1,227
Views
40
CrossRef citations to date
0
Altmetric
Reviews

The pharmacokinetics of flavanones

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Actis-Goretta, L., T. P. Dew, A. Leveques, G. Pereira-Caro, M. Rein, A. Teml, C. Schafer, U. Hofmann, M. Schwab, M. Eichelbaum., et al. 2015. Gastrointestinal absorption and metabolism of hesperetin-7-O-rutinoside and hesperetin-7-O-glucoside in healthy humans. Molecular Nutrition & Food Research 59 (9):1651–62. doi: 10.1002/mnfr.201500202.
  • Arayne, M. S., N. Sultana, and Z. Bibi. 2005. Grape fruit juice-drug interactions. Pakistan Journal of Pharmaceutical Sciences 18 (4):45–57.
  • Aschoff, J. K., K. M. Riedl, J. L. Cooperstone, J. Hogel, A. Bosy-Westphal, S. J. Schwartz, R. Carle, and R. M. Schweiggert. 2016. Urinary excretion of citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study. Molecular Nutrition & Food Research 60 (12):2602–10. doi: 10.1002/mnfr.201600315.
  • Bailey, D. G., J. M. Arnold, H. A. Strong, C. Munoz, and J. D. Spence. 1993. Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics. Clinical Pharmacology and Therapeutics 54 (6):589–94. doi: 10.1038/clpt.1993.195.
  • Bailey, D. G., and G. K. Dresser. 2004. Interactions between grapefruit juice and cardiovascular drugs. American Journal of Cardiovascular Drugs 4 (5):281–97. doi: 10.2165/00129784-200404050-00002.
  • Bansal, T., M. Jaggi, R. K. Khar, and S. Talegaonkar. 2009. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. Journal of Pharmacy & Pharmaceutical Sciences 12 (1):46–78. doi: 10.18433/J3RC77.
  • Berhow, M. A., and C. E. Vandercook. 1989. Biosynthesis of naringin and prunin in detached grapefruit. Phytochemistry 28 (6):1627–1630. doi: 10.1016/S0031-9422(00)97813-0.
  • Bhagwat, S., D. B. Haytowitz, and J. M. Holden. 2013. USDA database for the flavonoid content of selected foods, Release 3.1. Accessed September 13. https://www.ars.usda.gov/ARSUserFiles/80400535/Data/Flav/Flav_R03-1.pdf.
  • Borges, G., W. Mullen, A. Mullan, M. E. Lean, S. A. Roberts, and A. Crozier. 2010. Bioavailability of multiple components following acute ingestion of a polyphenol-rich juice drink. Molecular Nutrition & Food Research 54 (S2):S268–S77. doi: 10.1002/mnfr.200900611.
  • Brand, W., M. G. Boersma, H. Bik, E. F. Hoek-van den Hil, J. Vervoort, D. Barron, W. Meinl, H. Glatt, G. Williamson, P. J. van Bladeren, and I. M. Rietjens. 2010. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metabolism and Disposition 38 (4):617–25. doi: 10.1124/dmd.109.031047.
  • Brand, Walter, Berend Oosterhuis, Peter Krajcsi, Denis Barron, Fabiola Dionisi, Peter J. Bladeren, Ivonne M. C. M. Rietjens, and Gary Williamson. 2011. Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirus-infected Sf9 cells. Biopharmaceutics & Drug Disposition 32 (9):530–5. doi: 10.1002/bdd.780.
  • Brand, W., P. A. van der Wel, M. J. Rein, D. Barron, G. Williamson, P. J. van Bladeren, and I. M. Rietjens. 2008. Metabolism and transport of the citrus flavonoid hesperetin in caco-2 cell monolayers. Drug Metabolism and Disposition 36 (9):1794–802. doi: 10.1124/dmd.107.019943.
  • Bredsdorff, L., I. L. Nielsen, S. E. Rasmussen, C. Cornett, D. Barron, F. Bouisset, E. Offord, and G. Williamson. 2010. Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from alpha-rhamnosidase-treated orange juice in human subjects. British Journal of Nutrition 103 (11):1602–9. doi: 10.1017/S0007114509993679.
