4,193
Views
66
CrossRef citations to date
0
Altmetric
Reviews

Recent developments of oleogel utilizations in bakery products

ORCID Icon &

References

  • Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J. and Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Res. Int. 85:67–75. doi: 10.1016/j.foodres.2016.04.016.
  • Bhupathiraju, S. N. and Tucker, K. L. (2011). Coronary heart disease prevention: nutrients, foods, and dietary patterns. Clin. Chim. Acta 412:1493–1514. doi: 10.1016/j.cca.2011.04.038.
  • Bier, D. M. (2016). Saturated fats and cardiovascular disease: interpretations not as simple as they once were. Crit. Rev. Food Sci. Nutr. 56:1943–1946. doi: 10.1080/10408398.2014.998332.
  • Blake, A. I., Co, E. D. and Marangoni, A. G. (2014). Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 91:885–903. doi: 10.1007/s11746-014-2435-0.
  • Blake, A. I. and Marangoni, A. G. (2015). The use of cooling rate to engineer the microstructure and oil binding capacity of wax crystal networks. Food Biophys. 10:456–465. doi: 10.1007/s11483-015-9409-0.
  • Blake, A. I., Toro-Vazquez, J. F. and Hwang, H. S. (2018). Wax oleogels. In: Edible Oleogels: Structure and Health Implications, ed. A. G. Marangoni and N. Garti, 2nd ed., 133–168. Illinois, USA: AOCS Press.
  • Brooker, B. E. (1993). The stabilisation of air in cake batters-the role of fat. Food Struct. 12:2.
  • Co, E. D. and Marangoni, A. G. (2012). Organogels: an alternative edible oil‐structuring method. J. Am. Oil Chem. Soc. 89:749–780. doi: 10.1007/s11746-012-2049-3.
  • Dassanayake, L. S. K., Kodali, D. R., Ueno, S. and Sato, K. (2009). Physical properties of rice bran wax in bulk and organogels. J. Am. Oil Chem. Soc. 86:1163. doi: 10.1007/s11746-009-1464-6.
  • Delbaere, C., Van de Walle, D., Depypere, F., Gellynck, X. and Dewettinck, K. (2016). Relationship between chocolate microstructure, oil migration, and fat bloom in filled chocolates. Eur. J. Lipid Sci. Technol. 118:1800–1826.
  • Demirkesen, I. and Mert, B. (2019). Utilization of beeswax oleogel‐shortening mixtures in gluten‐free bakery products. J. Am. Oil Chem. Soc. 96:545–554. doi: 10.1002/aocs.12195.
  • DiNicolantonio, J. J., Lucan, S. C. and O’Keefe, J. H. (2016). The evidence for saturated fat and for sugar related to coronary heart disease. Prog. Cardiovasc. Dis. 58:464–472. doi: 10.1016/j.pcad.2015.11.006.
  • Doan, C. D., Van de Walle, D., Dewettinck, K. and Patel, A. R. (2015). Evaluating the oil-gelling properties of natural waxes in rice bran oil: rheological, thermal, and microstructural study. J. Am. Oil Chem. Soc. 92:801–811. doi: 10.1007/s11746-015-2645-0.
  • EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). (2010). Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 8:1461.
  • Fayaz, G., Goli, S. A. H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S. and Nicoli, M. C. (2017). Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT 86:523–529. doi: 10.1016/j.lwt.2017.08.036.
  • Forouhi, N. G., Krauss, R. M., Taubes, G. and Willett, W. (2018). Dietary fat and cardiometabolic health: evidence, controversies, and consensus for guidance. BMJ 361:2139.
  • Ghotra, B. S., Dyal, S. D. and Narine, S. S. (2002). Lipid shortenings: a review. Food Res. Int. 35:1015–1048. doi: 10.1016/S0963-9969(02)00163-1.
  • Giacomozzi, A. S., Carrín, M. E. and Palla, C. A. (2018). Muffins elaborated with optimized monoglycerides oleogels: from solid fat replacer obtention to product quality evaluation. J. Food Sci. 83:1505–1515. doi: 10.1111/1750-3841.14174.
  • Gravelle, A. J., Barbut, S. and Marangoni, A. G. (2012). Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Res. Int. 48:578–583. doi: 10.1016/j.foodres.2012.05.020.
  • Gunstone, F. D. (2001). Why are structured lipids and new lipid sources required? In: Structured and Modified Lipids, ed. Frank D. Gunstone, 1–11. NY: CRC Press.
  • Hamley, S. (2017). The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: a Meta-analysis of randomised controlled trials. Nutr. J. 16:30. doi: 10.1186/s12937-017-0254-5.
