29,297
Views
115
CrossRef citations to date
0
Altmetric
Reviews

How processing may affect milk protein digestion and overall physiological outcomes: A systematic review

, , & ORCID Icon

References

  • Alamir, I., C. Niquet-Leridon, P. Jacolot, C. Rodriguez, M. Orosco, P. M. Anton, and F. J. Tessier. 2013. Digestibility of extruded proteins and metabolic transit of N ε-carboxymethyllysine in rats. Amino Acids 44 (6):1441–9. doi: 10.1007/s00726-012-1427-3.
  • Barbé, F., S. Le Feunteun, D. Rémond, O. Ménard, J. Jardin, G. Henry, B. Laroche, and D. Dupont. 2014. Tracking the in vivo release of bioactive peptides in the gut during digestion: Mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrix fed mini-pigs. Food Research International 63:147–56. doi: 10.1016/j.foodres.2014.02.015.
  • Barbé, F., O. Ménard, Y. Le Gouar, C. Buffière, M.-H. Famelart, B. Laroche, S. Le Feunteun, D. Dupont, and D. Rémond. 2013. The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry 136 (3–4):1203–12. doi: 10.1016/j.foodchem.2012.09.022.
  • Bernasconi, E., R. Fritsché, and B. Corthésy. 2006. Specific effects of denaturation, hydrolysis and exposure to Lactococcus lactis on bovine β-lactoglobulin transepithelial transport, antigenicity and allergenicity. Clinical & Experimental Allergy 36 (6):803–14. doi: 10.1111/j.1365-2222.2006.02504.x.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Bui, T. P. N., J. Ritari, S. Boeren, P. de Waard, C. M. Plugge, and W. M. de Vos. 2015. Production of butyrate from lysine and the amadori product fructoselysine by a human gut commensal. Nature Communications 6 (1):10062. doi: 10.1038/ncomms10062.
  • Carbonaro, M., M. Cappelloni, S. Sabbadini, and E. Carnovale. 1997. Disulfide reactivity and in vitro protein digestibility of different Thermal-Treated milk samples and whey proteins. Journal of Agricultural and Food Chemistry 45 (1):95–100. doi: 10.1021/jf950828i.
  • Cattaneo, S., M. Stuknytė, F. Masotti, and I. De Noni. 2017. Protein breakdown and release of β-casomorphins during in vitro gastro-intestinal digestion of sterilised model systems of liquid infant formula. Food Chemistry 217:476–82. doi: 10.1016/j.foodchem.2016.08.128.
  • Chang, C. H., and X. H. Zhao. 2012. In vitro digestibility and rheological properties of caseinates treated by an oxidative system containing horseradish peroxidase, glucose oxidase and glucose. International Dairy Journal 27 (1-2):47–52. doi: 10.1016/j.idairyj.2012.07.004.
  • Corrochano, A. R., V. Buckin, P. M. Kelly, and L. Giblin. 2018. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. Journal of Dairy Science 101 (6):4747–61. doi: 10.3168/jds.2017-13618.
  • Corzo-Martínez, M., M. Ávila, F. J. Moreno, T. Requena, and M. Villamiel. 2012. Effect of milk protein glycation and gastrointestinal digestion on the growth of bifidobacteria and lactic acid bacteria. International Journal of Food Microbiology 153 (3):420–7. doi: 10.1016/j.ijfoodmicro.2011.12.006.
  • Corzo-Martínez, M., A. C. Soria, J. Belloque, M. Villamiel, and F. J. Moreno. 2010. Effect of glycation on the gastrointestinal digestibility and immunoreactivity of bovine β-lactoglobulin. International Dairy Journal 20 (11):742–52. doi: 10.1016/j.idairyj.2010.04.002.
  • Culver, C. A., and H. E. Swaisgood. 1989. Changes in the digestibility of dried casein and glucose mixtures occurring during storage at different temperatures and water activities. Journal of Dairy Science 72 (11):2916–20. doi: 10.3168/jds.S0022-0302(89)79442-X.
  • de Vrese, M., R. Frik, N. Roos, and H. Hagemeister. 2000. Protein-bound D-amino acids, and to a lesser extent lysinoalanine, decrease true ileal protein digestibility in minipigs as determined with (15)N-labeling. The Journal of Nutrition 130 (8):2026–31. doi: 10.1093/jn/130.8.2026.
  • Delorenzi, N. J., A. Moro, P. A. Busti, G. D. Báez, and G. A. Ballerinia. 2011. Effects of structural changes in β-lactoglobulin on its allergenicity. In Whey: Types, composition and health implications, eds. G. M. Ortero and R. M. Benitez, 169–82. Hauppauge, NY: Nova Science Publishers.