  • Breinholt, V. M., E. A. Offord, C. Brouwer, S. E. Nielsen, K. Brosen, and T. Friedberg. 2002. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids. Food and Chemical Toxicology 40 (5):609–16. doi: 10.1016/S0278-6915(01)00125-9.
  • Brett, G. M., W. Hollands, P. W. Needs, B. Teucher, J. R. Dainty, B. D. Davis, J. S. Brodbelt, and P. A. Kroon. 2009. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. British Journal of Nutrition 101 (5):664–75. doi: 10.1017/S000711450803081X.
  • Cao, H., L. Chen, and J. Xiao. 2011. Binding citrus flavanones to human serum albumin: Effect of structure on affinity. Molecular Biology Reports 38 (4):2257–62. doi: 10.1007/s11033-010-0356-z.
  • Cassidy, Aedín, Éilis J. O’Reilly, Colin Kay, Laura Sampson, Mary Franz, J. P. Forman, Gary Curhan, and Eric B. Rimm. 2010. Habitual intake of flavonoid subclasses and incident hypertension in adults. The American Journal of Clinical Nutrition 93 (2):338–47. doi: 10.3945/ajcn.110.006783.
  • Castillo, J., O. Benavente, and J. A. Del Rio. 1992. Naringin and neohesperidin levels during development of leaves, flower buds, and fruits of citrus aurantium. Plant Physiology 99 (1):67–73. doi: 10.1104/pp.99.1.67.
  • Castillo, J., O. Benavente, and J. A. Del Rio. 1993. Hesperetin 7-O-glucoside and prunin in citrus species (C. aurantium and C. paradisi). A study of their quantitative distribution in immature fruits and as immediate precursors of neohesperidin and naringin in citrus aurantium. Journal of Agricultural and Food Chemistry 41 (11):1920–4. doi: 10.1021/jf00035a021.
  • Crespy, V., C. Morand, C. Besson, C. Manach, C. Demigne, and C. Remesy. 2002. Quercetin, but not its glycosides, is absorbed from the rat stomach. Journal of Agricultural and Food Chemistry 50 (3):618–21. doi: 10.1021/jf010919h.
  • Day, A. J., M. S. DuPont, S. Ridley, M. Rhodes, M. J. Rhodes, M. R. Morgan, and G. Williamson. 1998. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Letters 436 (1):71–5. doi: 10.1016/S0014-5793(98)01101-6.
  • Day, Andrea J., F. Javier Cañada, Juan C. Dı́az, Paul A. Kroon, Russell Mclauchlan, Craig B. Faulds, Geoff W. Plumb, Michael R. A. Morgan, and Gary Williamson. 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters 468 (2–3):166–70. doi: 10.1016/S0014-5793(00)01211-4.
  • Del Rio, D., A. Rodriguez-Mateos, J. P. Spencer, M. Tognolini, G. Borges, and A. Crozier. 2013. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling 18 (14):1818–92. doi: 10.1089/ars.2012.4581.
  • Ding, F., and W. Peng. 2015. Biological activity of natural flavonoids as impacted by protein flexibility: An example of flavanones. Molecular Biosystems 11 (4):1119–33. doi: 10.1039/C4MB00662C.
  • Doostdar, H., M. D. Burke, and R. T. Mayer. 2000. Bioflavonoids: Selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology 144 (1–3):31–8. doi: 10.1016/S0300-483X(99)00215-2.
  • El Mohsen, M. A., J. Marks, G. Kuhnle, C. Rice-Evans, K. Moore, G. Gibson, E. Debnam, and S. K. Srai. 2004. The differential tissue distribution of the citrus flavanone naringenin following gastric instillation. Free Radical Research 38 (12):1329–40. doi: 10.1080/10715760400017293.
