharides on infant gut microbiota tested in an in vitro colonic model with immobilized cells. FEMS Microbiology Ecology 57 (2):226–38. doi: 10.1111/j.1574-6941.2006.00118.x.
  • Clydesdale, F. M. 2009. A proposal for the establishment of scientific criteria for health claims for functional foods. Nutrition Reviews 55 (12):413–22. doi: 10.1111/j.1753-4887.1997.tb01588.x.
  • Collado, M. C., J. Meriluoto, and S. Salminen. 2007. Development of new probiotics by strain combinations: Is it possible to improve the adhesion to intestinal mucus? Journal of Dairy Science 90 (6):2710–6. doi: 10.3168/jds.2006-456.
  • Collado, M. C., and Y. Sanz. 2007. Induction of acid resistance in Bifidobacterium: A mechanism for improving desirable traits of potentially probiotic strains. Journal of Applied Microbiology 103 (4):1147–57. doi: 10.1111/j.1365-2672.2007.03342.x.
  • Collado, M. C., Y. Moreno, J. M. Cobo, and M. Hernández. 2006. Microbiological evaluation and molecular characterization of bifidobacteria strains in commercial fermented milks. European Food Research and Technology 222 (1–2):112–7. doi: 10.1007/s00217-005-0093-z.
  • Conway, P. L., S. L. Gorbach, and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. Journal of Dairy Science 70 (1):1–12. doi: 10.3168/jds.S0022-0302(87)79974-3.
  • Corcoran, B. M., R. P. Ross, G. F. Fitzgerald, P. Dockery, and C. Stanton. 2006. Enhanced survival of GroESL-overproducing Lactobacillus paracasei NFBC 338 under stressful conditions induced by drying. Applied and Environmental Microbiology 72 (7):5104–7. doi: 10.1128/AEM.02626-05.
  • Corcoran, B. M., R. P. Ross, G. F. Fitzgerald, and C. Stanton. 2004. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. Journal of Applied Microbiology 96 (5):1024–39. doi: 10.1111/j.1365-2672.2004.02219.x.
  • Corcoran, B. M., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology 71 (6):3060–7. doi: 10.1128/AEM.71.6.3060-3067.2005.
  • Corcoran, B. M., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2007. Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology 153 (1):291–9. doi: 10.1099/mic.0.28966-0.
  • Corcoran, B. M., C. Stanton, G. Fitzgerald, and R. P. Ross. 2008. Life under stress: the probiotic stress response and how it may be manipulated. Current Pharmaceutical Design 14 (14):1382–99.
  • Corr, S. C., Y. Li, C. U. Riedel, P. W. O'Toole, C. Hill, and C. G. M. Gahan. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences of the United States of America 104 (18):7617–21. doi: 10.1073/pnas.0700440104.
  • Costabile, A., A. Klinder, F. Fava, A. Napolitano, V. Fogliano, C. Leonard, G. R. Gibson, and K. M. Tuohy. 2008. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. British Journal of Nutrition 99 (1):110–20. https://doi.org/10.1017/S0007114507793923.
  • Coulon, J., A. Houlès, M. Dimopoulou, J. Maupeu, and M. Dols-Lafargue. 2012. Lysozyme resistance of the ropy strain Pediococcus parvulus IOEB 8801 is correlated with beta-glucan accumulation around the cell. International Journal of Food Microbiology 159 (1):25–9. doi: 10.1016/j.ijfoodmicro.2012.07.024.
  • Cruz, A. G., W. F. Castro, J. A. F. Faria, H. M. A. Bolini, R. M. S. Celeghini, R. S. L. Raices, C. A. F. Oliveira, M. Q. Freitas, C. A. Conte Júnior, and E. T. Mársico. 2013. Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage. Food Research International 51 (2):723–8. doi: 10.1016/j.foodres.2013.01.028.
  • Cruz, A. G., A. E. C. Antunes, A. L. O. P. Sousa, J. A. F. Faria, and S. M. I. Saad. 2009. Ice-cream as a probiotic food carrier. Food Research International 42 (9):1233–9. doi: 10.1016/j.foodres.2009.03.020.
  • Cunin, R., N. Glansdorff, A. Piérard, and V. Stalon. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiological Reviews 50 (3):314–52.
  • Dafe, A., H. Etemadi, H. Zarredar, and G. R. Mahdavinia. 2017. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules 97 (4):299–307. doi: 10.1016/j.ijbiomac.2017.01.016.
  • Dai, J., A. H. Miller, J. D. Bremner, J. Goldberg, L. Jones, L. Shallenberger, R. Buckham, N. V. Murrah, E. Veledar, P. W. Wilson, and V. Vaccarino. 2008. Adherence to the mediterranean diet is inversely associated with circulating interleukin-6 among Middle-aged men. Circulation 117 (2):169–75. doi: 10.1161/CIRCULATIONAHA.107.710699.
  • Damen, B., J. Verspreet, A. Pollet, W. F. Broekaert, J. A. Delcour, and C. M. Courtin. 2011. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Molecular Nutrition & Food Research 55 (12):1862–74. doi: 10.1002/mnfr.201100377.
  • Dave, R. I., and N. P. Shah. 1997a. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal 7 (1):31–41. doi: 10.1016/S0958-6946(96)00046-5.
  • Dave, R. I., and N. P. Shah. 1997b. Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. International Dairy Journal 7 (6–7):435–43. doi: 10.1016/S0958-6946(97)00026-5.
  • Davis, L. M. G., I. Martínez, J. Walter, and R. Hutkins. 2010. A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. International Journal of Food Microbiology 144 (2):285–92. doi: 10.1016/j.ijfoodmicro.2010.10.007.
  • De Angelis, M., R. Di Cagno, C. Huet, C. Crecchio, P. F. Fox, and M. Gobbetti. 2004. Heat shock response in Lactobacillus plantarum. Applied and Environmental Microbiology 70 (3):1336–46. doi: 10.1128/AEM.70.3.1336-1346.2004.
  • De Toledo, N. M. V., A. C. de Camargo, P. B. M. Ramos, D. C. Button, D. Granato, and S. G. Canniatti-Brazaca. 2018. Potentials and pitfalls on the use of passion fruit by-products in drinkable yogurt: Physicochemical, technological, microbiological, and sensory aspects. Beverages 4 (3):47. doi: 10.3390/beverages4030047.
  • De Vuyst, L., and F. Leroy. 2011. Cross-feeding between bifidobacteria and butyrate-producing Colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. International Journal of Food Microbiology 149 (1):73–80. doi: 10.1016/j.ijfoodmicro.2011.03.003.
  • Del Pozo, J. L., and R. Patel. 2007. The challenge of treating biofilm-associated bacterial infections. Clinical Pharmacology & Therapeutics 82 (2):204–9. doi: 10.1038/sj.clpt.6100247.
  • Denou, E., R. D. Pridmore, B. Berger, J.-M. Panoff, F. Arigoni, and H. Brüssow. 2008. Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. Journal of Bacteriology 190 (9):3161–8. doi: 10.1128/JB.01637-07.
  • Derkx, P. M. F., T. Janzen, K. I. Sørensen, J. E. Christensen, B. Stuer-Lauridsen, and E. Johansen. 2014. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microbial Cell Factories 13 Suppl 1 (8): S5. doi: 10.1186/1475-2859-13-S1-S5.
  • Derzelle, S., B. Hallet, T. Ferain, J. Delcour, and P. Hols. 2003. Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Applied and Environmental Microbiology 69 (7):4285–90. doi: 10.1128/AEM.69.7.4285-4290.2003.
  • Derzelle, S., B. Hallet, K. P. Francis, T. Ferain, J. Delcour, and P. Hols. 2000. Changes in cspL, cspP, and cspCmRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. Journal of Bacteriology 182 (18):5105–13. doi: 10.1128/JB.182.18.5105-5113.2000.
  • Desmond, C., G. F. Fitzgerald, C. Stanton, and R. P. Ross. 2004. Improved stress tolerance of groesl-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Applied and Environmental Microbiology 70 (10):5929–36. doi: 10.1128/AEM.70.10.5929-5936.2004.
  • Desmond, C., R. P. Ross, E. O'Callaghan, G. Fitzgerald, and C. Stanton. 2002. Improved survival of Lactobacillus paracasei NFBC338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology 93 (6):1003–11. doi: 10.1046/j.1365-2672.2002.01782.x.
  • Dhanani, A. S., and T. Bagchi. 2013. The expression of adhesin EF-Tu in response to mucin and its role in Lactobacillus adhesion and competitive inhibition of enteropathogens to mucin. Journal of Applied Microbiology 115 (2):546–54. doi: 10.1111/jam.12249.
  • Di Giacinto, C., M. Marinaro, M. Sanchez, W. Strober, and M. Boirivant. 2005. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-β-bearing regulatory cells. Journal of Immunology 174 (6):3237–46. doi: 10.4049/jimmunol.174.6.3237.
  • Dianawati, D.,. V. Mishra, and N. P. Shah. 2013. Stability of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris during storage at room temperature at low aw. Food Research International 50 (1):259–65. doi: 10.1016/j.foodres.2012.10.023.
  • Ding, W., and N. P. Shah. 2008. Survival of free and microencapsulated probiotic bacteria in orange and apple juices. International Food Research Journal 15:219–32.
  • Dols-Lafargue, M., H. Y. Lee, C. Le Marrec, A. Heyraud, G. Chambat, and A. Lonvaud-Funel. 2008. Characterization of gtf, a glucosyltransferase gene in the genomes of Pediococcus parvulus and Oenococcus oeni, two bacterial species commonly found in wine. Applied and Environmental Microbiology 74 (13):4079–90. doi: 10.1128/AEM.00673-08.
  • Donkor, O. N., A. Henriksson, T. Vasiljevic, and N. P. Shah. 2006. Effect of acidification on the activity of probiotics in yoghurt during cold storage. International Dairy Journal 16 (10):1181–9. doi: 10.1016/j.idairyj.2005.10.008.
  • Douillard, F. P., and W. M. de Vos. 2014. Functional genomics of lactic acid bacteria: From food to health. Microbial Cell Factories 13 (Suppl 1):S8. doi: 10.1186/1475-2859-13-S1-S8.
  • Drakoularakou, A., G. Tzortzis, R. A. Rastall, and G. R. Gibson. 2010. A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. European Journal of Clinical Nutrition 64 (2):146–52. doi: 10.1038/ejcn.2009.120.
  • Driessen, F. M., F. Kingma, and J. Stadhouders. 1982. Evidence that Lactobacillus bulgaricus in yogurt is stimulated by carbon dioxide produced by Streptococcus thermophilus. Netherlands Milk and Dairy Journal 36:135–44. http://agris.fao.org/agris-search/search.do?recordID=XE8281860.
  • Du Toit, E., S. Vesterlund, M. Gueimonde, and S. Salminen. 2013. Assessment of the effect of stress-tolerance acquisition on some basic characteristics of specific probiotics. International Journal of Food Microbiology 165 (1):51–6. doi: 10.1016/j.ijfoodmicro.2013.04.022.
  • Du, W., H. Xu, X. Mei, X. Cao, L. Gong, Y. Wu, Y. Li, D. Yu, S. Liu, Y. Wang, and W. Li. 2018. Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Beneficial Microbes 9 (5):743–54. doi: 10.3920/BM2017.0142.
  • Duwat, P., S. Sourice, B. Cesselin, G. Lamberet, K. Vido, P. Gaudu, Y. Le Loir, F. Violet, P. Loubière, and A. Gruss. 2001. Respiration capacity of the fermenting Bacteriumlactococcus lactis and its positive effects on growth and survival. Journal of Bacteriology 183 (15):4509–16. doi: 10.1128/JB.183.15.4509-4516.2001.