  • Deng, Y., P. A. Wierenga, H. A. Schols, S. Sforza, and H. Gruppen. 2017. Effect of Maillard induced glycation on protein hydrolysis by lysine/arginine and non-lysine/arginine specific proteases. Food Hydrocolloids 69:210–9. doi: 10.1016/j.foodhyd.2017.02.007.
  • Deo, P., J. V. Glenn, L. A. Powell, A. W. Stitt, and J. M. Ames. 2009. Upregulation of oxidative stress markers in human microvascular endothelial cells by complexes of serum albumin and digestion products of glycated casein. Journal of Biochemical and Molecular Toxicology 23 (5):364–72. doi: 10.1002/jbt.20301.
  • Desrosiers, T., and L. Savoie. 1991. Extent of damage to amino acid availability of whey protein hearted with sugar. Journal of Dairy Research 58 (4):431–41.
  • Desrosiers, T., L. Savoie, G. Bergeron, and G. Parent. 1989. Estimation of lysine damage in heated whey proteins by furosine determinations in conjunction with the digestion cell technique. Journal of Agricultural and Food Chemistry 37 (5):1385–91. doi: 10.1021/jf00089a039.
  • Donato, L., and F. Guyomarc’h. 2009. Formation and properties of the whey protein/-casein complexes in heated skim milk – A review. Dairy Science and Technology 89 (1):3–29. doi: 10.1051/dst:2008033.
  • Dupont, D., R. Boutrou, O. Menard, J. Jardin, G. Tanguy, P. Schuck, B. B. Haab, and J. Leonil. 2010. Heat treatment of milk during powder manufacture increases casein resistance to simulated infant digestion. Food Digestion 1 (1–2):28–39. doi: 10.1007/s13228-010-0003-0.
  • Dupont, D., G. Mandalari, D. Mollé, J. Jardin, O. Rolet-Répécaud, G. Duboz, J. Léonil, C. E. N. Mills, and A. R. Mackie. 2010. Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition & Food Research 54 (11):1677–89. doi: 10.1002/mnfr.200900582.
  • Efigenia, M., B. Povoa, and T. Moraes-Santos. 1997. Effect of heat treatment on the nutritional quality of milk proteins. International Dairy Journal 7 (8/9):609–12. doi: 10.1016/S0958-6946(97)00049-6.
  • EFSA. 2012. Scientific opinion on dietary reference values for protein. EFSA Journal 10 (2):2557. doi: 10.2903/j.efsa.2012.2557.
  • Erbersdobler, H. 1989. Protein reactions during food processing and storage – Their relevance to human nutrition. Bibliotheka Nutrio et Dieta 43:140–55.
  • Fardet, A., and E. Rock. 2018. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: A narrative review of evidence. Nutrition Research Reviews 31 (1):52–70. doi: 10.1017/S0954422417000191.
  • Feng, X., C. Li, N. Ullah, J. Cao, Y. Lan, W. Ge, R. M. Hackman, Z. Li, and L. Chen. 2015. Susceptibility of whey protein isolate to oxidation and changes in physicochemical, structural, and digestibility characteristics. Journal of Dairy Science 98 (11):7602–13. doi: 10.3168/jds.2015-9814.
  • Ferrer, E., A. Alegría, R. Farré, P. Abellán, and F. Romero. 1999. Review: Indicators of damage of protein quality and nutritional value of milk. Food Science and Technology International 5 (6):447–61. doi: 10.1177/108201329900500602.
  • Ferron-Baumy, C., D. Molle, G. Garric, and J. L. Maubois. 1992. Characterization of caseinomacropeptides released from renneted raw and UHT treated milks. Le Lait 72 (2):165–73. doi: 10.1051/lait:1992211.
  • Floris, R., T. Lambers, A. Alting, and J. Kiers. 2010. Trends in infant formulas: A dairy perspective. In Improving the safety and quality of milk, ed. M. Griffiths, 454–74. Amsterdam, the Netherlands: Elsevier. doi: 10.1533/9781845699437.3.454.
  • Fox, M., G. Georgi, G. Boehm, D. Menne, M. Fried, and M. Thumshirn. 2004. Dietary protein precipitation properties have effects on gastric emptying in healthy volunteers. Clinical Nutrition 23 (4):641–6. doi: 10.1016/j.clnu.2003.10.013.
  • Friedman, M. 1999. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. Journal of Agricultural and Food Chemistry 47 (4):1295–319. doi: 10.1021/jf981000 + .