  • Erlund, I., E. Meririnne, G. Alfthan, and A. Aro. 2001. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. Journal of Nutrition 131 (2):235–41. doi: 10.1093/jn/131.2.235.
  • Felgines, C., O. Texier, C. Morand, C. Manach, A. Scalbert, F. Regerat, and C. Remesy. 2000. Bioavailability of the flavanone naringenin and its glycosides in rats. American Journal of Physiology-Gastrointestinal and Liver Physiology 279 (6):G1148–54. doi: 10.1152/ajpgi.2000.279.6.G1148.
  • Feliciano, R. P., A. Boeres, L. Massacessi, G. Istas, M. R. Ventura, C. Nunes Dos Santos, C. Heiss, and A. Rodriguez-Mateos. 2016. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Archives of Biochemistry and Biophysics 599:31–41. doi: 10.1016/j.abb.2016.01.014.
  • Fuhr, U., K. Klittich, and A. H. Staib. 1993. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. British Journal of Clinical Pharmacology 35 (4):431–6. doi: 10.1111/j.1365-2125.1993.tb04162.x.
  • Fuhr, U., and A. L. Kummert. 1995. The fate of naringin in humans: A key to grapefruit juice-drug interactions? Clinical Pharmacology & Therapeutics 58 (4):365–73. doi: 10.1016/0009-9236(95)90048-9.
  • Henderson, M. C., C. L. Miranda, J. F. Stevens, M. L. Deinzer, and D. R. Buhler. 2000. In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, humulus lupulus. Xenobiotica 30 (3):235–51. doi: 10.1080/004982500237631.
  • Hodek, P., P. Trefil, and M. Stiborova. 2002. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chemico-Biological Interactions 139 (1):1–21. doi: 10.1016/S0009-2797(01)00285-X.
  • Chen, Z., S. Zheng, L. Li, and H. Jiang. 2014. Metabolism of flavonoids in human: A comprehensive review. Current Drug Metabolism 15 (1):48–61. doi: 10.2174/138920021501140218125020.
  • Choi, J. S., and S. C. Shin. 2005. Enhanced paclitaxel bioavailability after oral coadministration of paclitaxel prodrug with naringin to rats. International Journal of Pharmaceutics 292 (1–2):149–56. doi: 10.1016/j.ijpharm.2004.11.031.
  • Choudhury, R., G. Chowrimootoo, K. Srai, E. Debnam, and C. A. Rice-Evans. 1999. Interactions of the flavonoid naringenin in the gastrointestinal tract and the influence of glycosylation. Biochemical and Biophysical Research Communications 265 (2):410–5. doi: 10.1006/bbrc.1999.1695.
  • Ioku, K., Y. Pongpiriyadacha, Y. Konishi, Y. Takei, N. Nakatani, and J. Terao. 1998. Beta-glucosidase activity in the rat small intestine toward quercetin monoglucosides. Bioscience, Biotechnology, and Biochemistry 62 (7):1428–31. doi: 10.1271/bbb.62.1428.
  • Iwashina, T. 2000. The structure and distribution of the flavonoids in plants. Journal of Plant Research 113 (3):287–99. doi: 10.1007/PL00013940.
  • Jeong, H., J. Lee, S. Kim, Y. Y. Yeo, H. So, H. Wu, Y. S. Song, C. Y. Jang, H. D. Kim, M. J. Kim, and M. Chang. 2018. Hepatic metabolism of sakuranetin and its modulating effects on cytochrome P450s and UDP-Glucuronosyltransferases. Molecules 23 (7):1542. doi: 10.3390/molecules2307.
  • Jin, M. J., U. Kim, I. S. Kim, Y. Kim, D. H. Kim, S. B. Han, D. H. Kim, O. S. Kwon, and H. H. Yoo. 2010. Effects of gut microflora on pharmacokinetics of hesperidin: A study on non-antibiotic and pseudo-germ-free rats. Journal of Toxicology and Environmental Health A 73 (21–22):1441–50. doi: 10.1080/15287394.2010.511549.