  • El Demerdash, H. A., J. Oxmann, K. J. Heller, and A. Geis. 2006. Yoghurt fermentation at elevated temperatures by strains of Streptococcus thermophilus expressing a small heat-shock protein: application of a two-plasmid system for constructing food-grade strains of Streptococcus thermophilus. Biotechnology Journal 1 (4):398–404. doi: 10.1002/biot.200600018.
  • El Hage, R., E. Hernandez-Sanabria, and T. Van de Wiele. 2017. Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. Frontiers in Microbiology 8 :1889. https://doi.org/10.3389/fmicb.2017.01889.
  • Falcinelli, S., S. Picchietti, A. Rodiles, L. Cossignani, D. L. Merrifield, A. R. Taddei, F. Maradonna, I. Olivotto, G. Gioacchini, and O. Carnevali. 2015. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Scientific Reports 5 (3):9336. https://doi.org/10.1038/srep09336.
  • Fan, S., Breidt, F. R. Price, and I. Pérez‐Díaz. 2017. Survival and growth of probiotic lactic acid bacteria in refrigerated pickle products. Journal of Food Science 82 (1):167–73. doi: 10.1111/1750-3841.13579.
  • Fanning, S., L. J. Hall, M. Cronin, A. Zomer, J. MacSharry, D. Goulding, M. O'Connell Motherway, F. Shanahan, K. Nally, G. Dougan, and D. van Sinderen. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of the National Academy of Sciences of the United States of America 109 (6):2108–13. doi: 10.1073/pnas.1115621109.
  • FAO/WHO. 2002. Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations [online]. Accessed November 20, 2018. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf.
  • Fares, C., V. Menga, A. Martina, N. Pellegrini, F. Scazzina, and S. Torriani. 2015. Nutritional profile and cooking quality of a new functional pasta naturally enriched in phenolic acids, added with β-glucan and Bacillus coagulans GBI-30, 6086. Journal of Cereal Science 65 (9):260–6. doi: 10.1016/j.jcs.2015.07.017.
  • Ferreira, A. B., M. N. V. De Oliveira, F. S. Freitas, P. Alfenas-Zerbini, D. F. Da Silva, M. V. De Queiroz, A. C. Borges, and C. A. De Moraes. 2013. Increased expression of clp genes in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress and bile salts. Beneficial Microbes 4 (4):367–74. doi: 10.3920/BM2013.0022.
  • Fiocco, D., V. Capozzi, P. Goffin, P. Hols, and G. Spano. 2007. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Applied Microbiology and Biotechnology 77 (4):909–15. doi: 10.1007/s00253-007-1228-x.
  • Fiocco, D., M. Collins, L. Muscariello, P. Hols, M. Kleerebezem, T. Msadek, and G. Spano. 2009. The Lactobacillus plantarum ftsH gene is a novel member of the CtsR stress response regulon. Journal of Bacteriology 191 (5):1688–94. doi: 10.1128/JB.01551-08.
  • Foligné, B., S. Parayre, R. Cheddani, M. H. Famelart, M. N. Madec, C. Plé, J. Breton, J. Dewulf, G. Jan, and S. M. Deutsch. 2016. Immunomodulation properties of multi-species fermented milks. Food microbiology 53 (2):60–9. doi: 10.1016/j.fm.2015.04.002.
  • Fonseca, F.,. M. Marin, and G. J. Morris. 2006. Stabilization of frozen Lactobacillus delbrueckii subsp. bulgaricus in glycerol suspensions: freezing kinetics and storage temperature effects. Applied and Environmental Microbiology 72 (10):6474–82. doi: 10.1128/AEM.00998-06.
  • Forssten, S. D., and A. C. Ouwehand. 2017. Simulating colonic survival of probiotics in single-strain products compared to multi-strain products. Microbial Ecology in Health and Disease 28 (1):1378061. doi: 10.1080/16512235.2017.1378061.
  • Frankenberg, L., M. Brugna, and L. Hederstedt. 2002. Enterococcus faecalis heme-dependent catalase. Journal of Bacteriology 184 (22):6351–6. doi: 10.1128/JB.184.22.6351-6356.2002.
  • Frees, D., and H. Ingmer. 1999. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Molecular Microbiology 31 (1):79–87. doi: 10.1046/j.1365-2958.1999.01149.x.
  • Frees, D., F. K. Vogensen, and H. Ingmer. 2003. Identification of proteins induced at low pH in Lactococcus lactis. International Journal of Food Microbiology 87 (3):293–300. doi: 10.1016/S0168-1605(03)00104-1.
  • Fröhlich-Wyder, M. T., H. P. Bachmann, and M. G. Casey. 2002. Interaction between propionibacteria and starter/non-starter lactic acid bacteria in swiss-type cheeses. Le Lait 82 (1):1–15. https://doi.org/10.1051/lait:2001001. doi: 10.1051/lait:2001001.
  • Gamer, J., G. Multhaup, T. Tomoyasu, J. S. McCarty, S. Rüdiger, H. J. Schönfeld, C. Schirra, H. Bujard, and B. Bukau. 1996. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. The EMBO Journal 15 (3):607–17. doi: 10.1002/j.1460-2075.1996.tb00393.x.
  • Gardiner, G. E., P. G. Casey, G. Casey, P. B. Lynch, P. G. Lawlor, C. Hill, G. F. Fitzgerald, C. Stanton, and R. P. Ross. 2004. Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Applied and Environmental Microbiology 70 (4):1895–906. doi: 10.1128/AEM.70.4.1895-1906.2004.
  • Gardner, N., and C. P. Champagne. 2005. Production of propionibacterium shermanii biomass and vitamin B12 on spent media. Journal of Applied Microbiology 99 (5):1236–45. doi: 10.1111/j.1365-2672.2005.02696.x.
  • Garrigues, C., E. Johansen, and R. Crittenden. 2013. Pangenomics-an avenue to improved industrial starter cultures and probiotics. Current Opinion in Biotechnology 24 (2):187–91. doi: 10.1016/j.copbio.2012.08.009.
  • Gebara, C., K. S. Chaves, M. C. E. Ribeiro, F. N. Souza, C. R. F. Grosso, and M. L. Gigante. 2013. Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Research International 51 (2):872–8. doi: 10.1016/j.foodres.2013.02.008.
  • Geirnaert, A., A. Steyaert, V. Eeckhaut, B. Debruyne, J. B. A. Arends, F. Van Immerseel, N. Boon, and T. Van de Wiele. 2014. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 30 (12):70–4. doi: 10.1016/j.anaerobe.2014.08.010.
  • Goderska, K. 2012. Different methods of probiotics stabilization. In Probiotics, ed. E. C. Rigobelo, 541–550. London: IntechOpen. https://doi.org/10.5772/50313.
  • Goffin, P., L. Muscariello, F. Lorquet, A. Stukkens, D. Prozzi, M. Sacco, M. Kleerebezem, and P. Hols. 2006. Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth. Applied and Environmental Microbiology 72 (12):7933–40. doi: 10.1128/AEM.00659-06.
  • Gómez Zavaglia, A., G. Kociubinski, P. Pérez, E. Disalvo, and G. De Antoni. 2002. Effect of bile on the lipid composition and surface properties of bifidobacteria. Journal of Applied Microbiology 93 (5):794–9. doi: 10.1046/j.1365-2672.2002.01747.x.
  • González-Ferrero, C., J. M. Irache, and C. J. González-Navarro. 2018. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chemistry 239 (1):879–88. doi: 10.1016/j.foodchem.2017.07.022.
  • Götz, F., E. F. Elstner, B. Sedewitz, and E. Lengfelder. 1980. Oxygen utilization by Lactobacillus plantarum. Archives of Microbiology 125 (3):215–20. doi: 10.1007/BF00446879.
  • Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris, M. E. Gottesman, and V. Nikiforov. 1992. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 89 (21):10341–4. doi: 10.1073/pnas.89.21.10341.
  • Granato, D., G. F. Branco, F. Nazzaro, A. G. Cruz, and J. A. F. Faria. 2010. Functional foods and nondairy probiotic food development: Trends, concepts, and products. Comprehensive Reviews in Food Science and Food Safety 9 (3):292–302. doi: 10.1111/j.1541-4337.2010.00110.x.
  • Guan, N., J. Li, H. Shin, G. Du, J. Chen, and L. Liu. 2017. Microbial response to environmental stresses: From fundamental mechanisms to practical applications. Applied Microbiology and Biotechnology 101 (10):3991–4008. doi: 10.1007/s00253-017-8264-y.
  • Guchte, M., van de, P. Serror, C. Chervaux, T. Smokvina, S. D. Ehrlich, and E. Maguin. 2002. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82 (1–4):187–216. doi: 10.1023/A:1020631532202.
  • Gueimonde, M., C. Garrigues, D. van Sinderen, C. G. de los Reyes-Gavilán, and A. Margolles. 2009. Bile-inducible efflux transporter from Bifidobacterium longum NCC2705, conferring bile resistance. Applied and Environmental Microbiology 75 (10):3153–60. doi: 10.1128/AEM.00172-09.
  • Guérin-Deremaux, L., M. Pochat, C. Reifer, D. Wils, S. Cho, and L. E. Miller. 2011. The soluble fiber NUTRIOSE induces a dose-dependent beneficial impact on satiety over time in humans. Nutrition Research 31 (9):665–72. doi: 10.1016/j.nutres.2011.09.004.
  • Guerzoni, M. E., R. Lanciotti, and P. S. Cocconcelli. 2001. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147 (8):2255–64. doi: 10.1099/00221287-147-8-2255.
  • Guo, X., Z. Xie, G. Wang, Q. Zou, and R. Tang. 2018. Effect on nutritional, sensory, textural and microbiological properties of low-fat yoghurt supplemented with Jerusalem artichoke powder. International Journal of Dairy Technology 71 (S1):167–74. doi: 10.1111/1471-0307.12404.
  • Gupta, S., and N. Abu-Ghannam. 2012. Probiotic fermentation of plant based products: possibilities and opportunities. Critical Reviews in Food Science and Nutrition 52 (2):183–99. doi: 10.1080/10408398.2010.499779.
  • Guzzo, J. 2012. Biotechnical applications of small heat shock proteins from bacteria. The International Journal of Biochemistry & Cell Biology 44 (10):1698–705. doi: 10.1016/j.biocel.2012.06.007.
  • Hamilton-Miller, J. M. T., S. Shah, and J. T. Winkler. 1999. Public health issues arising from microbiological and labelling quality of foods and supplements containing probiotic microorganisms. Public Health Nutrition 2 (2):223–9. https://doi.org/10.1017/S1368980099000282.
  • Hamon, E., P. Horvatovich, E. Izquierdo, F. Bringel, E. Marchioni, D. Aoudé-Werner, and S. Ennahar. 2011. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiology 11 (1):63. doi: 10.1186/1471-2180-11-63.
  • Heidebach, T., P. Först, and U. Kulozik. 2010. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering 98 (3):309–16. doi: 10.1016/j.jfoodeng.2010.01.003.
  • Heller, K. J. 2001. Probiotic bacteria in fermented foods: product characteristics and starter organisms. The American Journal of Clinical Nutrition 73 (2):374–9.
  • Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, et al. 2014. Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology 11 (8):506. doi: 10.1038/nrgastro.2014.66.
  • Hofmann, A. F. 1999. The continuing importance of bile acids in liver and intestinal disease. Archives of internal medicine, 159 (22):2647–58.
  • Hols, P., F. Hancy, L. Fontaine, B. Grossiord, D. Prozzi, N. Leblond-Bourget, and B. Decaris. 2005. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiology Reviews 29 (3):435–63. doi: 10.1016/j.fmrre.2005.04.008.