  • Han, L., Li, L., Li, B., Zhao, L., Liu, G. Q., Liu, X. and Wang, X. (2014). Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil. J. Am. Oil Chem. Soc. 91:1783–1792. doi: 10.1007/s11746-014-2526-y.
  • Hoseney, R. C., Finney, K. F. and Pomeranz, Y. (1970). Functional (breadmaking) and biochemical properties of wheat flour components. VI. Gliadin-lipid-glutenin interaction in wheat gluten. Cereal Chem. 47:135–140.
  • Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A. and Rush, J. W. E. (2009). Potential food applications of edible oil organogels. Trends Food Sci. Technol. 20:470–480. doi: 10.1016/j.tifs.2009.06.002.
  • Hwang, H. S., Kim, S., Evans, K. O., Koga, C. and Lee, Y. (2015). Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Struct. 5:10–20. doi: 10.1016/j.foostr.2015.04.002.
  • Hwang, H. S., Singh, M. and Lee, S. (2016). Properties of cookies made with natural wax-vegetable oil organogels. J. Food Sci. 81:C1045–C1054. doi: 10.1111/1750-3841.13279.
  • Jacob, J., and K. Leelavathi. (2007). Effect of fat-type on cookie dough and cookie quality. J of food Eng. 79(1):299–305.
  • Jang, A., Bae, W., Hwang, H. S., Lee, H. G. and Lee, S. (2015). Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chem. 187:525–529. doi: 10.1016/j.foodchem.2015.04.110.
  • Jewell, A. M. and Seaman, T. (1994). Process for producing a fat-substitute bakery dough and the fat substitute bakery products. U.S. Patent 5,344,663.
  • Jimenez-Colmenero, F., Salcedo-Sandoval, L., Bou, R., Cofrades, S., Herrero, A. M. and Ruiz-Capillas, C. (2015). Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci. Technol. 44:177–188. doi: 10.1016/j.tifs.2015.04.011.
  • Kim, J. Y., Lim, J., Lee, J., Hwang, H. S. and Lee, S. (2017). Utilization of oleogels as a replacement for solid fat in aerated baked goods: Physicochemical, rheological, and tomographic characterization. J. Food Sci. 82 (2):445–452. doi: 10.1111/1750-3841.13583.
  • Lee, S. (2018). Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food hydrocolloid. 77:796–802
  • Lim, J., Jeong, S., Lee, J., Park, S., Lee, J. and Lee, S. (2017). Effect of shortening replacement with oleogels on the rheological and tomographic characteristics of aerated baked goods. J. Sci. Food Agric. 97:3727–3732. doi: 10.1002/jsfa.8235.
  • Malhotra, A., Redberg, R. F. and Meier, P. (2017). Saturated fat does not clog the arteries: coronary heart disease is a chronic inflammatory condition, the risk of which can be effectively reduced from healthy lifestyle interventions. Br. J. Sports Med. 51:1111–1112. doi: 10.1136/bjsports-2016-097285.
  • Manohar, R. S. and Rao, P. H. (1999). Effect of emulsifiers, fat level and type on the rheological characteristics of biscuit dough and quality of biscuits. J. Sci. Food Agric. 79:1223–1231. doi: 10.1002/(SICI)1097-0010(19990715)79:10<1223::AID-JSFA346>3.0.CO;2-W.
  • Marangoni, A. G. and Gregorio, A. (2012). Chocolate compositions containing ethylcellulose. U.S. Patent Application 13/377,462, filed July 19, 2012.
  • Marín-Suárez, M., García-Moreno, P. J., Padial-Domínguez, M., Guadix, A. and Guadix, E. M. (2016). Production and characterization of ice cream with high content in oleic and linoleic fatty acids. Eur. J. Lipid Sci. Technol. 118:1846–1852. doi: 10.1002/ejlt.201600104.
  • Mattice, K. D. and Marangoni, A. G. (2019). Fat crystallization and structure in bakery, meat, and cheese systems. In: Structure-Function Analysis of Edible Fats, ed. A. G. Marangoni, 2nd ed., 287–311. Illinois, USA: Academic and AOCS Press.
  • Mert, B. and Demirkesen, I. (2016a). Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT - Food Sci. Technol. 68:477–484. doi: 10.1016/j.lwt.2015.12.063.
  • Mert, B. and Demirkesen, I. (2016b). Reducing saturated fat with oleogel/shortening blends in a baked product. Food Chem. 199:809–816. doi: 10.1016/j.foodchem.2015.12.087.
  • Moriano, M. E. and Alamprese, C. (2017). Organogels as novel ingredients for low saturated fat ice creams. LWT 86:371–376. doi: 10.1016/j.lwt.2017.07.034.
