3,357
Views
190
CrossRef citations to date
0
Altmetric
Reviews

The antibacterial properties of phenolic isomers, carvacrol and thymol

& ORCID Icon

References

  • Abbas, F., Y. Ke, R. Yu, Y. Yue, S. Amanullah, M. M. Jahangir, and Y. Fan. 2017. Volatile terpenoids: Multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246 (5):803–16. doi: 10.1007/s00425-017-2749-x.
  • Abee, T., T. R. Klaenhammer, and L. Letellier. 1994. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Applied and Environmental Microbiology 60 (3):1006–13.
  • Alipour, M., M. Halwani, A. Omri, and Z. E. Suntres. 2008. Antimicrobial effectiveness of liposomal polymyxin B against resistant gram-negative bacterial strains. International Journal of Pharmaceutics 355 (1–2):293–8. doi: 10.1016/j.ijpharm.2007.11.035.
  • Alipour, M., and Z. E. Suntres. 2014. Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Therapeutic Delivery 5 (4):409–27. doi: 10.4155/tde.14.13.
  • Alipour, M., Z. E. Suntres, M. Halwani, A. O. Azghani, and A. Omri. 2009. Activity and interactions of liposomal antibiotics in presence of polyanions and sputum of patients with cystic fibrosis. PLoS One 4 (5):e5724. doi: 10.1371/journal.pone.0005724.
  • Alipour, M., Z. E. Suntres, R. M. Lafrenie, and A. Omri. 2010. Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. Journal of Antimicrobial Chemotherapy 65 (4):684–93. doi: 10.1093/jac/dkq036.
  • Allam, N. G., E. A. Eldrieny, and A. Z. Mohamed. 2015. Effect of combination therapy between thyme oil and ciprofloxacin on ulcer-forming Shigella flexneri. The Journal of Infection in Developing Countries 9 (05):486–95. doi: 10.3855/jidc.6302.
  • Altendorf, K., W. Stalz, J. Greie, and G. Deckers-Hebestreit. 2000. Structure and function of the F(o) complex of the ATP synthase from Escherichia coli. The Journal of Experimental Biology 203 (Pt 1):19–28.
  • Araujo Silva, V., J. Pereira da Sousa, H. de Luna Freire Pessoa, A. Fernanda Ramos de Freitas, H. Douglas Melo Coutinho, L. Beuttenmuller Nogueira Alves, and E. Oliveira Lima. 2016. Ocimum basilicum: Antibacterial activity and association study with antibiotics against bacteria of clinical importance. Pharmaceutical Biology 54 (5):863–7. doi: 10.3109/13880209.2015.1088551.
  • Bagamboula, C. F., M. Uyttendaele, and J. Debevere. 2004. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S-flexneri. Food Microbiology 21 (1):33–42. doi: 10.1016/S0740-0020(03)00046-7.
  • Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar. 2008. Biological effects of essential oils–A review. Food and Chemical Toxicology 46 (2):446–75. doi: 10.1016/j.fct.2007.09.106.
  • Ben Arfa, A., S. Combes, L. Preziosi-Belloy, N. Gontard, and P. Chalier. 2006. Antimicrobial activity of carvacrol related to its chemical structure. Letters in Applied Microbiology 43 (2):149–54. doi: 10.1111/j.1472-765X.2006.01938.x.
  • Botelho, M. A., J. G. Bezerra Filho, L. L. Correa, S. G. Fonseca, D. Montenegro, R. Gapski, G. A. Brito, and J. Heukelbach. 2007. Effect of a novel essential oil mouthrinse without alcohol on gingivitis: A double-blinded randomized controlled trial. Journal of Applied Oral Science 15 (3):175–80. doi: 10.1590/S1678-77572007000300005.
  • Braga, P. C., M. Dal Sasso, M. Culici, and A. Spallino. 2010. Inhibitory activity of thymol on native and mature Gardnerella vaginalis biofilms: in vitro study. Arzneimittelforschung 60 (11):675–81. doi: 10.1055/s-0031-1296346.
  • Buckle, Jane. 2015. Chapter 2 - How essential oils work. In Clinical aromatherapy. 3rd Ed. St. Louis: Churchill Livingstone.
  • Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods–A review. International Journal of Food Microbiology 94 (3):223–53. doi: 10.1016/j.ijfoodmicro.2004.03.022.