  • Homayoni, R., A. Mehrabany, E. V. B. Alipoor, and L. V. Mehrabany. 2016. The comparison of food and supplement as probiotic delivery vehicles. Critical Reviews in Food Science and Nutrition 56 (6):896–909. doi: 10.1080/10408398.2012.733894.
  • Homayouni, A., A. Azizi, M. R. Ehsani, M. S. Yarmand, and S. H. Razavi. 2008. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry 111 (1):50–5. doi: 10.1016/j.foodchem.2008.03.036.
  • Hoppert, K., S. Zahn, L. Jänecke, R. Mai, S. Hoffmann, and H. Rohm. 2013. Consumer acceptance of regular and reduced-sugar yogurt enriched with different types of dietary fiber. International Dairy Journal 28 (1):1–7. doi: 10.1016/j.idairyj.2012.08.005.
  • Huebner, C., Y. Ding, I. Petermann, C. Knapp, and L. R. Ferguson. 2011. The probiotic Escherichia coli nissle 1917 reduces pathogen invasion and modulates cytokine expression in caco-2 cells infected with crohn’s disease-associated E. coli LF82. Applied and Environmental Microbiology 77 (7):2541–4. doi: 10.1128/AEM.01601-10.
  • Hung, D. T., J. Zhu, D. Sturtevant, and J. J. Mekalanos. 2006. Bile acids stimulate biofilm formation in Vibrio cholerae. Molecular Microbiology 59 (1):193–201. doi: 10.1111/j.1365-2958.2005.04846.x.
  • Huq, T., A. Khan, R. A. Khan, B. Riedl, and M. Lacroix. 2013. Encapsulation of probiotic bacteria in biopolymeric system. Critical Reviews in Food Science and Nutrition 53 (9):909–16. doi: 10.1080/10408398.2011.573152.
  • Iqbal, R., T. Zahoor, N. Huma, A. Jamil, and G. Ünlü. 2018. In-vitro GIT tolerance of microencapsulated Bifidobacterium bifidum ATCC 35914 using polysaccharide-protein matrix. Probiotics Antimicrob. Proteins 12:1–10. https://doi.org/10.1007/s12602-017-9384-5.
  • İspirli, H., F. Demirbaş, and E. Dertli. 2018. Glucan type exopolysaccharide (EPS) shows prebiotic effect and reduces syneresis in chocolate pudding. Journal of Food Science and Technology 55 (9):3821–6. doi: 10.1007/s13197-018-3181-3.
  • Jacques, P. F., A. Cassidy, G. Rogers, J. J. Peterson, J. B. Meigs, and J. T. Dwyer. 2013. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. The Journal of Nutrition 143 (9):1474–80. doi: 10.3945/jn.113.177212.
  • Jangra, M., P. D. Belur, L. B. Oriabinska, and O. M. Dugan. 2016. Multistrain probiotic production by co-culture fermentation in a lab-scale bioreactor. Engineering in Life Sciences 16 (3):247–53. doi: 10.1002/elsc.201500069.
  • Jia, F. F., H. Q. Zheng, S. R. Sun, X. H. Pang, Y. Liang, J. C. Shang, Z. Tao Zhu, and X. C. Meng. 2018. Role of luxS in stress tolerance and adhesion ability in Lactobacillus plantarum KLDS1.0391. BioMed Research International 2018 :10. doi: 10.1155/2018/4506829.
  • Jiang, Y., F. Ren, S. Liu, L. Zhao, H. Guo, and C. Hou. 2016. Enhanced acid tolerance in Bifidobacterium longum by adaptive evolution: Comparison of the genes between the acid-resistant variant and wild-type strain. Journal of Microbiology and Biotechnology 26 (3):452–60. doi: 10.4014/jmb.1508.08030.
  • Jones, B. V., M. Begley, C. Hill, C. G. M. Gahan, and J. R. Marchesi. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences of the United States of America 105 (36):13580–5. doi: 10.1073/pnas.0804437105.
  • Jones, M. L., C. J. Martoni, M. Parent, and S. Prakash. 2012. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. British Journal of Nutrition 107 (10):1505–13. doi: 10.1017/S0007114511004703.
  • Jones, R. M., J. W. Mercante, and A. S. Neish. 2012. Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Current Medicinal Chemistry 19 (10):1519–29. doi: 10.2174/092986712799828283.
  • Joseph, P. J., R. I. Dave, and N. P. Shah. 1998. Antagonism between yoghurt bacteria and probiotic bacteria isolated from commercial starter cultures, commercial yoghurts and a probiotic capsule. Food Australia 50 (1):20–3. http://hub.hku.hk/handle/10722/144360.
  • Judge, M. P., X. Cong, O. Harel, A. B. Courville, and C. J. Lammi-Keefe. 2012. Maternal consumption of a DHA-containing functional food benefits infant sleep patterning: An early neurodevelopmental measure. Early Human Development 88 (7):531–7. doi: 10.1016/j.earlhumdev.2011.12.016.
  • Kalliomäki, M., S. Salminen, T. Poussa, H. Arvilommi, and E. Isolauri. 2003. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361 (9372):1869–71. https://doi.org/10.1016/S0140-6736(03)13490-3. doi: 10.1016/S0140-6736(03)13490-3.
  • Kandror, O., L. Busconi, M. Sherman, and A. L. Goldberg. 1994. Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. The Journal of Biological Chemistry 269 (38):23575–82.
  • Kaneko, T. 1999. A novel bifidogenic growth stimulator produced by Propionibacterium freudenreichii. Bioscience and Microflora 18 (2):73–80. doi: 10.12938/bifidus1996.18.73.
  • Kaneko, T., H. Mori, M. Iwata, and S. Meguro. 1994. Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. Journal of Dairy Science 77 (2):393–404. https://doi.org/10.3168/jds.S0022-0302(94)76965-4. doi: 10.3168/jds.S0022-0302(94)76965-4.
  • Kanmani, P., R. S. Kumar, N. Yuvaraj, K. A. Paari, V. Pattukumar, and V. Arul. 2011. Cryopreservation and microencapsulation of a probiotic in alginate-chitosan capsules improves survival in simulated gastrointestinal conditions. Biotechnology and Bioprocess Engineering 16 (6):1106–14. doi: 10.1007/s12257-011-0068-9.
  • Karczewski, J., F. J. Troost, I. Konings, J. Dekker, M. Kleerebezem, R. J. M. Brummer, and J. M. Wells. 2010. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology 298 (6):G851–9. doi: 10.1152/ajpgi.00327.2009.
  • Katsui, N., T. Tsuchido, R. Hiramatsu, S. Fujikawa, M. Takano, and I. Shibasaki. 1982. Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli. Journal of Bacteriology 151 (3):1523–31.
  • Kędzierska, S., M. Staniszewska, A. Węgrzyn, and A. Taylor. 1999. The role of DnaK/DnaJ and GroEL/GroES systems in the removal of endogenous proteins aggregated by heat-shock from Escherichia coli cells. FEBS Letters 446 (2–3):331–7. https://doi.org/10.1016/S0014-5793(99)00154-4. doi: 10.1016/S0014-5793(99)00154-4.
  • Khaskheli, G. B., F. L. Zuo, R. Yu, and S. W. Chen. 2015. Overexpression of small heat shock protein enhances heat- and salt-stress tolerance of Bifidobacterium longum NCC2705. Current Microbiology 71 (1):8–15. doi: 10.1007/s00284-015-0811-0.
  • Ki Cha, B., S. Mun Jung, C. Hwan Choi, I.-D. Song, H. Woong Lee, H. Joon Kim, J. Hyuk, S. Kyung Chang, K. Kim, W.-S. Chung, and J.-G. Seo. 2012. The effect of a multispecies probiotic mixture on the symptoms and fecal microbiota in diarrhea-dominant irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial. Journal of Clinical Gastroenterology 46 (3):220. doi: 10.1097/MCG.0b013e31823712b1.
  • Kilstrup, M., S. Jacobsen, K. Hammer, and F. K. Vogensen. 1997. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Applied and Environmental Microbiology 63 (5):1826–37.
  • Kim, G. B., and B. H. Lee. 2008. Genetic analysis of a bile salt hydrolase in Bifidobacterium animalis subsp. lactis KL612. Journal of Applied Microbiology 105 (3):778–90. doi: 10.1111/j.1365-2672.2008.03825.x.
  • Kim, H., K. Kwack, D. Y. Kim, and G. E. Ji. 2005. Oral probiotic bacterial administration suppressed allergic responses in an ovalbumin-induced allergy mouse model. FEMS Immunology & Medical Microbiology 45 (2):259–67. doi: 10.1016/j.femsim.2005.05.005.
  • Kleinig, A. R., and A. P. J. Middelberg. 1998. On the mechanism of microbial cell disruption in high-pressure homogenisation. Chemical Engineering Sciences 53 (5):891–8. https://doi.org/10.1016/S0009-2509(97)00414-4. doi: 10.1016/S0009-2509(97)00414-4.
  • Kneifel, W., Doris Jaros, and F. Erhard. 1993. Microflora and acidification properties of yogurt and yogurt-related products fermented with commercially available starter cultures. International Journal of Food Microbiology 18 (3):179–89. doi: 10.1016/0168-1605(93)90043-G.
  • Koch, B., M. Kilstrup, F. K. Vogensen, and K. Hammer. 1998. Induced levels of heat shock proteins in a dnaK mutant of Lactococcus lactis. Journal of Bacteriology 180 (15):3873–81.
  • Koebnick, C., I. Wagner, P. Leitzmann, U. Stern, and H. J. F. Zunft. 2003. Probiotic beverage containing Lactobacillus casei shirota improves gastrointestinal symptoms in patients with chronic constipation. Canadian Journal of Gastroenterology and Hepatology 17 (11):655–9. doi: 10.1155/2003/654907.
  • Koropatkin, N. M., E. A. Cameron, and E. C. Martens. 2012. How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology 10 (5):323–35. doi: 10.1038/nrmicro2746.
  • Koskenniemi, K., K. Laakso, J. Koponen, M. Kankainen, D. Greco, P. Auvinen, K. Savijoki, T. A. Nyman, A. Surakka, and T. Salusjärvi. 2011. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Molecular & Cellular Proteomics 10 (2):M110.002741. doi: 10.1074/mcp.M110.002741.
  • Krasaekoopt, W., and S. Watcharapoka. 2014. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT - Food Science and Technology 57 (2):761–6. doi: 10.1016/j.lwt.2014.01.037.
  • Kubota, H., S. Senda, H. Tokuda, H. Uchiyama, and N. Nomura. 2009. Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiology 26 (6):592–7. doi: 10.1016/j.fm.2009.04.001.
  • Kulkarni, S., S. F. Haq, S. Samant, and S. Sukumaran. 2018. Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2. Probiotics and Antimicrobial Proteins 10 (4):717–27. doi: 10.1007/s12602-017-9321-7.
  • Lacroix, C., and S. Yildirim. 2007. Fermentation technologies for the production of probiotics with high viability and functionality. Current Opinion in Biotechnology 18 (2):176–83. doi: 10.1016/j.copbio.2007.02.002.
  • Landete, J. M. 2017. A review of food-grade vectors in lactic acid bacteria: From the laboratory to their application. Critical Reviews in Biotechnology 37 (3):296–308. doi: 10.3109/07388551.2016.1144044.
  • Laport, M. S., Lemos, C. Bastos Md Mdo, R. A. Burne, and M. Giambiagi-de Marval. 2004. Transcriptional analysis of the groE and dnaK heat-shock operons of Enterococcus faecalis. Research in Microbiolog 155 (4):252–8. doi: 10.1016/j.resmic.2004.02.002.