  • Kanaze, F. I., M. I. Bounartzi, M. Georgarakis, and I. Niopas. 2007. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. European Journal of Clinical Nutrition 61 (4):472–7. doi: 10.1038/sj.ejcn.1602543.
  • Katsumata, S., K. Hamana, K. Horie, H. Toshima, and M. Hasegawa. 2017. Identification of sternbin and naringenin as detoxified metabolites from the rice flavanone phytoalexin sakuranetin by pyricularia oryzae. Chemistry & Biodiversity 14 (2):e1600240. doi: 10.1002/cbdv.201600240.
  • Kay, C. D., G. Pereira-Caro, I. A. Ludwig, M. N. Clifford, and A. Crozier. 2017. Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology 8 (1):155–80. doi: 10.1146/annurev-food-030216-025636.
  • Khan, M. K., N. Rakotomanomana, C. Dufour, and O. Dangles. 2011. Binding of citrus flavanones and their glucuronides and chalcones to human serum albumin. Food & Function 2 (10):617–26. doi: 10.1039/c1fo10077g.
  • Khan, M. K.,  Zill-E-Huma, and O. Dangles. 2014. A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis 33 (1):85–104. doi: 10.1016/j.jfca.2013.11.004.
  • Kim, D. H., E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim, and M. J. Han. 1998. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Archives of Pharmacal Research 21 (1):17–23. doi: 10.1007/BF03216747.
  • Knekt, P., J. Kumpulainen, R. Jarvinen, H. Rissanen, M. Heliovaara, A. Reunanen, T. Hakulinen, and A. Aromaa. 2002. Flavonoid intake and risk of chronic diseases. The American Journal of Clinical Nutrition 76 (3):560–8. doi: 10.1093/ajcn/76.3.560.
  • Kobayashi, S., T. Nagai, Y. Konishi, S. Tanabe, K. Morimoto, and T. Ogihara. 2012. Transport mechanisms of flavanone aglycones across caco-2 cell monolayers and artificial PAMPA membranes. Journal of Pharmacy and Pharmacology 64 (1):52–60. doi: 10.1111/j.2042-7158.2011.01374.x.
  • Kobayashi, S., S. Tanabe, M. Sugiyama, and Y. Konishi. 2008. Transepithelial transport of hesperetin and hesperidin in intestinal caco-2 cell monolayers. Biochimica et Biophysica Acta (Bba) - Biomembranes 1778 (1):33–41. doi: 10.1016/j.bbamem.2007.08.020.
  • Kottra, G., and H. Daniel. 2007. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. Journal of Pharmacology and Experimental Therapeutics 322 (2):829–35. doi: 10.1124/jpet.107.124040.
  • Krogholm, K. S., L. Bredsdorff, P. Knuthsen, J. Haraldsdottir, and S. E. Rasmussen. 2010. Relative bioavailability of the flavonoids quercetin, hesperetin and naringenin given simultaneously through diet. European Journal of Clinical Nutrition 64 (4):432–5. doi: 10.1038/ejcn.2010.6.
  • Lambert, N., P. A. Kroon, C. B. Faulds, G. W. Plumb, W. R. McLauchlan, A. J. Day, and G. Williamson. 1999. Purification of cytosolic beta-glucosidase from pig liver and its reactivity towards flavonoid glycosides. Biochimica et Biophysica Acta (Bba) - Protein Structure and Molecular Enzymology 1435 (1–2):110–6. doi: 10.1016/S0167-4838(99)00213-7.
  • Lee, H., H. Yeom, Y. G. Kim, C. N. Yoon, C. Jin, J. S. Choi, B. R. Kim, and D. H. Kim. 1998. Structure-related inhibition of human hepatic caffeine N3-demethylation by naturally occurring flavonoids. Biochemical Pharmacology 55 (9):1369–75. doi: 10.1016/S0006-2952(97)00644-8.