  • Burt, S. A., R. van der Zee, A. P. Koets, A. M. de Graaff, F. van Knapen, W. Gaastra, H. P. Haagsman, and E. J. Veldhuizen. 2007. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Applied and Environmental Microbiology 73 (14):4484–90. doi: 10.1128/AEM.00340-07.
  • Burt, S. A., V. T. A. Ojo-Fakunle, J. Woertman, and E. J. A. Veldhuizen. 2014. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 9 (4):e93414. doi: 10.1371/journal.pone.0093414.
  • Carvalho, A. R., R. M. Diniz, M. A. M. Suarez, C. S. S. Figueiredo, A. Zagmignan, M. A. G. Grisotto, E. S. Fernandes, and L. C. N. da Silva. 2018. Use of some asteraceae plants for the treatment of wounds: from ethnopharmacological studies to scientific evidences. Frontiers in Pharmacology 9:784. doi: 10.3389/fphar.2018.00784.
  • Cascaes, M., G. Guilhon, E. Andrade, M. Zoghbi, and L. Santos. 2015. Constituents and pharmacological activities of myrcia (myrtaceae): A review of an aromatic and medicinal group of plants. International Journal of Molecular Sciences 16 (10):23881–904. doi: 10.3390/ijms161023881.
  • Castillo, S., C. O. Perez-Alfonso, D. Martinez-Romero, F. Guillen, M. Serrano, and D. Valero. 2014. The essential oils thymol and carvacrol applied in the packing lines avoid lemon spoilage and maintain quality during storage. Food Control 35 (1):132–6. doi: 10.1016/j.foodcont.2013.06.052.
  • Charpin, D., C. Pichot, J. Belmonte, J. P. Sutra, J. Zidkova, P. Chanez, Y. Shahali, H. Senechal, and P. Poncet. 2017. Cypress pollinosis: From tree to clinic. Clinical Reviews in Allergy & Immunology 56 (2):174–95.
  • Chauhan, A. K., and S. C. Kang. 2014. Thymol disrupts the membrane integrity of salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Res Microbiol 165 (7):559–65. doi: 10.1016/j.resmic.2014.07.001.
  • Chizzola, R. 2010. Essential oil composition of wild growing apiaceae from Europe and the Mediterranean. Natural Product Communications 5 (9):1477–92.
  • Chouhan, S., K., Sharma, and S. Guleria. 2017. Antimicrobial activity of some essential oils—present status and future perspectives. Medicines 4 (3):58.
  • Cirino, I. C., S. M. Menezes-Silva, H. T. Silva, E. L. de Souza, and J. P. Siqueira-Junior. 2014. The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy 60 (5–6):290–3. doi: 10.1159/000381175.
  • Coccimiglio, J., M. Alipour, Z. H. Jiang, C. Gottardo, and Z. Suntres. 2016. Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents. Oxidative Medicine and Cellular Longevity 2016:1. doi: 10.1155/2016/1404505.
  • Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284 (5418):1318–22. doi: 10.1126/science.284.5418.1318.
  • Cowan, M. M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews 12 (4):564–82. doi: 10.1128/CMR.12.4.564.
  • Cristani, M., M. D'Arrigo, G. Mandalari, F. Castelli, M. G. Sarpietro, D. Micieli, V. Venuti, G. Bisignano, A. Saija, and D. Trombetta. 2007. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. Journal of Agricultural and Food Chemistry 55 (15):6300–8. doi: 10.1021/jf070094x.
  • De Vincenzi, M., A. Stammati, A. De Vincenzi, and M. Silano. 2004. Constituents of aromatic plants: Carvacrol. Fitoterapia 75 (7-8):801–4. doi: 10.1016/j.fitote.2004.05.002.
  • Deckers-Hebestreit, G., and K. Altendorf. 1996. The F0F1-type ATP synthases of bacteria: Structure and function of the F0 complex. Annual Review of Microbiology 50 (1):791–824. doi: 10.1146/annurev.micro.50.1.791.
  • Denyer, S. P., and G. Stewart. 1998. Mechanisms of action of disinfectants. International Biodeterioration & Biodegradation 41 (3–4):261–8. doi: 10.1016/S0964-8305(98)00023-7.
  • Dhifi, W., S. Bellili, S. Jazi, N. Bahloul, and W. Mnif. 2016. Essential oils' chemical characterization and investigation of some biological activities: A critical review. Medicines (Basel) 3 (4):E25. doi: 10.3390/medicines3040025.