  • Larsson, S. C., L. Bergkvist, and A. Wolk. 2005. High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish mammography cohort. The American Journal of Clinical Nutrition 82 (4):894–900. doi: 10.1093/ajcn/82.4.894.
  • Laterza, L.,. G. Gibiino, F. Scaldaferri, and A. Gasbarrini. 2018. Benefits of multistrain bacteria formulations for health. Journal of Functional Foods 47 (8):531–46. doi: 10.1016/j.jff.2018.05.051.
  • Lebeer, S., I. J. J. Claes, T. L. A. Verhoeven, C. Shen, I. Lambrichts, J. L. Ceuppens, J. Vanderleyden, and S. C. J. De Keersmaecker. 2008. Impact of luxS and suppressor mutations on the gastrointestinal transit of Lactobacillus rhamnosus GG. Applied and Environmental Microbiology 74 (15):4711–8. doi: 10.1128/AEM.00133-08.
  • Lebeer, S., I. J. J. Claes, T. L. A. Verhoeven, J. Vanderleyden, and S. C. J. De Keersmaecker. 2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microbial Biotechnology 4 (3):368–74. doi: 10.1111/j.1751-7915.2010.00199.x.
  • Lebeer, S., I. Claes, H. L. P. Tytgat, T. L. A. Verhoeven, E. Marien, I. von Ossowski, J. Reunanen, A. Palva, W. M. de Vos, and S. C. J. De Keersmaecker. 2012. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Applied and Environmental Microbiology 78 (1):185–93. doi: 10.1128/AEM.06192-11.
  • LeBlanc, J. G., F. Chain, R. Martín, L. G. Bermúdez-Humarán, S. Courau, and P. Langella. 2017. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories 16 (1):79. https://doi.org/10.1186/s12934-017-0691-z.
  • Lee, B., S. Tachon, R. A. Eigenheer, B. S. Phinney, and M. L. Marco. 2015. Lactobacillus casei low-temperature, dairy-associated proteome promotes persistence in the mammalian digestive tract. Journal of Proteome Research 14 (8):3136–47. doi: 10.1021/acs.jproteome.5b00387.
  • Lee, I. C., G. Caggianiello, I. I. van Swam, N. Taverne, M. Meijerink, P. A. Bron, G. Spano, and M. Kleerebezem. 2016. Strain-specific features of extracellular polysaccharides and their impact on Lactobacillus plantarum-host interactions. Applied and Environmental Microbiology 82 (13):3959–70. doi: 10.1128/AEM.00306-16.
  • Lee, J. S., D. S. Cha, and H. J. Park. 2004. Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. Journal of Agricultural and Food Chemistry 52 (24):7300–5. doi: 10.1021/jf040235k.
  • Li, B., F. Tian, X. Liu, J. Zhao, H. Zhang, and W. Chen. 2011. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied Microbiology and Biotechnology 92 (3):609–16. doi: 10.1007/s00253-011-3269-4.
  • Li, W., X. Xia, X. Chen, X. Rui, M. Jiang, Q. Zhang, J. Zhou, and M. Dong. 2015. Complete genome sequence of Lactobacillus helveticus MB2-1, a probiotic bacterium producing exopolysaccharides. Journal of Biotechnology 209 (9):14–5. doi: 10.1016/j.jbiotec.2015.05.021.
  • Li, Y., J. Hugenholtz, T. Abee, and D. Molenaar. 2003. Glutathione protects Lactococcus lactis against oxidative stress. Applied and Environmental Microbiology 69 (10):5739–45. doi: 10.1128/AEM.69.10.5739-5745.2003.
  • Lian, W. C., H. C. Hsiao, and C. C. Chou. 2002. Survival of bifidobacteria after spray-drying. International Journal of Food Microbiology 74 (1-2):79–86. https://doi.org/10.1016/S0168-1605(01)00733-4. doi: 10.1016/S0168-1605(01)00733-4.
  • Lian, W. C., H. C. Hsiao, and C. C. Chou. 2003. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. International Journal of Food Microbiology 86 (3):293–301. https://doi.org/10.1016/S0168-1605(02)00563-9. doi: 10.1016/S0168-1605(02)00563-9.
  • Lindström, C., J. Xu, R. Öste, O. Holst, and G. Molin. 2013. Oral administration of live exopolysaccharide-producing Pediococcus parvulus, but not purified exopolysaccharide, suppressed enterobacteriaceae without affecting bacterial diversity in ceca of mice. Applied and Environmental Microbiology 79 (16):5030–7. doi: 10.1128/AEM.01456-13.
  • Liu, L., Y. Qin, Y. Wang, H. Li, N. Shang, and P. Li. 2014. Complete genome sequence of Bifidobacterium animalis RH, a probiotic bacterium producing exopolysaccharides. J. Biotechnol 189 (11):86–7. doi: 10.1016/j.jbiotec.2014.08.041.
  • Lo Curto, A., I. Pitino, G. Mandalari, J. R. Dainty, R. M. Faulks, and M. S. J. Wickham. 2011. Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiology 28 (7):1359–66. doi: 10.1016/j.fm.2011.06.007.
  • Lorca, G. L., and G. Font de Valdez. 2001. A low-pH-inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL 639. Current Microbiology 42 (1):21–5. doi: 10.1007/s002840010172.
  • Lyons, N. A., and R. Kolter. 2015. On the evolution of bacterial multicellularity. Current Opinion in Microbiology 24 :21–8. doi: 10.1016/j.mib.2014.12.007.
  • Lyu, C., S. Hu, J. Huang, M. Luo, T. Lu, L. Mei, and S. Yao. 2016. Contribution of the activated catalase to oxidative stress resistance and γ-aminobutyric acid production in Lactobacillus brevis. International Journal of Food Microbiology 238 (12):302–10. doi: 10.1016/j.ijfoodmicro.2016.09.023.
  • Macfarlane, S., and J. F. Dillon. 2007. Microbial biofilms in the human gastrointestinal tract. Journal of Applied Microbiology 102 (5):1187–96. doi: 10.1111/j.1365-2672.2007.03287.x.
  • Macías-Rodríguez, M. E., Zagorec, M. F. Ascencio, R. Vázquez‐Juárez, and M. Rojas. 2009. Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. Journal of Applied Microbiology 107 (6):1866–74. doi: 10.1111/j.1365-2672.2009.04368.x.
  • Maitre, M., S. Weidmann, A. Rieu, D. Fenel, G. Schoehn, C. Ebel, J. Coves, and J. Guzzo. 2012. The oligomer plasticity of the small heat-shock protein Lo18 from Oenococcus oeni influences its role in both membrane stabilization and protein protection. Biochemical Journal 444 (1):97–104. doi: 10.1042/BJ20120066.
  • Makrides, M., R. A. Gibson, A. J. McPhee, L. Yelland, J. Quinlivan, P. Ryan, and the DOMInO Investigative Team. 2010. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA 304 (15):1675–83. doi: 10.1001/jama.2010.1507.
  • Mallidis, C., P. Galiatsatou, P. S. Taoukis, and C. Tassou. 2003. The kinetic evaluation of the use of high hydrostatic pressure to destroy Lactobacillus plantarum and Lactobacillus brevis. International Journal of Food Science and Technology 38 (5):579–85. doi: 10.1046/j.1365-2621.2003.00692.x.
  • Mani-López, E., E. Palou, and A. López-Malo. 2014. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. Journal of Dairy Science 97 (5):2578–90. doi: 10.3168/jds.2013-7551.
  • Marcial-Coba, M. S., T. Cieplak, T. B. Cahú, A. Blennow, S. Knøchel, and D. S. Nielsen. 2018. Viability of microencapsulated akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage. Food & Function 9 (11):5868–79. doi: 10.1039/C8FO01331D.
  • Marco, M. L., M. C. de Vries, M. Wels, D. Molenaar, P. Mangell, S. Ahrne, W. M. de Vos, E. E. Vaughan, and M. Kleerebezem. 2010. Convergence in probiotic lactobacillus gut-adaptive responses in humans and mice. The Isme Journal 4 (11):1481–4. doi: 10.1038/ismej.2010.61.
  • Marteau, P., M. Minekus, R. Havenaar, and J. H. J. Huis In’t Veld. 1997. Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile. Journal of Dairy Science 80 (6):1031–7. https://doi.org/10.3168/jds.S0022-0302(97)76027-2. doi: 10.3168/jds.S0022-0302(97)76027-2.
  • Martín, M. J., F. Lara-Villoslada, M. A. Ruiz, and M. E. Morales. 2015. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies 27 (2):15–25. doi: 10.1016/j.ifset.2014.09.010.
  • Martinez, R. C. R., A. E. Aynaou, S. Albrecht, H. A. Schols, E. C. P. De Martinis, E. G. Zoetendal, K. Venema, S. M. I. Saad, and H. Smidt. 2011. In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and combined with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis bb-12. International Journal of Food Microbiology 149 (2):152–8. doi: 10.1016/j.ijfoodmicro.2011.06.010.
  • Mathipa, M. G., and M. S. Thantsha. 2015. Cocktails of probiotics pre-adapted to multiple stress factors are more robust under simulated gastrointestinal conditions than their parental counterparts and exhibit enhanced antagonistic capabilities against Escherichia coli and Staphylococcus aureus. Gut Pathogens 7 (1):5. doi: 10.1186/s13099-015-0053-5.
  • Matias, N. S., M. Padilha, R. Bedani, and S. M. I. Saad. 2016. In vitro gastrointestinal resistance of Lactobacillus acidophilus La-5 and Bifidobacterium animalis bb-12 in soy and/or milk-based synbiotic apple ice creams. International Journal of Food Microbiology 234 (10):83–93. doi: 10.1016/j.ijfoodmicro.2016.06.037.
  • Maus, J. E., and S. Ingham. 2003. Employment of stressful conditions during culture production to enhance subsequent cold- and acid-tolerance of bifidobacteria. Journal of Applied Microbiology 95 (1):146–54. doi: 10.1046/j.1365-2672.2003.01954.x.
  • Michida, H., S. Tamalampudi, S. S. Pandiella, C. Webb, H. Fukuda, and A. Kondo. 2006. Effect of cereal extracts and cereal fiber on viability of Lactobacillus plantarum under gastrointestinal tract conditions. Biochemical Engineering Journal 28 (1):73–8. doi: 10.1016/j.bej.2005.09.004.
  • Miele, E., F. Pascarella, E. Giannetti, L. Quaglietta, R. N. Baldassano, and A. Staiano. 2009. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. The American Journal of Gastroenterology 104 (2):437–43. doi: 10.1038/ajg.2008.118.
  • Miller, C. W., M. H. Nguyen, M. Rooney, and K. Kailasapathy. 2003. The control of dissolved oxygen content in probiotic yoghurts by alternative packaging materials. Packaging Technology and Science 16 (2):61–7. doi: 10.1002/pts.612.
  • Mills, S., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2011. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microbial Cell Factories 10 (Suppl 1):S19. doi: 10.1186/1475-2859-10-S1-S19.
  • Min, M.,. C. R. Bunt, S. L. Mason, and M. A. Hussain. 2018. Non-dairy probiotic food products: an emerging group of functional foods. Critical Reviews in Food Science and Nutrition 9:1–16. doi: 10.1080/10408398.2018.1462760.
  • Miyoshi, A., T. Rochat, J. J. Gratadoux, Y. Le Loir, S. C. Oliveira, P. Langella, and V. Azevedo. 2003. Oxidative stress in Lactococcus lactis. Genetics and Molecular Research: Gmr 2 (4):348–59.