  • O’Brien, R. D. (2005). Shortenings: types and formulations. In: Bailey's Industrial Oil and Fat Products, 6th ed. Shahidi, F., Ed. Wiley, New Jersey.
  • ÖǧüTcü, M. and Yılmaz, E. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites 65:040. doi: 10.3989/gya.0349141.
  • Oh, I. K., Amoah, C., Lim, J., Jeong, S. and Lee, S. (2017). Assessing the effectiveness of wax-based sunflower oil oleogels in cakes as a shortening replacer. LWT 86:430–437. doi: 10.1016/j.lwt.2017.08.021.
  • Oh, I. K. and Lee, S. (2018). Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloid. 77:796–802. doi: 10.1016/j.foodhyd.2017.11.022.
  • Ojijo, N. K., Neeman, I., Eger, S. and Shimoni, E. (2004). Effects of monoglyceride content, cooling rate and shear on the rheological properties of olive oil/monoglyceride gel networks. J. Sci. Food Agric. 84:1585–1593. doi: 10.1002/jsfa.1831.
  • Park, C., Bemer, H. L. and Maleky, F. (2018). Oxidative stability of rice bran wax oleogels and an oleogel cream cheese product. J. Am. Oil Chem. Soc. 95:1267–1275. doi: 10.1002/aocs.12095.
  • Patel, A. R. (2015a). Potential food applications of oleogels. In: Alternative Routes to Oil Structuring, pp. 51–62. Springer, Cham.
  • Patel, A. R. (2015b). Natural waxes as oil structurants. In: Alternative Routes to Oil Structuring, pp. 15–27. Springer, Cham.
  • Patel, A. R., Cludts, N., Sintang, M. D. B., Lesaffer, A. and Dewettinck, K. (2014a). Edible oleogels based on water soluble food polymers: preparation, characterization and potential application. Food Funct. 5:2833–2841. doi: 10.1039/C4FO00624K.
  • Patel, A. R., Cludts, N., Sintang, M. D. B., Lewille, B., Lesaffer, A. and Dewettinck, K. (2014b). Polysaccharide-based oleogels prepared with an emulsion-templated approach. Chemphyschem 15:3435–3439. doi: 10.1002/cphc.201402473.
  • Patel, A. R. and Dewettinck, K. (2015). Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. Eur. J. Lipid Sci. Technol. 117:1772–1781. doi: 10.1002/ejlt.201400553.
  • Patel, A. R. and Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. Food Funct. 7:20–29. doi: 10.1039/c5fo01006c.
  • Patel, A. R., Rajarethinem, P. S., Grędowska, A., Turhan, O., Lesaffer, A., De Vos, W. H., Walle, D. and Dewettinck, K. (2014c). Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food Funct. 5:645–652. doi: 10.1039/C4FO00034J.
  • Patel, A. R., Schatteman, D., De Vos, W. H. and Dewettinck, K. (2013). Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Adv. 3:5324–5327. doi: 10.1039/c3ra40934a.
  • Pehlivanoglu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S. and Sagdic, O. (2018a). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr. 58:1330–1341. doi: 10.1080/10408398.2016.1256866.
  • Pehlivanoglu, H., Ozulku, G., Yildirim, R. M., Demirci, M., Toker, O. S. and Sagdic, O. (2018b). Investigating the usage of unsaturated fatty acid-rich and low-calorie oleogels as a shortening mimetics in cake. J. Food Process. Preserv. 42:e13621. doi: 10.1111/jfpp.13621.
  • Pernetti, M., van Malssen, K., Kalnin, D. and Flöter, E. (2007). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloid. 21:855–861. doi: 10.1016/j.foodhyd.2006.10.023.
  • Pomeranz, Y. (1973). Interaction between glycolipids and wheat flour macromolecules in breadmaking. In: Advances in Food Research, vol. 20, 153–188. New York, USA: Academic Press.
  • Pomeranz, Y. and Chung, O. K. (1978). Interaction of lipids with proteins and carbohydrates in breadmaking. J. Am. Oil Chem. Soc. 55:285–289. doi: 10.1007/BF02676944.
  • Reddy, S. Y. and Jeyarani, T. (2001). Trans-free bakery shortenings from mango kernel and mahua fats by fractionation and blending. J. Am. Oil Chem. Soc. 78:635–640. doi: 10.1007/s11746-001-0318-8.
  • Rios, R. V., Pessanha, M. D. F., Almeida, P. F. D., Viana, C. L. and Lannes, S. C. D. S. (2014). Application of fats in some food products. Food Sci. Technol. 34:3–15. doi: 10.1590/S0101-20612014000100001.