  • Di Pasqua, R., G. Betts, N. Hoskins, M. Edwards, D. Ercolini, and G. Mauriello. 2007. Membrane toxicity of antimicrobial compounds from essential oils. Journal of Agricultural and Food Chemistry 55 (12):4863–70. doi: 10.1021/jf0636465.
  • Edris, A. E. 2007. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytotherapy Research 21 (4):308–23. doi: 10.1002/ptr.2072.
  • El Solh, A. A., and A. Alhajhusain. 2009. Update on the treatment of Pseudomonas aeruginosa pneumonia. Journal of Antimicrobial Chemotherapy 64 (2):229–38. doi: 10.1093/jac/dkp201.
  • Elshafie, H. S., and I. Camele. 2017. An overview of the biological effects of some Mediterranean essential oils on human health. BioMed Research International 2017:1. doi: 10.1155/2017/9268468.
  • Figueiredo, A. C., J. G. Barroso, L. G. Pedro, L. Salgueiro, M. G. Miguel, and M. L. Faleiro. 2008. Portuguese thymbra and thymus species volatiles: Chemical composition and biological activities. Current Pharmaceutical Design 14 (29):3120–40.
  • Futai, M. 2006. Our research on proton pumping ATPases over three decades: Their biochemistry, molecular biology and cell biology. Proceedings of the Japan Academy, Series B 82 (10):416–38. doi: 10.2183/pjab.82.416.
  • Gabel, C. V., and H. C. Berg. 2003. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proceedings of the National Academy of Sciences of the United States of America 100 (15):8748–51. doi: 10.1073/pnas.1533395100.
  • Garvey, M. I., M. M. Rahman, S. Gibbons, and L. J. V. Piddock. 2011. Medicinal plant extracts with efflux inhibitory activity against gram-negative bacteria. International Journal of Antimicrobial Agents 37 (2):145–51. doi: 10.1016/j.ijantimicag.2010.10.027.
  • Gill, A. O., and R. A. Holley. 2006a. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology 108 (1):1–9. doi: 10.1016/j.ijfoodmicro.2005.10.009.
  • Gill, A. O., and R. A. Holley. 2006b. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. International Journal of Food Microbiology 111 (2):170–4.
  • Griffin S. G., S. G. Wyllie, J. L. Markham, and D. Leach. 1999. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour and Fragrance Journal 14:322–32.
  • Guillen, F., P. J. Zapata, D. Martinez-Romero, S. Castillo, M. Serrano, and D. Valero. 2007. Improvement of the overall quality of table grapes stored under modified atmosphere packaging in combination with natural antimicrobial compounds. Journal of Food Science 72 (3):S185–S90. doi: 10.1111/j.1750-3841.2007.00305.x.
  • Haiko, J., and B. Westerlund-Wikstrom. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology (Basel) 2 (4):1242–67. doi: 10.3390/biology2041242.
  • Hall-Stoodley, L., and P. Stoodley. 2009. Evolving concepts in biofilm infections. Cellular Microbiology 11 (7):1034–43. doi: 10.1111/j.1462-5822.2009.01323.x.
  • Helander, I. M., H. L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm, I. Pol, E. J. Smid, L. G. M. Gorris, and A. von Wright. 1998. Characterization of the action of selected essential oil components on gram-negative bacteria. Journal of Agricultural and Food Chemistry 46 (9):3590–5. doi: 10.1021/jf980154m.
  • Hüsnü, K., Can Başer, and Fatih Demirci. 2007. Chemistry of essential oils. In Flavours and fragrances: Chemistry, bioprocessing and sustainability, ed. R. G. Berger. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Hyldgaard, M., T. Mygind, and R. Meyer. 2012. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3: 12. doi: 10.3389/fmicb.2012.00012.
  • Iannitelli A., R. Grande, A. Di Stefano, M. Di Giulio, P. Sozio, L. J. Bessa, S. Laserra, C. Paolini, F. Protasi, and L. Cellini. 2011. Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. International Journal of Molecular Sciences 12 (8):5039–51. doi: 10.3390/ijms12085039.
  • Karpanen, T. J., T. Worthington, E. R. Hendry, B. R. Conway, and P. A. Lambert. 2008. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. Journal of Antimicrobial Chemotherapy 62 (5):1031–6. doi: 10.1093/jac/dkn325.