  • Friedman, M. 2010. Origin, microbiology, nutrition, and pharmacology of D-Amino acids. Chemistry & Biodiversity 7 (6):1491–530. doi: 10.1002/cbdv.200900225.
  • Gerrard, J. A., M. Lasse, J. Cottam, J. P. Healy, S. E. Fayle, I. Rasiah, P. K. Brown, S. M. BinYasir, K. H. Sutton, and N. G. Larsen. 2012. Aspects of physical and chemical alterations to proteins during food processing – Some implications for nutrition. British Journal of Nutrition 108 (S2):S288–S297. doi: 10.1017/S000711451200236X.
  • Gilani, G. S., and E. Sepehr. 2003. Protein digestibility and quality in products containing antinutritional factors are adversely affected by old age in rats. The Journal of Nutrition 133 (1):220–5. doi: 10.1093/jn/133.1.220.
  • Gu, F. L., J. M. Kim, S. Abbas, X. M. Zhang, S. Q. Xia, and Z. X. Chen. 2010. Structure and antioxidant activity of high molecular weight Maillard reaction products from casein-glucose. Food Chemistry 120 (2):505–11. doi: 10.1016/j.foodchem.2009.10.044.
  • Guo, M. R., P. F. Fox, A. Flynn, and P. S. Kindstedt. 1995. Susceptibility of β-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. Journal of Dairy Science 78 (11):2336–44. doi: 10.3168/jds.S0022-0302(95)76860-6.
  • Guyomarc’h, F., F. Warin, D. Donald Muir, and J. Leaver. 2000. Lactosylation of milk proteins during the manufacture and storage of skim milk powders. International Dairy Journal 10 (12):863–72. doi: 10.1016/S0958-6946(01)00020-6.
  • Hellwig, M., and T. Henle. 2013. Release of pyrraline in absorbable peptides during simulated digestion of casein glycated by 3-deoxyglucosone. European Food Research and Technology 237 (1):47–55. doi: 10.1007/s00217-013-2027-5.
  • Hernandez-Hernandez, O., F. J. Moreno, S. Kolida, R. A. Rastall, and M. L. Sanz. 2011. Effect of glycation of bovine β-lactoglobulin with galactooligosaccharides on the growth of human faecal bacteria. International Dairy Journal 21 (12):949–52. doi: 10.1016/j.idairyj.2011.06.002.
  • Hiller, B., and P. C. Lorenzen. 2010. Functional properties of milk proteins as affected by Maillard reaction induced oligomerisation. Food Research International 43 (4):1155–66. doi: 10.1016/j.foodres.2010.02.006.
  • Huppertz, T., P. F. Fox, and A. L. Kelly. 2018. The caseins: Structure, stability, and functionality. In Proteins in food processing, ed. R. Y. Yada, 49–92. Amsterdam, the Netherlands: Elsevier. doi: 10.1016/B978-0-08-100722-8.00004-8.
  • Joubran, Y., A. Moscovici, and U. Lesmes. 2015. Antioxidant activity of bovine alpha lactalbumin Maillard products and evaluation of their in vitro gastro-duodenal digestive proteolysis. Food & Function 6 (4):1229–40. doi: 10.1039/C4FO01165A.
  • Joubran, Y., A. Moscovici, R. Portmann, and U. Lesmes. 2017. Implications of the Maillard reaction on bovine alpha-lactalbumin and its proteolysis during in vitro infant digestion. Food & Function 8 (6):2295–308. doi: 10.1039/C7FO00588A.
  • Kitabatake, N., and Y. I. Kinekawa. 1998. Digestibility of bovine milk whey protein and β-lactoglobulin in vitro and in vivo. Journal of Agricultural and Food Chemistry 46 (12):4917–23. doi: 10.1021/jf9710903.
  • Lacroix, M., C. Bon, C. Bos, J. Léonil, R. Benamouzig, C. Luengo, J. Fauquant, D. Tomé, and C. Gaudichon. 2008. Ultra high temperature treatment, but not pasteurization, affects the postprandial kinetics of milk proteins in humans. The Journal of Nutrition 138 (12):2342–7. doi: 10.3945/jn.108.096990.
  • Lacroix, M., J. Léonil, C. Bos, G. Henry, G. Airinei, J. Fauquant, D. Tomé, and C. Gaudichon. 2006. Heat markers and quality indexes of industrially heat-treated [15N] milk protein measured in rats. Journal of Agricultural and Food Chemistry 54 (4):1508–17. doi: 10.1021/jf051304d.
  • Lamothe, S., N. Rémillard, J. Tremblay, and M. Britten. 2017. Influence of dairy matrices on nutrient release in a simulated gastrointestinal environment. Food Research International 92:138–46. doi: 10.1016/j.foodres.2016.12.026.