  • Molenaar, D., J. S. Bosscher, B. ten Brink, A. J. Driessen, and W. N. Konings. 1993. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. Journal of Bacteriology 175 (10):2864–70. doi: 10.1128/jb.175.10.2864-2870.1993.
  • Morelli, L., and L. Capurso. 2012. FAO/WHO guidelines on probiotics: 10 years later. Journal of Clinical Gastroenterology 46 (10):S1. doi: 10.1097/MCG.0b013e318269fdd5.
  • Moreno, Y., M. C. Collado, M. A. Ferrús, J. M. Cobo, E. Hernández, and M. Hernández. 2006. Viability assessment of lactic acid bacteria in commercial dairy products stored at 4 °C using LIVE/DEAD® BacLightTM staining and conventional plate counts. International Journal of Food Science and Technology 41 (3):275–80. doi: 10.1111/j.1365-2621.2005.01060.x.
  • Mortazavian, A. M., M. R. Ehsani, S. M. Mousavi, K. Rezaei, S. Sohrabvandi, and J. A. Reinheimer. 2007. Effect of refrigerated storage temperature on the viability of probiotic micro-organisms in yogurt. International Journal of Dairy Technology 60 (2):123–7. doi: 10.1111/j.1471-0307.2007.00306.x.
  • Moslehi-Jenabian, S., K. Gori, and L. Jespersen. 2009. AI-2 signalling is induced by acidic shock in probiotic strains of Lactobacillus spp. International Journal of Food Microbiology 135 (3):295–302. doi: 10.1016/j.ijfoodmicro.2009.08.011.
  • Moussavi, M., and M. C. Adams. 2010. An in vitro study on bacterial growth interactions and intestinal epithelial cell adhesion characteristics of probiotic combinations. Current Microbiology 60 (5):327–35. doi: 10.1007/s00284-009-9545-1.
  • Muller, J. A., R. P. Ross, W. F. H. Sybesma, G. F. Fitzgerald, and C. Stanton. 2011. Modification of the technical properties of Lactobacillus johnsonii NCC 533 by supplementing the growth medium with unsaturated fatty acids. Applied and Environmental Microbiology 77 (19):6889–98. doi: 10.1128/AEM.05213-11.
  • Murga, M. L. F., A. P. D. R. Holgado, and G. F. De Valdez. 1998. Survival rate and enzyme activities of Lactobacillus acidophilus following frozen storage. Cryobiology 36 (4):315–9. doi: 10.1006/cryo.1998.2090.
  • Murga, M. L., Fernández, G. M. Cabrera, G. Font De Valdez, A. Disalvo, and A. M. Seldes. 2000. Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus. Journal of Applied Microbiology 88 (2):342–8. doi: 10.1046/j.1365-2672.2000.00967.x.
  • Muthukumarasamy, P., and R. A. Holley. 2006. Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology 111 (2):164–9. doi: 10.1016/j.ijfoodmicro.2006.04.036.
  • Nakamoto, H., and L. Vígh. 2007. The small heat shock proteins and their clients. Cellular and Molecular Life Sciences 64 (3):294–306. doi: 10.1007/s00018-006-6321-2.
  • Narberhaus, F. 2002. α-crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiology and Molecular Biology Reviews 66 (1):64–93. doi: 10.1128/MMBR.66.1.64-93.2002.
  • Nezhad, M. H., M. A. Hussain, and M. Lorraine Britz. 2015. Stress responses in probiotic Lactobacillus casei. Critical Reviews in Food Science and Nutrition 55 (6):740–9. doi: 10.1080/10408398.2012.675601.
  • Nguyen, V. T., M. Morange, and O. Bensaude. 1989. Protein denaturation during heat shock and related stress. Escherichia coli beta-galactosidase and photinus pyralis luciferase inactivation in mouse cells. Journal of Biological Chemistry 264 (18):10487–92.
  • Norris, L. E., A. L. Collene, M. L. Asp, J. C. Hsu, L.-F. Liu, J. R. Richardson, D. Li, D. Bell, K. Osei, R. D. Jackson, et al. 2009. Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. The American Journal of Clinical Nutrition 90 (3):468–76. doi: 10.3945/ajcn.2008.27371.
  • Nualkaekul, S., I. Salmeron, and D. Charalampopoulos. 2011. Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices. Food Chemistry 129 (3):1037–44. doi: 10.1016/j.foodchem.2011.05.071.
  • Oberg, T. S., R. E. Ward, J. L. Steele, and J. R. Broadbent. 2013. Genetic and physiological responses of Bifidobacterium animalis subsp. lactis to hydrogen peroxide stress. Journal of Bacteriology 195 (16):3743–51. doi: 10.1128/JB.00279-13.
  • O’Reilly, C. E., P. M. O’Connor, A. L. Kelly, T. P. Beresford, and P. M. Murphy. 2000. Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Applied and Environmental Microbiology 66 (11):4890–6. doi: 10.1128/AEM.66.11.4890-4896.2000.
  • O'Toole, P. W., J. R. Marchesi, and C. Hill. 2017. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nature Microbiology 2 (5):17057 doi: 10.1038/nmicrobiol.2017.57.
  • Ouwehand, A. C., E. Isolauri, P. V. Kirjavainen, S. T. Ölkkö, and S. J. Salminen. 2000. The mucus binding of Bifidobacterium lactis Bb12 is enhanced in the presence of lactobacillus GG and lact. Delbrueckii subsp. Bulgaricus. Letters in Applied Microbiology 30 (1):10–3. doi: 10.1046/j.1472-765x.2000.00590.x.
  • Ouwehand, A. C., T. Kurvinen, and P. Rissanen. 2004. Use of a probiotic bifidobacterium in a dry food matrix, an in vivo study. International Journal of Food Microbiology 95 (1):103–6. doi: 10.1016/j.ijfoodmicro.2004.03.015.
  • Pakdaman, M. N., J. K. Udani, J. P. Molina, and M. Shahani. 2016. The effects of the DDS-1 strain of lactobacillus on symptomatic relief for lactose intolerance – A randomized, double-blind, placebo-controlled, crossover clinical trial. Journal of Nutrition 15 (1):56. https://doi.org/10.1186/s12937-016-0172-y.
  • Palud, A., H. Scornec, J. F. Cavin, and H. Licandro. 2018. New genes involved in mild stress response identified by transposon mutagenesis in Lactobacillus paracasei. Frontiers in Microbiology 9 :535. https://doi.org/10.3389/fmicb.2018.00535.
  • Pan, X., T. Wu, L. Zhang, L. Cai, and Z. Song. 2009. Influence of oligosaccharides on the growth and tolerance capacity of lactobacilli to simulated stress environment. Letters in Applied Microbiology 48 (3):362–7. doi: 10.1111/j.1472-765X.2008.02539.x.
  • Pandey, R., N. O. E. Vischer, J. P. P. M. Smelt, J. W. A. van Beilen, A. T. Beek, W. H. De Vos, S. Brul, and E. M. M. Manders. 2016. Intracellular pH response to weak acid stress in individual vegetative Bacillus subtilis cells. Applied and Environmental Microbiology 82 (21):6463–71. doi: 10.1128/AEM.02063-16.
  • Papadimitriou, K., Á. Alegría, P. A. Bron, M. de Angelis, M. Gobbetti, M. Kleerebezem, J. A. Lemos, D. M. Linares, P. Ross, C. Stanton, et al. 2016. Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews 80 (3):837–90. doi: 10.1128/MMBR.00076-15.
  • Park, D. Y., Y. T. Ahn, S. H. Park, C. S. Huh, S. R. Yoo, R. Yu, M. K. Sung, R. A. McGregor, and M. S. Choi. 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. Plos ONE 8 (3):e59470. doi: 10.1371/journal.pone.0059470.
  • Park, S., Y. Ji, H. Y. Jung, H. Park, J. Kang, S. H. Choi, H. Shin, C. K. Hyun, K. T. Kim, and W. H. Holzapfel. 2017. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Applied Microbiology and Biotechnology 101 (4):1605–14. doi: 10.1007/s00253-016-7953-2.
  • Patel, M. P., J. Marcinkeviciene, and J. S. Blanchard. 1998. Enterococcus faecalis glutathione reductase: Purification, characterization and expression under normal and hyperbaric O2 conditions. FEMS Microbiology Letters 166 (1):155–63. doi: 10.1111/j.1574-6968.1998.tb13197.x.
  • Patnaik, R., S. Louie, V. Gavrilovic, K. Perry, W. P. C. Stemmer, C. M. Ryan, and S. del Cardayré. 2002. Genome shuffling of lactobacillus for improved acid tolerance. Nature Biotechnology 20 (7):707–12. doi: 10.1038/nbt0702-707.
  • Patrignani, F., P. Burns, D. Serrazanetti, G. Vinderola, J. Reinheimer, R. Lanciotti, and M. E. Guerzoni. 2009. Suitability of high pressure-homogenized milk for the production of probiotic fermented milk containing Lactobacillus paracasei and Lactobacillus acidophilus. Journal of Dairy Research 76 (01):74–82. doi: 10.1017/S0022029908003828.
  • Penna, A. L. B., and G. V. Barbosa-Cánovas. 2007. High hydrostatic pressure processing on microstructure of probiotic low-fat yogurt. Food Research International 40 (4):510–9. https://doi.org/10.1016/j.foodres.2007.01.001.
  • Peredo, A. G., C. I. Beristain, L. A. Pascual, E. Azuara, and M. Jimenez. 2016. The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT - Food Science and Technology 73 (11):191–6. doi: 10.1016/j.lwt.2016.06.021.
  • Pérez Montoro, B., N. Benomar, N. C. Gómez, S. Ennahar, P. Horvatovich, C. W. Knapp, A. Gálvez, and H. Abriouel. 2018. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features. Food microbiology 72 (6):31–8. doi: 10.1016/j.fm.2017.11.006.
  • Pérez-Ramos, A., M. L. Mohedano, P. López, G. Spano, D. Fiocco, P. Russo, and V. Capozzi. 2017. In situ β-glucan fortification of cereal-based matrices by Pediococcus parvulus 2.6: Technological aspects and prebiotic potential. International Journal of Molecular Sciences 18 (7):1588. doi: 10.3390/ijms18071588.
  • Pfeiler, E. A., M. A. Azcarate-Peril, and T. R. Klaenhammer. 2007. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. Journal of Bacteriology 189 (13):4624–34. doi: 10.1128/JB.00337-07.
  • Pfeiler, E. A., and T. R. Klaenhammer. 2009. Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Applied and Environmental Microbiology 75 (18):6013–6. doi: 10.1128/AEM.00495-09.
  • Pierpaoli, E. V., E. Sandmeier, H. J. Schönfeld, and P. Christen. 1998. Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE. Journal of Biological Chemistry 273 (12):6643–9. doi: 10.1074/jbc.273.12.6643.
  • Piveteau, P. G., J. O'Callaghan, B. Lyons, S. Condon, and T. M. Cogan. 2002. Characterisation of the stimulants produced by Lactobacillus helveticus in milk for Propionibacterium freudenreichii. Le Lait 82 (1):69–80. doi: 10.1051/lait:2001006.
  • Poquet, I., V. Saint, E. Seznec, N. Simoes, A. Bolotin, and A. Gruss. 2000. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Molecular Microbiology 35 (5):1042–51. doi: 10.1046/j.1365-2958.2000.01757.x.
  • Portnoy, V. A., D. Bezdan, and K. Zengler. 2011. Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Current Opinion in Biotechnology 22 (4):590–4. doi: 10.1016/j.copbio.2011.03.007.