  • Khan, I., A. Bahuguna, P. Kumar, V. K. Bajpai, and S. C. Kang. 2017. Antimicrobial potential of carvacrol against uropathogenic Escherichia coli via membrane disruption, depolarization, and reactive oxygen species generation. Frontiers in Microbiology 8:2421. doi: 10.3389/fmicb.2017.02421.
  • Kisko, G., and S. Roller. 2005. Carvacrol and p-cymene inactivate Escherichia coli O157:H7 in apple juice. BMC Microbiology 5:36.
  • Kissels, W., X. Wu, and R. R. Santos. 2017. Short Communication: Interaction of the isomers carvacrol and thymol with the antibiotics doxycycline and tilmicosin: In vitro effects against pathogenic bacteria commonly found in the respiratory tract of calves. Journal of Dairy Science 100 (2):970–4. doi: 10.3168/jds.2016-11536.
  • Knowles, J. R., S. Roller, D. B. Murray, and A. S. Naidu. 2005. Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar typhimurium. Applied and Environmental Microbiology 71 (2):797–803. doi: 10.1128/AEM.71.2.797-803.2005.
  • Korkina, L., V. Kostyuk, C. De Luca, and S. Pastore. 2011. Plant phenylpropanoids as emerging anti-inflammatory agents. Mini-Reviews in Medicinal Chemistry 11 (10):823–35. doi: 10.2174/138955711796575489.
  • Lambert, P. A., and S. M. Hammond. 1973. Potassium fluxes, first indications of membrane damage in micro-organisms. Biochemical and Biophysical Research Communications 54 (2):796–9. doi: 10.1016/0006-291X(73)91494-0.
  • Lambert, R. J. W., P. N. Skandamis, P. J. Coote, and G. J. E. Nychas. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91 (3):453–62. doi: 10.1046/j.1365-2672.2001.01428.x.
  • Langeveld, W. T., E. J. Veldhuizen, and S. A. Burt. 2014. Synergy between essential oil components and antibiotics: A review. Critical Reviews in Microbiology 40 (1):76–94. doi: 10.3109/1040841X.2013.763219.
  • LaPlante, K. L. 2007. In vitro activity of lysostaphin, mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus. Diagnostic Microbiology and Infectious Disease 57 (4):413–8. doi: 10.1016/j.diagmicrobio.2006.09.007.
  • Lebert, I., S. Leroy, and R. Talon. 2007. Effect of industrial and natural biocides on spoilage, pathogenic and technological strains grown in biofilm. Food Microbiology 24 (3):281–7. doi: 10.1016/j.fm.2006.04.011.
  • Li, C., C. J. Louise, W. Shi, and J. Adler. 1993. Adverse conditions which cause lack of flagella in Escherichia coli. Journal of Bacteriology 175 (8):2229–35. doi: 10.1128/jb.175.8.2229-2235.1993.
  • Liu, M., A. Amini, and Z. Ahmad. 2017. Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth. International Journal of Biological Macromolecules 95:145–52. doi: 10.1016/j.ijbiomac.2016.11.038.
  • Liu, Q., X. Meng, Y. Li, C. N. Zhao, G. Y. Tang, and H. B. Li. 2017. Antibacterial and antifungal activities of spices. International Journal of Molecular Sciences 18 (6):1283.
  • Liu, Q., H. Niu, W. Zhang, H. Mu, C. Sun, and J. Duan. 2015. Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens. Letters in Applied Microbiology 60 (5):421–30. doi: 10.1111/lam.12401.
  • Lu, Y., and C. Wu. 2010. Reduction of Salmonella enterica contamination on grape tomatoes by washing with thyme oil, thymol, and carvacrol as compared with chlorine treatment. Journal of Food Protection 73 (12):2270–5. doi: 10.4315/0362-028X-73.12.2270.
  • Luna, A., M. C. Labaque, J. A. Zygadlo, and R. H. Marin. 2010. Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poultry Science 89 (2):366–70. doi: 10.3382/ps.2009-00130.
  • Mamadalieva, N. Z., D. K. Akramov, E. Ovidi, A. Tiezzi, L. Nahar, S. S. Azimova, and S. D. Sarker. 2017. Aromatic medicinal plants of the lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines (Basel) 4 (1):8. doi: 10.3390/medicines4010008.
  • Marsh, P. D. 1992. Microbiological aspects of the chemical control of plaque and gingivitis. Journal of Dental Research 71 (7):1431–8. doi: 10.1177/00220345920710071501.