  • Larsen, J. A., A. J. Fascetti, C. C. Calvert, and Q. R. Rogers. 2010. Bioavailability of lysine for kittens in overheated casein is underestimated by the rat growth assay method. Journal of Animal Physiology and Animal Nutrition 94 (5):e102. doi: 10.1111/j.1439-0396.2010.00988.x.
  • Lee, K., and H. F. Erbersdobler. 2005. Balance experiments on human volunteers with ε-fructoselysine (FL) and lysinoalanine (LAL). In Maillard reactions in chemistry, food and health, eds. T. P. Labuza, G. A. Reineccius, V. M. Monnier, J. O'Brien, and J.W. Baynes, 358–63. Amsterdam, the Netherlands: Elsevier. doi: 10.1533/9781845698393.4.358.
  • Li, Y., M. V. Ostergaard, P. Jiang, D. E. W. Chatterton, T. Thymann, A. S. Kvistgaard, and P. T. Sangild. 2013. Whey protein processing influences Formula-Induced gut maturation in preterm pigs. The Journal of Nutrition 143 (12):1934–42. doi: 10.3945/jn.113.182931.
  • Li, Y., D. N. Nguyen, K. Obelitz-Ryom, A. D. Andersen, T. Thymann, D. E. W. Chatterton, S. Purup, A. B. Heckmann, S. B. Bering, and P. T. Sangild. 2018. Bioactive whey protein concentrate and lactose stimulate gut function in formula-fed preterm pigs. Journal of Pediatric Gastroenterology and Nutrition 66 (1):128–34. doi: 10.1097/MPG.0000000000001699.
  • Li, Z., Y. Luo, L. Feng, and P. Liao. 2013. Effect of Maillard reaction conditions on antigenicity of β-lactoglobulin and the properties of glycated whey protein during simulated gastric digestion. Food and Agricultural Immunology 24 (4):433–43. doi: 10.1080/09540105.2012.712951.
  • Liardon, R., and R. F. Hurrell. 1983. Amino acid racemization in heated and alkali-treated proteins. Journal of Agricultural and Food Chemistry 37:432–7. doi: 10.1021/jf00116a062.
  • Lindberg, T., S. Engberg, L. B. Sjöberg, and B. Lönnerdal. 1998. In vitro digestion of proteins in human milk fortifiers and in preterm formula. Journal of Pediatric Gastroenterology & Nutrition 27 (1):30–6. doi: 10.1097/00005176-199807000-00006.
  • Liu, F., M. Teodorowicz, H. J. Wichers, M. A. J. S. Van Boekel, and K. A. Hettinga. 2016. Generation of soluble advanced glycation end products receptor (sRAGE)-binding ligands during extensive heat treatment of whey protein/lactose mixtures is dependent on glycation and aggregation. Journal of Agricultural and Food Chemistry 64 (33):6477–86. doi: 10.1021/acs.jafc.6b02674.
  • Liusuwan, R. A., and B. Lönnerdal. 1996. Solubility and digestibility of milk proteins in different forms of infant formulas. FASEB Journal 10 (3).
  • Lorieau, L., A. Halabi, A. Ligneul, E. Hazart, D. Dupont, and J. Floury. 2018. Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion. Food Hydrocolloids 82:399–411. doi: 10.1016/j.foodhyd.2018.04.019.
  • Loveday, S. M., M. R. Peram, H. Singh, A. Ye, and G. B. Jameson. 2014. Digestive diversity and kinetic intrigue among heated and unheated β-lactoglobulin species. Food Funct. 5 (11):2783–91. doi: 10.1039/C4FO00362D.
  • Luz Sanz, M., M. Corzo-Martínez, R. a Rastall, A. Olano, and F. J. Moreno. 2007. Characterization and in vitro digestibility of bovine beta-lactoglobulin glycated with galactooligosaccharides. Journal of Agricultural and Food Chemistry 55 (19):7916–25. doi: 10.1021/jf071111l.
  • Maessen, D. E. M., C. D. A. Stehouwer, and C. G. Schalkwijk. 2015. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clinical Science 128 (12):839–61. doi: 10.1042/CS20140683.
  • Mauron, J. 1990. Influence of processing on protein quality. Journal of Nutritional Science and Vitaminology 36 Suppl 1:S57–S69. doi: 10.3177/jnsv.36.4-SupplementI_S57.
  • Mehta, B. M., and H. C. Deeth. 2016. Blocked lysine in dairy products: Formation, occurrence, analysis, and nutritional implications. Comprehensive Reviews in Food Science and Food Safety 15 (1):206–18. doi: 10.1111/1541-4337.12178.