  • Possemiers, S., M. Marzorati, W. Verstraete, and T. Van de Wiele. 2010. Bacteria and chocolate: A successful combination for probiotic delivery. International Journal of Food Microbiology 141 (1–2):97–103. doi: 10.1016/j.ijfoodmicro.2010.03.008.
  • Prasad, J., P. McJarrow, and P. Gopal. 2003. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Applied and Environmental Microbiology 69 (2):917–25. doi: 10.1128/AEM.69.2.917-925.2003.
  • Price, C. E., S. J. Reid, A. J. M. Driessen, and V. R. Abratt. 2006. The Bifidobacterium longum NCIMB 702259T ctr gene codes for a novel cholate transporter. Applied and Environmental Microbiology 72 (1):923–6. doi: 10.1128/AEM.72.1.923-926.2006.
  • Ranadheera, C. S., C. A. Evans, M. C. Adams, and S. K. Baines. 2012. In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Research International 49 (2):619–25. doi: 10.1016/j.foodres.2012.09.007.
  • Ranadheera, C. S., C. A. Evans, M. C. Adams, and S. K. Baines. 2014. Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion. Journal of Functional Foods 8 (5):18–25. doi: 10.1016/j.jff.2014.02.022.
  • Ranadheera, R. D. C. S., S. K. Baines, and M. C. Adams. 2010. Importance of food in probiotic efficacy. Food Research International 43 (1):1–7. doi: 10.1016/j.foodres.2009.09.009.
  • Rastall, R. A., and G. R. Gibson. 2015. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Current Opinion in Biotechnology 32 (:42–6. doi: 10.1016/j.copbio.2014.11.002.
  • Rautava, S., S. Salminen, and E. Isolauri. 2009. Specific probiotics in reducing the risk of acute infections in infancy – A randomised, double-blind, placebo-controlled study. British Journal of Nutrition 101 (11):1722–6. doi: 10.1017/S0007114508116282.
  • Renault, P. 2002. Genetically modified lactic acid bacteria: Applications to food or health and risk assessment. Biochimie 84 (11):1073–87. https://doi.org/10.1016/S0300-9084(02)00029-9. doi: 10.1016/S0300-9084(02)00029-9.
  • Riveros, B., J. Ferrer, and R. Bórquez. 2009. Spray drying of a vaginal probiotic strain of Lactobacillus acidophilus. Drying Technology 27 (1):123–32. doi: 10.1080/07373930802566002.
  • Rochat, T., J. J. Gratadoux, A. Gruss, G. Corthier, E. Maguin, P. Langella, and M. van de Guchte. 2006. Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Applied and Environmental Microbiology 72 (8):5143–9. doi: 10.1128/AEM.00482-06.
  • Rößle, C., M. A. E. Auty, N. Brunton, R. T. Gormley, and F. Butler. 2010. Evaluation of fresh-cut apple slices enriched with probiotic bacteria. Innovative Food Science and Emerging Technologies 11 (1):203–9. doi: 10.1016/j.ifset.2009.08.016.
  • Rouhi, M., S. Sohrabvandi, and A. M. Mortazavian. 2013. Probiotic fermented sausage: viability of probiotic microorganisms and sensory characteristics. Critical Reviews in Food Science and Nutrition 53 (4):331–48. doi: 10.1080/10408398.2010.531407.
  • Roychowdhury, S., J. Cadnum, B. Glueck, M. Obrenovich, C. Donskey, and G. A. M. Cresci. 2018. Faecalibacterium prausnitzii and a prebiotic protect intestinal health in a mouse model of antibiotic and clostridium difficile exposure. Journal of Parenteral and Enteral Nutrition 42 (7):1156–67. doi: 10.1002/jpen.1053.
  • Ruas-Madiedo, P., M. Gueimonde, F. Arigoni, C. G. de los Reyes-Gavilán, and A. Margolles. 2009. Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Applied and Environmental Microbiology 75 (4):1204–7. doi: 10.1128/AEM.00908-08.
  • Rubio, R., T. Aymerich, S. Bover-Cid, M. D. Guàrdia, J. Arnau, and M. Garriga. 2013. Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT - Food Science and Technology 54 (1):51–6. doi: 10.1016/j.lwt.2013.05.014.
  • Ruiz, L., Y. Couté, B. Sánchez, C. G. de los Reyes-Gavilán, J. C. Sanchez, and A. Margolles. 2009. The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology 155 (3):957–67. doi: 10.1099/mic.0.024273-0.
  • Ruiz, L., A. Margolles, and B. Sánchez. 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology 4 :396. doi: 10.3389/fmicb.2013.00396.
  • Ruiz, L., M. O'Connell-Motherway, A. Zomer, C. G. de los Reyes-Gavilán, A. Margolles, and D. van Sinderen. 2012a. A bile-inducible membrane protein mediates bifidobacterial bile resistance. Microbial Biotechnology 5 (4):523–35. doi: 10.1111/j.1751-7915.2011.00329.x.
  • Ruiz, L., B. Sánchez, P. Ruas-Madiedo, C. G. de Los Reyes-Gavilán, and A. Margolles. 2007. Cell envelope changes in Bifidobacterium animalis ssp. lactis as a response to bile. FEMS Microbiology Letters 274 (2):316–22. doi: 10.1111/j.1574-6968.2007.00854.x.
  • Ruiz, L., A. Zomer, M. O'Connell-Motherway, D. van Sinderen, and A. Margolles. 2012b. Discovering novel bile protection systems in Bifidobacterium breve UCC2003 through functional genomics. Applied and Environmental Microbiology 78 (4):1123–31. doi: 10.1128/AEM.06060-11.
  • Ruiz-Moyano, S., A. Martín, M. J. Benito, A. Hernández, R. Casquete, and M. de Guia Córdoba. 2011. Application of Lactobacillus fermentum HL57 and Pediococcus acidilactici SP979 as potential probiotics in the manufacture of traditional Iberian dry-fermented sausages. Food Microbiology 28 (5):839–47.
  • Russo, P., M. L. V. de Chiara, A. Vernile, M. L. Amodio, M. P. Arena, V. Capozzi, S. Massa, and G. Spano. 2014. Fresh-cut pineapple as a new carrier of probiotic lactic acid bacteria. BioMed Research International 2014 :1. doi: 10.1155/2014/309183.
  • Russo, P., M. de la Luz Mohedano, V. Capozzi, P. F. de Palencia, P. López, G. Spano, and D. Fiocco. 2012. Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions. International Journal of Molecular Sciences 13 (9):10680–96. doi: 10.3390/ijms130910680.
  • Russo, P., P. López, V. Capozzi, P. Fernández de Palencia, M. T. Dueñas, G. Spano, and D. Fiocco. 2012. Beta-glucans improve growth, viability and colonization of probiotic microorganisms. International Journal of Molecular Sciences 13 (5):6026–39.
  • Saarela, M., H. L. Alakomi, J. Mättö, A. M. Ahonen, A. Puhakka, and S. Tynkkynen. 2011. Improving the storage stability of Bifidobacterium breve in low pH fruit juice. International Journal of Food Microbiology 149 (1):106–10. doi: 10.1016/j.ijfoodmicro.2010.12.002.
  • Saarela, M., M. Rantala, K. Hallamaa, L. Nohynek, I. Virkajärvi, and J. Mättö. 2004. Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. Journal of Applied Microbiology 96 (6):1205–14. doi: 10.1111/j.1365-2672.2004.02286.x.
  • Saarela, M., I. Virkajärvi, H. L. Alakomi, P. Sigvart-Mattila, and J. Mättö. 2006. Stability and functionality of freeze-dried probiotic bifidobacterium cells during storage in juice and milk. International Dairy Journal 16 (12):1477–82. doi: 10.1016/j.idairyj.2005.12.007.
  • Saarela, M., I. Virkajärvi, L. Nohynek, A. Vaari, and J. Mättö. 2006. Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals. International Journal of Food Microbiology 112 (2):171–8. doi: 10.1016/j.ijfoodmicro.2006.05.019.
  • Salar-Behzadi, S.,. S. Wu, S. Toegel, M. Hofrichter, I. Altenburger, F. M. Unger, M. Wirth, and H. Viernstein. 2013. Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Research International 54 (1):93–101. doi: 10.1016/j.foodres.2013.05.024.
  • Salas-Salvadó, J., A. Garcia-Arellano, R. Estruch, F. Marquez-Sandoval, D. Corella, M. Fiol, E. Gómez-Gracia, E. Viñoles, F. Arós, C. Herrera, et al. 2008. Components of the mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. European Journal of Clinical Nutrition 62 (5):651–9. doi: 10.1038/sj.ejcn.1602762.
  • Salas-Salvadó, J., M. Bulló, R. Estruch, E. Ros, M. I. Covas, N. Ibarrola-Jurado, and D. Corella. 2014. Prevention of diabetes with mediterranean diets a subgroup analysis of a randomized trial. Annals of Internal Medicine 160 (1):1–10. doi: 10.7326/M13-1725.
  • Salazar-Lindo, E., P. Miranda-Langschwager, M. Campos-Sanchez, E. Chea-Woo, and R. B. Sack. 2004. Lactobacillus caseistrain GG in the treatment of infants with acute watery diarrhea: A randomized, double-blind, placebo controlled clinical trial [ISRCTN67363048]. BMC Pediatrics. 4 (1):18. https://doi.org/10.1186/1471-2431-4-18.
  • Salotra, P., D. K. Singh, K. P. Seal, N. Krishna, H. Jaffe, and R. Bhatnagar. 1995. Expression of DnaK and GroEL homologs in leuconostoc esenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiology Letters 131 (1):57–62. doi: 10.1111/j.1574-6968.1995.tb07754.x.
  • Sánchez, B., M. C. Champomier-Vergès, M. del Carmen Collado, P. Anglade, F. Baraige, Y. Sanz, C. G. de los Reyes-Gavilán, A. Margolles, and M. Zagorec. 2007. Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Applied and Environmental Microbiology 73 (20):6450–9. doi: 10.1128/AEM.00886-07.
  • Sanchez, L. M., A. T. Cheng, C. J. A. Warner, L. Townsley, K. C. Peach, G. Navarro, N. J. Shikuma, W. M. Bray, R. M. Riener, F. H. Yildiz, and R. G. Linington. 2016. Biofilm formation and detachment in gram-negative pathogens is modulated by select bile acids. Plos ONE 11 (3):e0149603. doi: 10.1371/journal.pone.0149603.
  • Sanders, J. W., K. J. Leenhouts, A. J. Haandrikman, G. Venema, and J. Kok. 1995. Stress response in Lactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. Journal of Bacteriology 177 (18):5254–60. doi: 10.1128/jb.177.18.5254-5260.1995.
  • Sanders, M. E. 1998. Overview of functional foods: Emphasis on probiotic bacteria. International Dairy Journal 8 (5–6):341–7. doi: 10.1016/S0958-6946(98)00056-9.
  • Sanders, M. E., and M. L. Marco. 2010. Food formats for effective delivery of probiotics. Annual Review of Food Science and Technology 1 (1):65–85. doi: 10.1146/annurev.food.080708.100743.
  • Santivarangkna, C., M. Wenning, P. Foerst, and U. Kulozik. 2007. Damage of cell envelope of Lactobacillus helveticus during vacuum drying. Journal of Applied Microbiology 102 (3):748–56. doi: 10.1111/j.1365-2672.2006.03123.x.
  • Sauvageot, N., S. Beaufils, A. Mazé, J. Deutscher, and A. Hartke. 2006. Cloning and characterization of a gene encoding a cold‐shock protein in Lactobacillus casei. FEMS Microbiology Letters 254 (1):55–62. doi: 10.1111/j.1574-6968.2005.00006.x.