  • Miladi, H., T. Zmantar, Y. Chaabouni, K. Fedhila, A. Bakhrouf, K. Mahdouani, and K. Chaieb. 2016. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microbial Pathogenesis 99:95–100. doi: 10.1016/j.micpath.2016.08.008.
  • Miladi, H., T. Zmantar, B. Kouidhi, Y. M. A. Al Qurashi, A. Bakhrouf, Y. Chaabouni, K. Mahdouani, and K. Chaieb. 2017. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and gamma-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microbial Pathogenesis 112:156–63. doi: 10.1016/j.micpath.2017.09.057.
  • Miladi, H., T. Zmantar, B. Kouidhi, Y. Chaabouni, K. Mahdouani, A. Bakhrouf, and K. Chaieb. 2017. Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar typhimurium strains to nalidixic acid. Microbial Pathogenesis 104:56–63. doi: 10.1016/j.micpath.2017.01.012.
  • Miladinovic, D. L., B. S. Ilic, B. D. Kocic, M. S. Markovic, and L. C. Miladinovic. 2016. In vitro trials of Dittrichia graveolens essential oil combined with antibiotics. Natural Product Communications 11 (6):865–8.
  • Mith, H., R. Dure, V. Delcenserie, A. Zhiri, G. Daube, and A. Clinquart. 2014. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Science & Nutrition 2 (4):403–16. doi: 10.1002/fsn3.116.
  • Nazer, A. I., A. Kobilinsky, J. L. Tholozan, and F. Dubois-Brissonnet. 2005. Combinations of food antimicrobials at low levels to inhibit the growth of Salmonella sv. Typhimurium: A synergistic effect? Food Microbiology 22 (5):391–8. doi: 10.1016/j.fm.2004.10.003.
  • Nieto, G. 2017. Biological activities of three essential oils of the lamiaceae family. Medicines (Basel) 4 (3):E63. doi: 10.3390/medicines4030063.
  • Nishida, R. 2014. Chemical ecology of insect-plant interactions: Ecological significance of plant secondary metabolites. Bioscience, Biotechnology, and Biochemistry 78 (1):1–13. doi: 10.1080/09168451.2014.877836.
  • Nostro, A., A. Sudano Roccaro, G. Bisignano, A. Marino, M. A. Cannatelli, F. C. Pizzimenti, P. L. Cioni, F. Procopio, and A. R. Blanco. 2007. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Medical Microbiology 56 (4):519–23. doi: 10.1099/jmm.0.46804-0.
  • O'Toole, G., H. B. Kaplan, and R. Kolter. 2000. Biofilm formation as microbial development. Annual Review of Microbiology 54:49–79. doi: 10.1146/annurev.micro.54.1.49.
  • Olasupo, N. A., D. J. Fitzgerald, A. Narbad, and M. J. Gasson. 2004. Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. Journal of Food Protection 67 (3):596–600. doi: 10.4315/0362-028X-67.3.596.
  • Ouhayoun, J. P. 2003. Penetrating the plaque biofilm: Impact of essential oil mouthwash. Journal of Clinical Periodontology 30 (s5):10–2. doi: 10.1034/j.1600-051X.30.s5.4.x.
  • Oussalah, M., S. Caillet, L. Saucier, and M. Lacroix. 2007. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E-coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18 (5):414–20. doi: 10.1016/j.foodcont.2005.11.009.
  • Owen, L., and K. Laird. 2018. Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Critical Reviews in Microbiology 44 (4):414–35.
  • Pannek, J., J. Gach, F. Boratyński, and T. Olejniczak. 2018. Antimicrobial activity of extracts and phthalides occurring in apiaceae plants. Phytotherapy Research 32 (8):1459–87. doi: 10.1002/ptr.6098.
  • Peixoto-Neves, D., K. S. Silva-Alves, M. D. Gomes, F. C. Lima, S. Lahlou, P. J. Magalhaes, V. M. Ceccatto, A. N. Coelho-de-Souza, and J. H. Leal-Cardoso. 2009. Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta. Fundamental & Clinical Pharmacology 24 (3):341–50. doi: 10.1111/j.1472-8206.2009.00768.x.
  • Pérez-Conesa D., L. McLandsborough, and J Weiss. 2006. Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. Journal of Food Protection 69 (12):2947–54.