  • Meltretter, J., S. Seeber, A. Humeny, C.-M. Becker, and M. Pischetsrieder. 2007. Site-Specific formation of Maillard, oxidation, and condensation products from whey proteins during reaction with lactose. Journal of Agricultural and Food Chemistry 55 (15):6096. doi: 10.1021/jf0705567.
  • Mesías, M., I. Seiquer, and M. P. Navarro. 2009. Influence of diets rich in Maillard reaction products on calcium bioavailability. Assays in male adolescents and in caco-2 cells. Journal of Agricultural and Food Chemistry 57 (20):9532–8. doi: 10.1021/jf9018646.
  • Moher, D., A. Liberati, J. Tetzlaff, D. G. Altman, and P. Grp. 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement (reprinted from Annals of Internal Medicine). Physical Therapy 89 (9):873–80. doi: 10.1371/journal.pmed.1000097.
  • Morgan, F., J. Léonil, D. Mollé, and S. Bouhallab. 1999. Modification of bovine β-lactoglobulin by glycation in a powdered state or in an aqueous solution: Effect on association behavior and protein conformation. Journal of Agricultural and Food Chemistry 47 (1):83–91. doi: 10.1021/JF9804387.
  • Morisawa, Y., A. Kitamura, T. Ujihara, N. Zushi, K. Kuzume, Y. Shimanouchi, S. Tamura, H. Wakiguchi, H. Saito, and K. Matsumoto. 2009. Effect of heat treatment and enzymatic digestion on the B cell epitopes of cow’s milk proteins. Clinical & Experimental Allergy 39 (6):918–25. doi: 10.1111/j.1365-2222.2009.03203.x.
  • Moughan, P. J., M. N. Wilson, C. H. M. Smits, and W. C. Smith. 1989. An evaluation of skim milk powders subjected to different heating conditions during processing as dietary protein sources for the young pig. Animal Feed Science and Technology 22 (3):203–15. doi: 10.1016/0377-8401(89)90062-X.
  • Moughan, P. J., M. P. J. Gall, and S. M. Rutherfurd. 1996. Absorption of lysine and deoxyketosyllysine in an early-Maillard browned casein by the growing pig. Journal of Agricultural and Food Chemistry 44 (6):1520–5. doi: 10.1021/jf950428v.
  • Moughan, P. J., and S. M. Rutherfurd. 1996. A new method for determining digestible reactive lysine in foods. Journal of Agricultural and Food Chemistry 44 (8):2202–9. doi: 10.1021/jf950032j.
  • Mpassi, D., G. Rychen, M. Mertes, and F. Laurent. 2001. Portal absorption of 45Ca from labelled milk, yoghurt or heat treated yoghurt in the growing pig. International Dairy Journal 11 (10):809–15. doi: 10.1016/S0958-6946(01)00107-8.
  • Mulet-Cabero, A.-I., A. R. Mackie, P. J. Wilde, M. A. Fenelon, and A. Brodkorb. 2019. Structural mechanism and kinetics of in vitro gastric digestion are affected by process-induced changes in bovine milk. Food Hydrocolloids 86:172–83. doi: 10.1016/j.foodhyd.2018.03.035.
  • Nguyen, D. N., P. T. Sangild, Y. Li, S. B. Bering, and D. E. W. Chatterton. 2016. Processing of whey modulates proliferative and immune functions in intestinal epithelial cells. Journal of Dairy Science 99 (2):959–69. doi: 10.3168/jds.2015-9965.
  • Nongonierma, A. B., and R. J. FitzGerald. 2015. Bioactive properties of milk proteins in humans: A review. Peptides 73:20–34. doi: 10.1016/j.peptides.2015.08.009.
  • Nooshkam, M., and A. Madadlou. 2016. Microwave-assisted isomerisation of lactose to lactulose and Maillard conjugation of lactulose and lactose with whey proteins and peptides. Food Chemistry 200:1–9. doi: 10.1016/j.foodchem.2015.12.094.
  • Nowak-Wegrzyn, A., and A. Fiocchi. 2009. Rare, medium, or well done? the effect of heating and food matrix on food protein allergenicity. Current Opinion in Allergy and Clinical Immunology 9 (3):234–7. doi: 10.1097/ACI.0b013e32832b88e7.
  • Nyangale, E. P., D. S. Mottram, and G. R. Gibson. 2012. Gut microbial activity, implications for health and disease: The potential role of metabolite analysis. Journal of Proteome Research 11 (12):5573–85. doi: 10.1021/pr300637d.
  • O’Riordan, N., M. Kane, L. Joshi, and R. M. Hickey. 2014. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology 24 (3):220–36. doi: 10.1093/glycob/cwt162.