  • Savijoki, K., A. Suokko, A. Palva, L. Valmu, N. Kalkkinen, and P. Varmanen. 2005. Effect of heat-shock and bile salts on protein synthesis of Bifidobacterium longum revealed by [35S] methionine labelling and two-dimensional gel electrophoresis. FEMS Microbiology Letters 248 (2):207–15. doi: 10.1016/j.femsle.2005.05.032.
  • Savini, M., C. Cecchini, M. C. Verdenelli, S. Silvi, C. Orpianesi, and A. Cresci. 2010. Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients 2 (3):330–9. doi: 10.3390/nu2030330.
  • Schröder, H., T. Langer, F. U. Hartl, and B. Bukau. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. The Embo Journal 12 (11):4137–44. doi: 10.1002/j.1460-2075.1993.tb06097.x.
  • Schroeder, B. O., and F. Bäckhed. 2016. Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine 22 (10):1079–89. doi: 10.1038/nm.4185.
  • Schwab, C., A. T. Tveit, C. Schleper, and T. Urich. 2014. Gene expression of lactobacilli in murine forestomach biofilms. Microbial Biotechnology 7 (4):347–59. doi: 10.1111/1751-7915.12126.
  • Schwab, C., R. Vogel, and M. G. Gänzle. 2007. Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology 55 (2):108–14. doi: 10.1016/j.cryobiol.2007.06.004.
  • Scott, C., H. Rawsthorne, M. Upadhyay, C. A. Shearman, M. J. Gasson, J. R. Guest, and J. Green. 2000. Zinc uptake, oxidative stress and the FNR-like proteins of Lactococcus lactis. FEMS Microbiology Letters 192 (1):85–9. doi: 10.1111/j.1574-6968.2000.tb09363.x.
  • Sendra, E., P. Fayos, Y. Lario, J. Fernández-López, E. Sayas-Barberá, and J. A. Pérez-Alvarez. 2008. Incorporation of citrus fibers in fermented milk containing probiotic bacteria. Food microbiology 25 (1):13–21. doi: 10.1016/j.fm.2007.09.003.
  • Shah, N. P., W. K. Ding, M. J. Fallourd, and G. Leyer. 2010. Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. Journal of Food Science 75 (5):M278–82. https://doi.org/10.1111/j.1750-3841.2010.01628.x.
  • Shakeri, H., H. Hadaegh, F. Abedi, M. Tajabadi-Ebrahimi, N. Mazroii, Y. Ghandi, and Z. Asemi. 2014. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes. Lipids 49 (7):695–701. doi: 10.1007/s11745-014-3901-z.
  • Sharma, V., F. Mobeen, and T. Prakash. 2018. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes 9 (10):477. doi: 10.3390/genes9100477.
  • Sharp, M. D., D. J. McMahon, and J. R. Broadbent. 2008. Comparative evaluation of yogurt and low-fat cheddar cheese as delivery media for probiotic Lactobacillus casei. Journal of Food Science 73 (7):M375–7. doi: 10.1111/j.1750-3841.2008.00882.x.
  • Sheehan, V. M., P. Ross, and G. F. Fitzgerald. 2007. Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science and Emerging Technologies 8 (2):279–84. doi: 10.1016/j.ifset.2007.01.007.
  • Sheehan, V. M., R. D. Sleator, G. F. Fitzgerald, and C. Hill. 2006. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Applied and Environmental Microbiology 72 (3):2170–7. doi: 10.1128/AEM.72.3.2170-2177.2006.
  • Sheehan, V. M., R. D. Sleator, C. Hill, and G. F. Fitzgerald. 2007. Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology 153 (10):3563–71. doi: 10.1099/mic.0.2007/006510-0.
  • Shrime, M. G., S. R. Bauer, A. C. McDonald, N. H. Chowdhury, C. E. M. Coltart, and E. L. Ding. 2011. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. The Journal of Nutrition 141 (11):1982–8. doi: 10.3945/jn.111.145482.
  • Shu, G., S. Wang, Z. Chen, H. Chen, C. Wang, and Y. Ma. 2015. Effect of bacteria proportion on the fermentation of goat yoghurt with probiotic culture. Acta Scientiarum Polonorum. Technologia Alimentaria 14 (4):407–14. doi: 10.17306/J.AFS.2015.4.40.
  • Siaterlis, A., G. Deepika, and D. Charalampopoulos. 2009. Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Letters in Applied Microbiology 48 (3):295–301. doi: 10.1111/j.1472-765X.2008.02529.x.
  • Simone, M., C. Gozzoli, A. Quartieri, G. Mazzola, D. Di Gioia, A. Amaretti, S. Raimondi, and M. Rossi. 2014. The probiotic Bifidobacterium breve B632 inhibited the growth of Enterobacteriaceae within colicky infant microbiota cultures. BioMed Research International 2014 :301053. doi: 10.1155/2014/301053.
  • Simpson, P. J., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2005. Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. Journal of Applied Microbiology 99 (3):493–501. doi: 10.1111/j.1365-2672.2005.02648.x.
  • Sims, I. M., S. A. Frese, J. Walter, D. Loach, M. Wilson, K. Appleyard, J. Eason, M. Livingston, M. Baird, G. Cook, and G. W. Tannock. 2011. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. The ISME Journal 5 (7):1115–24. doi: 10.1038/ismej.2010.201.
  • Skinner, M. M., and J. E. Trempy. 2001. Expression of clpX, an ATPase subunit of the clp protease, is heat and cold shock inducible in Lactococcus lactis. Journal of Dairy Science 84 (8):1783–5. doi: 10.3168/jds.S0022-0302(01)74615-2.
  • Sleator, R. D., and C. Hill. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26 (1):49–71. doi: 10.1111/j.1574-6976.2002.tb00598.x.
  • Smeds, A., P. Varmanen, and A. Palva. 1998. Molecular characterization of a stress-inducible gene from Lactobacillus helveticus. Journal of Bacteriology 180 (23):6148–53.
  • Sohail, A., M. S. Turner, E. K. Prabawati, A. G. A. Coombes, and B. Bhandari. 2012. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. International Journal of Food Microbiology 157 (2):162–6. doi: 10.1016/j.ijfoodmicro.2012.04.025.
  • Song, S.,. D. W. Bae, K. Lim, M. W. Griffiths, and S. Oh. 2014. Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing. International Journal of Food Microbiology 191 (11):135–43. doi: 10.1016/j.ijfoodmicro.2014.09.017.
  • Songisepp, E., T. Kullisaar, P. Hütt, P. Elias, T. Brilene, M. Zilmer, and M. Mikelsaar. 2004. A new probiotic cheese with antioxidative and antimicrobial activity. Journal of Dairy Science 87 (7):2017–23. doi: 10.3168/jds.S0022-0302(04)70019-3.
  • Spano, G., L. Beneduce, C. Perrotta, and S. Massa. 2005. Cloning and characterization of the hsp 18.55 gene, a new member of the small heat shock gene family isolated from wine Lactobacillus plantarum. Research in Microbiology 156 (2):219–24. doi: 10.1016/j.resmic.2004.09.014.
  • Stack, H. M., N. Kearney, C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2010. Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli. Applied and Environmental Microbiology 76 (2):500–7. doi: 10.1128/AEM.01524-09.
  • Straka, R. P., and J. L. Stokes. 1959. Metabolic injury to bacteria at low temperatures. Journal of Bacteriology 78 (2):181–5.
  • Streit, F., J. Delettre, G. Corrieu, and C. Béal. 2008. Acid adaptation of Lactobacillus delbrueckii subsp. Bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. Journal of Applied Microbiology 105 (4):1071–80. doi: 10.1111/j.1365-2672.2008.03848.x.
  • Strozzi, G. P., and L. Mogna. 2008. Quantification of folic acid in human feces after administration of bifidobacterium probiotic strains. Journal of Clinical Gastroenterology 42:S179–S84. doi: 10.1097/MCG.0b013e31818087d8.
  • Stummer, S., S. Salar-Behzadi, F. M. Unger, S. Oelzant, M. Penning, and H. Viernstein. 2010. Application of shellac for the development of probiotic formulations. Food Research International 43 (5):1312–20. doi: 10.1016/j.foodres.2010.03.017.
  • Suau, A., R. Bonnet, M. Sutren, J. J. Godon, G. R. Gibson, M. D. Collins, and J. Doré. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Applied and Environmental Microbiology 65 (11):4799–807.
  • Succi, M., P. Tremonte, G. Pannella, L. Tipaldi, A. Cozzolino, R. Romaniello, E. Sorrentino, and R. Coppola. 2017. Pre-cultivation with selected prebiotics enhances the survival and the stress response of Lactobacillus rhamnosus strains in simulated gastrointestinal transit. Frontiers in Microbiology 8 :1067. https://doi.org/10.3389/fmicb.2017.01067.
  • Suokko, A., M. Poutanen, K. Savijoki, N. Kalkkinen, and P. Varmanen. 2008. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics 8 (5):1029–41. doi: 10.1002/pmic.200700925.
  • Tabanelli, G., F. Patrignani, G. Vinderola, J. A. Reinheimer, F. Gardini, and R. Lanciotti. 2013. Effect of Sub-lethal high pressure homogenization treatments on the in vitro functional and biological properties of lactic acid bacteria. LWT - Food Science and Technology 53 (2):580–6. https://doi.org/10.1016/j.lwt.2013.03.013.
  • Talwalkar, A., and K. Kailasapathy. 2004. The role of oxygen in the viability of probiotic bacteria with reference to L. Acidophilus and bifidobacterium spp. Current Issues in Intestinal Microbiology 5 (1):1–8. http://researchdirect.westernsydney.edu.au/islandora/object/uws%3A5220/.
  • Talwalkar, A., C. W. Miller, K. Kailasapathy, and M. H. Nguyen. 2004. Effect of packaging materials and dissolved oxygen on the survival of probiotic bacteria in yoghurt. International Journal of Food Science and Technology 39 (6):605–11. doi: 10.1111/j.1365-2621.2004.00820.x.
  • Taniguchi, M., N. Kotani, and T. Kobayashi. 1987. High-concentration cultivation of lactic acid bacteria in fermentor with cross-flow filtration. Journal of Fermentation Technology 65 (2):179–84. https://doi.org/10.1016/0385-6380(87)90162-2. doi: 10.1016/0385-6380(87)90162-2.
  • Taranto, M. P., G. Perez-Martinez, and G. F. de Valdez. 2006. Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Research in Microbiology 157 (8):720–5. doi: 10.1016/j.resmic.2006.04.002.
  • Taranto, M. P., M. L. F. Murga, G. Lorca, and G. F. de Valdez. 2003. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. Journal of Applied Microbiology 95 (1):86–91. doi: 10.1046/j.1365-2672.2003.01962.x.
  • Tárrega, A., J. D. Torres, and E. Costell. 2011. Influence of the chain-length distribution of inulin on the rheology and microstructure of prebiotic dairy desserts. Journal of Food Engineering 104 (3):356–63. doi: 10.1016/j.jfoodeng.2010.12.028.
  • Teixeira, J. S., A. Seeras, A. F. Sanchez-Maldonado, C. Zhang, M. Shu-Wei Su, and M. G. Gänzle. 2014. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiology 42 (9):172–80. doi: 10.1016/j.fm.2014.03.015.
  • Teixeira, P., H. Castro, and R. Kirby. 1996. Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Letters in Applied Microbiology 22 (1):34–8. doi: 10.1111/j.1472-765X.1996.tb01103.x.
  • Teixeira, P., Castro, H. C. Mohácsi, ‐Farkas, and R. Kirby. 1997. Identification of sites of injury in Lactobacillus bulgaricus during heat stress. Journal of Applied Microbiology 83 (2):219–26. doi: 10.1046/j.1365-2672.1997.00221.x.