  • Regnault-Roger, C., A. Hamraoui, M. Holeman, E. Theron, and R. Pinel. 1993. Insecticidal effect of essential oils from Mediterranean plants upon Acanthoscelides obtectus say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). Journal of Chemical Ecology 19 (6):1233–44. doi: 10.1007/BF00987383.
  • Reyes-Jurado, F., A. Lopez-Malo, and E. Palou. 2016. Antimicrobial activity of individual and combined essential oils against foodborne pathogenic bacteria. Journal of Food Protection 79 (2):309–15. doi: 10.4315/0362-028X.JFP-15-392.
  • Roller, S., and P. Seedhar. 2002. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4 degrees and 8 degrees C. Letters in Applied Microbiology 35 (5):390–4. doi: 10.1046/j.1472-765X.2002.01209.x.
  • Sakkas, H., and C. Papadopoulou. 2017. Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of Microbiology and Biotechnology 27 (3):429–38. doi: 10.4014/jmb.1608.08024.
  • Sangwan, N. S., A. H. A. Farooqi, F. Shabih, and R. S. Sangwan. 2001. Regulation of essential oil production in plants. Plant Growth Regulation 34 (1):3–21. doi: 10.1023/A:1013386921596.
  • Santoyo, S., S. Cavero, L. Jaime, E. Ibanez, F. J. Senorans, and G. Reglero. 2006. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: Determination of optimal extraction parameters. Journal of Food Protection 69 (2):369–75. doi: 10.4315/0362-028X-69.2.369.
  • Shakeri, F., S. Shakeri, and M. Hojjatoleslami. 2014. Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods. Journal of Food Science 79 (4):N697–705. doi: 10.1111/1750-3841.12406.
  • Silhavy, T. J., D. Kahne, and S. Walker. 2010. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology 2 (5):a000414. doi: 10.1101/cshperspect.a000414.
  • Sokolik, C. G., R. Ben-Shabat-Binyamini, A. Gedanken, and J.-P. Lellouche. 2018. Proteinaceous microspheres as a delivery system for carvacrol and thymol in antibacterial applications. Ultrasonics Sonochemistry 41:288–96. doi: 10.1016/j.ultsonch.2017.09.032.
  • Solano, C., M. Echeverz, and I. Lasa. 2014. Biofilm dispersion and quorum sensing. Current Opinion in Microbiology 18:96–104. doi: 10.1016/j.mib.2014.02.008.
  • Sun, J., Z. Deng, and A. Yan. 2014. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications 453 (2):254–67. doi: 10.1016/j.bbrc.2014.05.090.
  • Suntres, Z. E., J. Coccimiglio, and M. Alipour. 2015. The bioactivity and toxicological actions of carvacrol. Critical Reviews in Food Science 55 (3):304–18. doi: 10.1080/10408398.2011.653458.
  • Suntres, Z. E., S. R. Hepworth, and P. N. Shek. 1993. Pulmonary uptake of liposome-associated alpha-tocopherol following intratracheal instillation in rats. Journal of Pharmacy and Pharmacology 45 (6):514–20. doi: 10.1111/j.2042-7158.1993.tb05590.x.
  • Talei, G. R., M. Mohammadi, M. Bahmani, and M. R. Kopaei. 2017. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on gram-negative and gram-positive bacteria. International Journal of Pharmaceutical Investigation 7 (2):82–7. doi: 10.4103/jphi.JPHI_12_17.
  • Tapia-Rodriguez, M. R., A. Hernandez-Mendoza, G. A. Gonzalez-Aguilar, M. A. Martinez-Tellez, C. M. Martins, and J. F. Ayala-Zavala. 2017. Carvacrol as potential quorum sensing inhibitor of Pseudomonas aeruginosa and biofilm production on stainless steel surfaces. Food Control 75:255–61. doi: 10.1016/j.foodcont.2016.12.014.
  • Terashima, H., S. Kojima, and M. Homma. 2008. Flagellar motility in bacteria structure and function of flagellar motor. International Review of Cell and Molecular Biology 270:39–85.
  • Traugott, K. A., K. Echevarria, P. Maxwell, K. Green, and J. S. Lewis. 2011. Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy 31 (6):598–608. 2nd. doi: 10.1592/phco.31.6.598.
  • Trombetta, D., F. Castelli, M. G. Sarpietro, V. Venuti, M. Cristani, C. Daniele, A. Saija, G. Mazzanti, and G. Bisignano. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 49 (6):2474–8. doi: 10.1128/AAC.49.6.2474-2478.2005.