  • Pellegrino, L., S. Cattaneo, and I. De Noni. 2011. Nutrition and health | Effects of processing on protein quality of milk and milk products. In Encyclopedia of dairy sciences, eds. J. W. Fuquay, P. L. H. McSweeney, and P. F. Fox, 1067–74. Cambridge, MA: Academic Press. doi: 10.1016/B978-0-12-374407-4.00383-6.
  • Peram, M. R., S. M. Loveday, A. Ye, and H. Singh. 2013. In vitro gastric digestion of heat-induced aggregates of β-lactoglobulin. Journal of Dairy Science 96 (1):63–74. doi: 10.3168/jds.2012-5896.
  • Pinto, M. S., J. Léonil, G. Henry, C. Cauty, A. Ô. F. Carvalho, and S. Bouhallab. 2014. Heating and glycation of β-lactoglobulin and β-casein: Aggregation and in vitro digestion. Food Research International 55:70–6. doi: 10.1016/j.foodres.2013.10.030.
  • Pompei, C., M. Rossi, and F. Mare. 1988. Protein quality in commercial milk-based infant formulas. Journal of Food Quality 10 (6):375–91. doi: 10.1111/j.1745-4557.1988.tb00298.x.
  • Poulsen, M. W., J. M. Andersen, R. V. Hedegaard, A. N. Madsen, B. N. Krath, R. Monošík, M. J. Bak, J. Nielsen, B. Holst, L. H. Skibsted, et al. 2016. Short-term effects of dietary advanced glycation end products in rats. British Journal of Nutrition 115 (4):629–36. doi: 10.1017/S0007114515004833.
  • Poulsen, M. W., R. V. Hedegaard, J. M. Andersen, B. de Courten, S. Bügel, J. Nielsen, L. H. Skibsted, and L. O. Dragsted. 2013. Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology 60:10–37. doi: 10.1016/j.fct.2013.06.052.
  • Rahaman, T., T. Vasiljevic, and L. Ramchandran. 2017. Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear. Food Chemistry 217:517–23. doi: 10.1016/j.foodchem.2016.08.129.
  • Rérat, A., R. Calmes, P. Vaissade, and P. A. Finot. 2002. Nutritional and metabolic consequences of the early Maillard reaction of heat treated milk in the pig. Significance for man. European Journal of Nutrition 41 (1):1–11. doi: 10.1007/s003940200000.
  • Rinaldi, L., S. F. Gauthier, M. Britten, and S. L. Turgeon. 2014. In vitro gastrointestinal digestion of liquid and semi-liquid dairy matrixes. LWT - Food Science and Technology 57 (1):99–105. doi: 10.1016/j.lwt.2014.01.026.
  • Rinaldi, L., L. E. Rioux, M. Britten, and S. L. Turgeon. 2015. In vitro bioaccessibility of peptides and amino acids from yogurt made with starch, pectin, or beta-glucan. International Dairy Journal 46:39–45. doi: 10.1016/j.idairyj.2014.09.005.
  • Roth-Walter, F., M. C. Berin, P. Arnaboldi, C. R. Escalante, S. Dahan, J. Rauch, E. Jensen-Jarolim, and L. Mayer. 2008. Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer’s patches. Allergy 63 (7):882–90. doi: 10.1111/j.1398-9995.2008.01673.x.
  • Rudloff, S., and B. Lönnerdal. 1992. Solubility and digestibility of milk proteins in infant formulas exposed to different heat treatments. Journal of Pediatric Gastroenterology and Nutrition 15 (1):25–33. doi: 10.1097/00005176-199207000-00005.
  • Rutherfurd, S. M., and P. J. Moughan. 2008. Effect of elevated temperature storage on the digestible reactive lysine content of unhydrolyzed- and hydrolyzed-lactose milk-based products. Journal of Dairy Science 91 (2):477–82. doi: 10.3168/jds.2007-0612.
  • Rutherfurd, S. M., C. A. Montoya, and P. J. Moughan. 2014. Effect of oxidation of dietary proteins with performic acid on true ileal amino acid digestibility as determined in the growing rat. Journal of Agricultural and Food Chemistry 62 (3):699–707. doi: 10.1021/jf403146u.
  • Rutherfurd, S. M., and P. J. Moughan. 1997. Application of a new method for determining digestible reactive lysine to variably heated protein sources. Journal of Agricultural and Food Chemistry 45 (5):1582–6. doi: 10.1021/jf960788y.