  • Temmerman, R., I. Scheirlinck, G. Huys, and J. Swings. 2003. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 69 (1):220–6. doi: 10.1128/AEM.69.1.220-226.2003.
  • Thom, E., J. Wadstein, and O. Gudmundsen. 2001. Conjugated linoleic acid reduces body fat in healthy exercising humans. Journal of International Medical Research 29 (5):392–6. doi: 10.1177/147323000102900503.
  • Thomas, J. G., and F. Baneyx. 2002. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Molecular Microbiology 36 (6):1360–70. doi: 10.1046/j.1365-2958.2000.01951.x.
  • Timmerman, H. M., L. E. M. Niers, B. U. Ridwan, C. J. M. Koning, L. Mulder, L. M. A. Akkermans, F. M. Rombouts, and G. T. Rijkers. 2007. Design of a multispecies probiotic mixture to prevent infectious complications in critically ill patients. Clinical Nutrition 26 (4):450–9. doi: 10.1016/j.clnu.2007.04.008.
  • Trinchieri, V., L. Laghi, B. Vitali, C. Parolin, I. Giusti, D. Capobianco, P. Mastromarino, and C. De Simone. 2017. Efficacy and safety of a multistrain probiotic formulation depends from manufacturing. Frontiers in Immunology 8 :1474. https://doi.org/10.3389/fimmu.2017.01474.
  • Trip, H., N. L. Mulder, and J. S. Lolkema. 2012. Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524. Journal of Biological Chemistry 287 (14):11195–204. doi: 10.1074/jbc.M111.330704.
  • Tsevdou, M. S., and P. S. Taoukis. 2011. Effect of non-thermal processing by high hydrostatic pressure on the survival of probiotic microorganisms: study on bifidobacteria spp. Anaerobe 17 (6):456–8. doi: 10.1016/j.anaerobe.2011.06.007.
  • Tymczyszyn, E., E. Gerbino, A. Illanes, and A. Gómez-Zavaglia. 2011. Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus. Cryobiology 62 (2):123–29. https://doi.org/10.1016/j.cryobiol.2011.01.013.
  • Urpi-Sarda, M., R. Casas, G. Chiva-Blanch, E. S. Romero-Mamani, P. Valderas-Martínez, S. Arranz, C. Andres-Lacueva, R. Llorach, A. Medina-Remón, R. M. Lamuela-Raventos, and R. Estruch. 2012. Virgin olive oil and nuts as key foods of the mediterranean diet effects on inflammatory biomarkers related to atherosclerosis. Pharmacological Research 65 (6):577–83. doi: 10.1016/j.phrs.2012.03.006.
  • Van Beilen, J. W. A., M. J. Teixeira de Mattos, K. J. Hellingwerf, and S. Brul. 2014. Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of Bacillus subtilis. Applied and Environmental Microbiology 80 (19):5918–26. doi: 10.1128/AEM.01391-14.
  • Van Bokhorst-van de Veen, H., I. van Swam, M. Wels, P. A. Bron, and M. Kleerebezem. 2012. Congruent strain specific intestinal persistence of Lactobacillus plantarum in an intestine-mimicking in vitro system and in human volunteers. Plos ONE 7 (9):e44588. doi: 10.1371/journal.pone.0044588.
  • Van de Wiele, T., N. Boon, S. Possemiers, H. Jacobs, and W. Verstraete. 2007. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology 102 (2):452–60. doi: 10.1111/j.1365-2672.2006.03084.x.
  • van Pijkeren, J. P., and R. A. Britton. 2014. Precision genome engineering in lactic acid bacteria. Microbial Cell Factories 13 (1):S10. doi: 10.1186/1475-2859-13-S1-S10.
  • van Reenen, C. A., L. M. T. Dicks, and M. L. Chikindas. 1998. Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. Journal of Applied Microbiology 84 (6):1131–7. 10.1046/j.1365-2672.1998.00451.x.[Mismatch]
  • Varcamonti, M., S. Arsenijevic, L. Martirani, D. Fusco, G. Naclerio, and M. De Felice. 2006. Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock. Microbial Cell Factories 5 (1):6. https://doi.org/10.1186/1475-2859-5-6.
  • Ventura, M., C. Canchaya, Z. Zhang, G. F. Fitzgerald, and D. van Sinderen. 2007. Molecular characterization of hsp20, encoding a small heat shock protein of Bifidobacterium breve UCC2003. Applied and Environmental Microbiology 73 (14):4695–703. doi: 10.1128/AEM.02496-06.
  • Ventura, M., Z. Zhang, M. Cronin, C. Canchaya, J. G. Kenny, G. F. Fitzgerald, and D. van Sinderen. 2005. The ClgR protein regulates transcription of the clpP operon in Bifidobacterium breve UCC 2003. Journal of Bacteriology 187 (24):8411–26. doi: 10.1128/JB.187.24.8411-8426.2005.
  • Vesterlund, S., K. Salminen, and S. Salminen. 2012. Water activity in dry foods containing live probiotic bacteria should be carefully considered: a case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology 157 (2):319–21. doi: 10.1016/j.ijfoodmicro.2012.05.016.
  • Vinderola, C. G., P. Mocchiutti, and J. A. Reinheimer. 2002. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. Journal of Dairy Science 85 (4):721–9. doi: 10.3168/jds.S0022-0302(02)74129-5.
  • Vinderola, C. G., G. A. Costa, S. Regenhardt, and J. A. Reinheimer. 2002. Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. International Dairy Journal 12 (7):579–89. doi: 10.1016/S0958-6946(02)00046-8.
  • Wang, C., Y. Cui, and X. Qu. 2018. Mechanisms and improvement of acid resistance in lactic acid bacteria. Archives of Microbiology 200 (2):195–201. doi: 10.1007/s00203-017-1446-2.
  • Watnick, P., and R. Kolter. 2000. Biofilm, city of microbes. Journal of Bacteriology 182 (10):2675–9. doi: 10.1128/JB.182.10.2675-2679.2000.
  • Watson, D., M. O'Connell Motherway, M. H. C. Schoterman, R. J Joost van Neerven, A. Nauta, and D. van Sinderen. 2013. Selective carbohydrate utilization by lactobacilli and bifidobacteria. Journal of Applied Microbiology 114 (4):1132–46. doi: 10.1111/jam.12105.
  • Weidmann, S., M. Maitre, J. Laurent, F. Coucheney, A. Rieu, and J. Guzzo. 2017. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance. International Journal of Food Microbiology 247 :18–23. doi: 10.1016/j.ijfoodmicro.2016.06.005.
  • Whitehead, A., E. J. Beck, S. Tosh, and T. M. S. Wolever. 2014. Cholesterol-lowering effects of oat β-glucan: A meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition 100 (6):1413–21. doi: 10.3945/ajcn.114.086108.
  • Whitehead, K., J. Versalovic, S. Roos, and R. A. Britton. 2008. Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Applied and Environmental Microbiology 74 (6):1812–9. doi: 10.1128/AEM.02259-07.
  • Wouters, J. A., M. Mailhes, F. M. Rombouts, W. M. de Vos, O. P. Kuipers, and T. Abee. 2000. Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG1363. Applied and Environmental Microbiology 66 (9):3756–63. doi: 10.1128/AEM.66.9.3756-3763.2000.
  • Wouters, J. A., F. M. Rombouts, O. P. Kuipers, W. M. de Vos, and T. Abee. 2000. The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Systematic and Applied Microbiology 23 (2):165–73. doi: 10.1016/S0723-2020(00)80001-6.
  • Wu, C., J. Huang, and R. Zhou. 2014. Progress in engineering acid stress resistance of lactic acid bacteria. Applied Microbiology and Biotechnology 98 (3):1055–63. doi: 10.1007/s00253-013-5435-3.
  • Wu, C., J. Zhang, W. Chen, M. Wang, G. Du, and J. Chen. 2012. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei zhang and its mutant with enhanced lactic acid tolerance. Applied Microbiology and Biotechnology 93 (2):707–22. doi: 10.1007/s00253-011-3757-6.
  • Wu, C., J. Zhang, G. Du, and J. Chen. 2013. Aspartate protects Lactobacillus casei against acid stress. Applied Microbiology and Biotechnology 97 (9):4083–93. doi: 10.1007/s00253-012-4647-2.
  • Wu, Q. Q., H. J. You, H. J. Ahn, B. Kwon, and G. E. Ji. 2012. Changes in growth and survival of bifidobacterium by coculture with propionibacterium in soy milk, cow's milk, and modified MRS medium. International Journal of Food Microbiology 157 (1):65–72. doi: 10.1016/j.ijfoodmicro.2012.04.013.
  • Wu, R., W. Zhang, T. Sun, J. Wu, X. Yue, H. Meng, and H. Zhang. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei zhang to low acid stress. International Journal of Food Microbiology 147 (3):181–7. doi: 10.1016/j.ijfoodmicro.2011.04.003.
  • Yan, M., J. Han, X. Xu, L. Liu, C. Gao, H. Zheng, and Y. Chen. 2016. Gsy, a rase from Leuconostoc mesenteroides, mediates the formation of cell aggregates in response to oxidative stress. Scientific Reports 6 (12):38122. https://doi.org/10.1038/srep38122.
  • Yang, B., L. Xiao, S. Liu, X. Liu, Y. Luo, Q. Ji, P. Yang, and Z. Liu. 2017. Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice. American Journal of Translational Research 9 (2):376–85.
  • Yi, X., E. Kot, and A. Bezkorovainy. 1998. Properties of NADH oxidase from Lactobacillus delbrueckii ssp bulgaricus. Journal of the Science of Food and Agriculture 78 (4):527–34. https://doi.org/10.1002/(SICI)1097-0010(199812)78:4 < 527 doi: 10.1002/(SICI)1097-0010(199812)78:4<527::AID-JSFA149>3.0.CO;2-L.
  • Yin, X., M. R. Salemi, B. S. Phinney, V. Gotcheva, A. Angelov, and M. L. Marco. 2017. Proteomes of Lactobacillus delbrueckii subsp. bulgaricus LBB. B5 incubated in milk at optimal and low temperatures. MSystems 2 (5):e00027–17. https://doi.org/10.1128/mSystems.00027-17.
  • Zaidi, A. H., P. J. Bakkes, B. P. Krom, H. C. van der Mei, and A. J. M. Driessen. 2011. Cholate-stimulated biofilm formation by Lactococcus lactis cells. Applied and Environmental Microbiology 77 (8):2602–10. doi: 10.1128/AEM.01709-10.
  • Zayed, G., and Y. H. Roos. 2004. Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochemistry 39 (9):1081–6. doi: 10.1016/S0032-9592(03)00222-X.
  • Zhang, J., C. Wu, G. Du, and J. Chen. 2012. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnology and Bioprocess Engineering 17 (2):283–9. doi: 10.1007/s12257-011-0346-6.
  • Ziemienowicz, A., D. Skowyra, J. Zeilstra-Ryalls, O. Fayet, C. Georgopoulos, and M. Zylicz. 1993. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity. Journal of Biological Chemistry 268 (34):25425–31.
  • Zolkiewski, M. 1999. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation a novel multi-chaperone system from Escherichia coli. Journal of Biological Chemistry 274 (40):28083–6. doi: 10.1074/jbc.274.40.28083.
  • Zuo, F., R. Yu, X. Feng, G. B. Khaskheli, L. Chen, H. Ma, and S. Chen. 2014. Combination of heterogeneous catalase and superoxide dismutase protects Bifidobacterium longum strain NCC2705 from oxidative stress. Applied Microbiology and Biotechnology 98 (17):7523–34. https://doi.org/10.1007/s00253-014-5851-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.