  • Trombetta, D., A. Saija, G. Bisignano, S. Arena, S. Caruso, G. Mazzanti, N. Uccella, and F. Castelli. 2002. Study on the mechanisms of the antibacterial action of some plant alpha,beta-unsaturated aldehydes. Letters in Applied Microbiology 35 (4):285–90. doi: 10.1046/j.1472-765X.2002.01190.x.
  • Ultee, A., M. H. Bennik, and R. Moezelaar. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology 68 (4):1561–8. doi: 10.1128/AEM.68.4.1561-1568.2002.
  • Ultee, A., E. P. Kets, M. Alberda, F. A. Hoekstra, and E. J. Smid. 2000. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Archives of Microbiology 174 (4):233–8. doi: 10.1007/s002030000199.
  • Ultee, A., E. P. Kets, and E. J. Smid. 1999. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology 65 (10):4606–10.
  • Ultee, A., R. A. Slump, G. Steging, and E. J. Smid. 2000. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. Journal of Food Protection 63 (5):620–4. doi: 10.4315/0362-028X-63.5.620.
  • Upadhyay, A., A. K. Johny, M. A. Amalaradjou, S. Ananda Baskaran, K. S. Kim, and K. Venkitanarayanan. 2012. Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. International Journal of Food Microbiology 157 (1):88–94. doi: 10.1016/j.ijfoodmicro.2012.04.018.
  • Uzair, B., N. Niaz, A. Bano, B. A. Khan, N. Zafar, M. Iqbal, R. Tahira, and F. Fasim. 2017. Essential oils showing in vitro anti MRSA and synergistic activity with penicillin group of antibiotics. Pakistan Journal of Pharmaceutical Sciences 30 (5(Suppl)):1997–2002.
  • van Alphen, L. B., S. A. Burt, A. K. Veenendaal, N. M. Bleumink-Pluym, and J. P. van Putten. 2012. The natural antimicrobial carvacrol inhibits Campylobacter jejuni motility and infection of epithelial cells. PLoS One 7 (9):e45343. doi: 10.1371/journal.pone.0045343.
  • Veldhuizen, E. J., J. L. Tjeerdsma-van Bokhoven, C. Zweijtzer, S. A. Burt, and H. P. Haagsman. 2006. Structural requirements for the antimicrobial activity of carvacrol. Journal of Agricultural and Food Chemistry 54 (5):1874–9. doi: 10.1021/jf052564y.
  • Walsh, S. E., J. Y. Maillard, A. D. Russell, C. E. Catrenich, D. L. Charbonneau, and R. G. Bartolo. 2003. Activity and mechanisms of action of selected biocidal agents on gram-positive and -negative bacteria. Journal of Applied Microbiology 94 (2):240–7. doi: 10.1046/j.1365-2672.2003.01825.x.
  • Wang, L., Zhao, X. C. Zhu, X. Xia, W. Qin, M. Li, T. Wang, S. Chen, Y. Xu, B. Hang, Y., et al. 2017. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Veterinary Microbiology 203:202–10. doi: 10.1016/j.vetmic.2017.02.021.
  • Webber, M. A., and L. J. V. Piddock. 2003. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy 51 (1):9–11. doi: 10.1093/jac/dkg050.
  • Weber, F. J., and J. A. de Bont. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochimica et Biophysica Acta (Bba) - Reviews on Biomembranes 1286 (3):225–45. doi: 10.1016/S0304-4157(96)00010-X.
  • Wu, H., B. Lee, L. Yang, H. Wang, M. Givskov, S. Molin, N. Hoiby, and Z. Song. 2011. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunology & Medical Microbiology 62 (1):49–56. doi: 10.1111/j.1574-695X.2011.00787.x.
  • Xu, H., M. Delling, J. C. Jun, and D. E. Clapham. 2006. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neuroscience 9 (5):628–35. doi: 10.1038/nn1692.
  • Zuo, X., H. Xie, D. Dong, N. Jiang, H. Zhu, and Y. J. Kang. 2010. Cytochrome c oxidase is essential for copper-induced regression of cardiomyocyte hypertrophy. Cardiovascular Toxicology 10 (3):208–15. doi: 10.1007/s12012-010-9080-0.
  • Zuzarte, M., and L. Salgueiro. 2015. Essential oils chemistry. In Bioactive essential oils and cancer, ed. D. P. de Sousa. Cham: Springer International Publishing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.