  • Rytkönen, J., T. J. Karttunen, R. Karttunen, K. H. Valkonen, M. C. Jenmalm, T. Alatossava, … J. Kokkonen. 2002. Effect of heat denaturation on beta-lactoglobulin-induced gastrointestinal sensitization in rats: Denatured βLG induces a more intensive local immunologic response than native βLG. Pediatric Allergy and Immunology 13 (4):269–77. doi: 10.1034/j.1399-3038.2002.01028.x.
  • Rytkönen, J., K. H. Valkonen, V. Virtanen, R. A. Foxwell, J. M. Kyd, A. W. Cripps, and T. J. Karttunen. 2006. Enterocyte and M-cell transport of native and heat-denatured bovine β-lactoglobulin: Significance of heat denaturation. Journal of Agricultural and Food Chemistry 54 (4):1500–7. doi: 10.1021/jf052309d.
  • Sánchez-Rivera, L., O. Ménard, I. Recio, and D. Dupont. 2015. Peptide mapping during dynamic gastric digestion of heated and unheated skimmed milk powder. Food Research International 77:132–9. doi: 10.1016/j.foodres.2015.08.001.
  • Şanlidere Aloǧlu, H. 2013. The effect of various heat treatments on the antioxidant capacity of milk before and after simulated gastrointestinal digestion. International Journal of Dairy Technology 66 (2):170–4. doi: 10.1111/1471-0307.12021.
  • Sarriá, B., R. López-Fandiño, and M. P. Vaquero. 2000. Protein nutritive utilization in rats fed powder and liquid infant formulas.. Food Science and Technology International 9 (1):9–16.
  • Sarriá, B., R. López-Fandiño, and M. P. Vaquero. 2001. Does processing of a powder or in-bottle-sterilized liquid infant formula affect calcium bioavailability? Nutrition 17 (4):326–31.
  • Sarwar, G., R. W. Peace, and H. G. Botting. 1989. Differences in protein digestibility and quality of liquid concentrate and powder forms of milk-based infant formulas fed to rats. The American Journal of Clinical Nutrition 49 (5):806–13. doi: 10.1093/ajcn/49.5.806.
  • Sarwar, G., R. W. Peace, H. G. Botting, and D. Brulé. 1989. Digestibility of protein and amino acids in selected foods as determined by a rat balance method. Plant Foods for Human Nutrition 39 (1):23–32. doi: 10.1007/BF01092398.
  • Schaafsma, G. 2012. Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets. British Journal of Nutrition 108 (S2):S333–S336. doi: 10.1017/S0007114512002541.
  • Seiquer, I., C. Delgado-Andrade, A. Haro, and M. P. Navarro. 2010. Assessing the effects of severe heat treatment of milk on calcium bioavailability: In vitro and in vivo studies. Journal of Dairy Science 93 (12):5635–43. doi: 10.3168/jds.2010-3469.
  • Seiquer, I., T. Aspe, P. Vaquero, and P. Navarro. 2001. Effects of heat treatment of casein in the presence of reducing sugars on calcium bioavailability: In vitro and in vivo assays. Journal of Agricultural and Food Chemistry 49 (2):1049–55. doi: 10.1021/jf001008v.
  • Singh, H. 2004. Heat stability of milk. International Journal of Dairy Technology 57 (2-3):111–9. doi: 10.1111/j.1471-0307.2004.00143.x.
  • Singh, H., and L. K. Creamer. 1991. Denaturation, aggregation and heat stability of milk protein during the manufacture of skim milk powder. Journal of Dairy Research 58 (3):269. doi: 10.1017/S002202990002985X.
  • Singh, H., and L. K. Creamer. 1993. In vitro digestibility of whey protein/k-casein complexes isolated from heated concentrated milk. Journal of Food Science 58 (2):299–302. doi: 10.1111/j.1365-2621.1993.tb04260.x.
  • Singh, T. K., S. K. Øiseth, L. Lundin, and L. Day. 2014. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins. Food & Function 5 (11):2686–98. doi: 10.1039/C4FO00454J.
  • Sletten, G. B. G., L. Holden, E. Egaas, and C. K. Faeste. 2008. Differential influence of the degree of processing on immunogenicity following proteolysis of casein and β-lactoglobulin. Food and Agricultural Immunology 19 (3):213–28. doi: 10.1080/09540100802350963.
  • Stender, E. G. P., G. Koutina, K. Almdal, T. Hassenkam, A. Mackie, R. Ipsen, and B. Svensson. 2018. Isoenergic modification of whey protein structure by denaturation and crosslinking using transglutaminase. Food & Function 9 (2):797–805. doi: 10.1039/C7FO01451A.