  • Rogers, M. A., Strober, T., Bot, A., Toro-Vazquez, J. F., Stortz, T. and Marangoni, A. G. (2014). Edible oleogels in molecular gastronomy. Int. J. Gastron. Food Sci. 2:22–31. doi: 10.1016/j.ijgfs.2014.05.001.
  • Si, H., Cheong, L. Z., Huang, J., Wang, X. and Zhang, H. (2016). Physical properties of soybean oleogels and oil migration evaluation in model praline system. J. Am. Oil Chem. Soc. 93:1075–1084. doi: 10.1007/s11746-016-2846-1.
  • Singh, A., Auzanneau, F. I. and Rogers, M. A. (2017). Advances in edible oleogel technologies–a decade in review. Food Res. Int. 97:307–317. doi: 10.1016/j.foodres.2017.04.022.
  • Stortz, T. A., Laredo, T. and Marangoni, A. G. (2015). The role of lecithin and solvent addition in ethylcellulose-stabilized heat resistant chocolate. Food Biophys. 10:253–263. doi: 10.1007/s11483-014-9379-7.
  • Stortz, T. A. and Marangoni, A. G. (2013). Ethylcellulose solvent substitution method of preparing heat resistant chocolate. Food Res. Int. 51:797–803. doi: 10.1016/j.foodres.2013.01.059.
  • Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A. and Marangoni, A. G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technol. 24:151–154. doi: 10.1002/lite.201200205.
  • Tanti, R., Barbut, S. and Marangoni, A. G. (2016). Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. Food Hydrocolloid. 61:329–337. doi: 10.1016/j.foodhyd.2016.05.032.
  • Toro-Vazquez, J. F., Charó-Alonso, M. A., Pérez-Martínez, J. D. and Morales-Rueda, J. A. (2011). Candelilla wax as an organogelator for vegetable oils—an alternative to develop trans-free products for the food industry. In Edible Oleogels: Structure and Health Implications, ed. A. G. Marangoni and N. Garti, 2nd., 119–148. Illinois, USA: AOCS Press.
  • Toro-Vazquez, J. F., Mauricio-Pérez, R., González-Chávez, M. M., Sánchez-Becerril, M., de Jesús Ornelas-Paz, J. and Pérez-Martínez, J. D. (2013). Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Res. Int. 54:1360–1368. doi: 10.1016/j.foodres.2013.09.046.
  • Toro-Vazquez, J. F., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M., Alonzo-Macias, M. and González-Chávez, M. M. (2007). Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J. Am. Oil Chem. Soc. 84:989–1000.
  • Volek, J. S. and Forsythe, C. E. (2005). The case for not restricting saturated fat on a low carbohydrate diet. Nutr. Metab. 2:21.doi: 10.1186/1743-7075-2-21.
  • Willett, W. C. (2012). Dietary fats and coronary heart disease. J. Int. Med. 272:13–24. doi: 10.1111/j.1365-2796.2012.02553.x.
  • Ye, X., Li, P., Lo, Y. M., Fu, H. and Cao, Y. (2019). Development of novel shortenings structured by ethylcellulose oleogels. J. Food Sci. 84:1456. doi: 10.1111/1750-3841.14615.
  • Yılmaz, E. and Öğütcü, M. (2015a). Oleogels as spreadable fat and butter alternatives: Sensory description and consumer perception. RSC Adv. 5:50259–50267. doi: 10.1039/C5RA06689A.
  • Yılmaz, E. and Öğütcü, M. (2015b). The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct. 6:1194–1204. doi: 10.1039/c5fo00019j.
  • Zetzl, A. K., Gravelle, A. J., Kurylowicz, M., Dutcher, J., Barbut, S. and Marangoni, A. G. (2014). Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Struct. 2:27–40. doi: 10.1016/j.foostr.2014.07.002.
  • Zetzl, A. K. and Marangoni, A. G. (2011). Novel strategies for nanostructuring liquid oils into functional fats. In: Edible Oleogels: Structure and Health Implications, ed. A. G. Marangoni and N. Garti, 2nd ed., 19–47. Illinois, USA: AOCS Press.
  • Zetzl, A. K., Marangoni, A. G. and Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct. 3:327–337. doi: 10.1039/c2fo10202a.
  • Zulim Botega, D. C., Marangoni, A. G., Smith, A. K. and Goff, H. D. (2013a). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. J. Food Sci. 78:C1334–C1339. doi: 10.1111/1750-3841.12175.
  • Zulim Botega, D. C., Marangoni, A. G., Smith, A. K. and Goff, H. D. (2013b). Development of formulations and processes to incorporate wax oleogels in ice cream. J. Food Sci. 78:C1845–C1851. doi: 10.1111/1750-3841.12248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.