  • Stojadinovic, M., R. Pieters, J. Smit, and T. C. Velickovic. 2014. Cross-linking of β-lactoglobulin enhances allergic sensitization through changes in cellular uptake and processing. Toxicological Sciences 140 (1):224–35. doi: 10.1093/toxsci/kfu062.
  • Støy, A. C. F., P. T. Sangild, K. Skovgaard, T. Thymann, M. Bjerre, D. E. W. Chatterton, … P. M. H. Heegaard. 2016. Spray dried, pasteurised bovine colostrum protects against gut dysfunction and inflammation in preterm pigs. Journal of Pediatric Gastroenterology and Nutrition 63 (2):280–7. doi: 10.1097/MPG.0000000000001056.
  • Swaisgood, H. E., and G. L. Catignani. 1985. Digestibility of modified milk proteins: Nutritional implications. Journal of Dairy Science 68 (10):2782–90. doi: 10.3168/jds.S0022-0302(85)81166-8.
  • Taylor, C. M., and B. W. Woonton. 2009. Quantity and carbohydrate content of glycomacropeptide fractions isolated from raw and heat-treated milk. International Dairy Journal 19 (12):709–14. doi: 10.1016/j.idairyj.2009.06.010.
  • Tunick, M. H., D. X. Ren, D. L. Van Hekken, L. Bonnaillie, M. Paul, R. Kwoczak, and P. M. Tomasula. 2016. Effect of heat and homogenization on in vitro digestion of milk. Journal of Dairy Science 99 (6):4124–39. doi: 10.3168/jds.2015-10474.
  • Van Boekel, M. A. J. S. 1998. Effect of heating on Maillard reactions in milk. Food Chemistry 62 (4):403–14. doi: 10.1016/S0308-8146(98)00075-2.
  • van den Heuvel, E. G. H. M., and J. M. J. M. Steijns. 2018. Dairy products and bone health: How strong is the scientific evidence? Nutrition Research Reviews 31 (2):164–78. doi: 10.1017/S095442241800001X.
  • Vasbinder, A. J., and C. G. de Kruif. 2003. Casein–whey protein interactions in heated milk: The influence of pH. International Dairy Journal 13 (8):669–77. doi: 10.1016/S0958-6946(03)00120-1.
  • Verbeke, K. A., A. R. Boobis, A. Chiodini, C. A. Edwards, A. Franck, M. Kleerebezem, A. Nauta, J. Raes, E. A. F. van Tol, and K. M. Tuohy. 2015. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews 28 (1):42–66. doi: 10.1017/S0954422415000037.
  • Wada, Y., and B. Lönnerdal. 2014. Effects of different industrial heating processes of milk on Site-Specific protein modifications and their relationship to in vitro and in vivo digestibility. Journal of Agricultural and Food Chemistry 62 (18):4175–85. doi: 10.1021/jf501617s.
  • Wada, Y., and B. Lönnerdal. 2015. Effects of industrial heating processes of Milk-Based enteral formulas on Site-Specific protein modifications and their relationship to in vitro and in vivo protein digestibility. Journal of Agricultural and Food Chemistry 63 (30):6787–98. doi: 10.1021/acs.jafc.5b02189.
  • Walstra, P., J. T. M. Wouters, and T. J. Geurts. 2006. Dairy science and technology. 2nd ed. Boca Raton, FL: CRC Press.
  • Wang, X. P., and X. H. Zhao. 2017. Prior lactose glycation of caseinate via the Maillard reaction affects in vitro activities of the pepsin-trypsin digest toward intestinal epithelial cells. Journal of Dairy Science 100 (7):5125–38. doi: 10.3168/jds.2016-12491.
  • Wang, X., A. Ye, Q. Lin, J. Han, and H. Singh. 2018. Gastric digestion of milk protein ingredients: Study using an in vitro dynamic model. Journal of Dairy Science 101 (8):6842–52. doi: 10.3168/jds.2017-14284.
  • Ye, A., J. Cui, D. Dalgleish, and H. Singh. 2017. Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. Journal of Dairy Science 100 (1):36–47. doi: 10.3168/jds.2016-11764.
  • Zhao, D., T. T. Le, L. B. Larsen, L. Li, D. Qin, G. Su, and B. Li. 2017. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione. Food Research International 102:313–22. doi: 10.1016/j.foodres.2017.10.002.
  • Zhao, D., L. Li, T. T. Le, L. B. Larsen, G. Su, Y. Liang, and B. Li. 2017. Digestibility of glyoxal-glycated β-casein and β-lactoglobulin and distribution of peptide-bound advanced glycation end products in gastrointestinal digests. Journal of Agricultural and Food Chemistry 65 (28):5778–88. doi: 10.1021/acs.jafc.7b01951.