  • Lin, S. P., Y. C. Hou, S. Y. Tsai, M. J. Wang, and P. D. Chao. 2014. Tissue distribution of naringenin conjugated metabolites following repeated dosing of naringin to rats. BioMedicine 4 (3):16. doi: 10.7603/s40681-014-0016-z.
  • Liu, M., W. Zou, C. Yang, W. Peng, and W. Su. 2012. Metabolism and excretion studies of oral administered naringin, a putative antitussive, in rats and dogs. Biopharmaceutics & Drug Disposition 33 (3):123–34. doi: 10.1002/bdd.1775.
  • Liu, S., C. Guo, Y. Guo, H. Yu, F. Greenaway, and M. Z. Sun. 2014. Comparative binding affinities of flavonoid phytochemicals with bovine serum albumin. The Iranian Journal of Pharmaceutical Research 13 (3):1019–28.
  • Lu, W. J., V. Ferlito, C. Xu, D. A. Flockhart, and S. Caccamese. 2011. Enantiomers of naringenin as pleiotropic, stereoselective inhibitors of cytochrome P450 isoforms. Chirality 23 (10):891–6. doi: 10.1002/chir.21005.
  • Mackenzie, P. I., K. W. Bock, B. Burchell, C. Guillemette, S. Ikushiro, T. Iyanagi, J. O. Miners, I. S. Owens, and D. W. Nebert. 2005. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenetics and Genomics 15 (10):677–85. doi: 10.1097/01.fpc.0000173483.13689.56.
  • Manach, C., C. Morand, A. Gil-Izquierdo, C. Bouteloup-Demange, and C. Remesy. 2003. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. European Journal of Clinical Nutrition 57 (2):235–42. doi: 10.1038/sj.ejcn.1601547.
  • Manthey, J. A., K. Grohmann, and N. Guthrie. 2001. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Current Medicinal Chemistry 8 (2):135–53. doi: 10.2174/0929867013373723.
  • McCullough, M. L., J. J. Peterson, R. Patel, P. F. Jacques, R. Shah, and J. T. Dwyer. 2012. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. The American Journal of Clinical Nutrition 95 (2):454–64. doi: 10.3945/ajcn.111.016634.
  • Medina, S., R. Dominguez-Perles, C. Garcia-Viguera, R. Cejuela-Anta, J. M. Martinez-Sanz, F. Ferreres, and A. Gil-Izquierdo. 2012. Physical activity increases the bioavailability of flavanones after dietary aronia-citrus juice intake in triathletes. Food Chemistry 135 (4):2133–37. doi: 10.1016/j.foodchem.2012.07.080.
  • Mencherini, T., L. Campone, A. L. Piccinelli, M. G. Mesa, D. M. Sanchez, R. P. Aquino, and L. Rastrelli. 2013. HPLC-PDA-MS and NMR characterization of a hydroalcoholic extract of citrus aurantium L. var. amara peel with antiedematogenic activity. Journal of Agricultural and Food Chemistry 61 (8):1686–93. doi: 10.1021/jf302815t.
  • Mink, P. J., C. G. Scrafford, L. M. Barraj, L. Harnack, C. P. Hong, J. A. Nettleton, and D. R. Jacobs, Jr. 2007. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. American Journal of Clinical Nutrition 85 (3):895–909. doi: 10.1093/ajcn/85.3.895.
  • Mitsunaga, Y., H. Takanaga, H. Matsuo, M. Naito, T. Tsuruo, H. Ohtani, and Y. Sawada. 2000. Effect of bioflavonoids on vincristine transport across blood-brain barrier. European Journal of Pharmacology 395 (3):193–201. doi: 10.1016/S0014-2999(00)00180-1.
  • Mladenka, P., L. Zatloukalova, T. Filipsky, and R. Hrdina. 2010. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radical Biology and Medicine 49 (6):963–75. doi: 10.1016/j.freeradbiomed.2010.06.010.
  • Mursu, J., S. Voutilainen, T. Nurmi, T. P. Tuomainen, S. Kurl, and J. T. Salonen. 2008. Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: The kuopio ischaemic heart disease risk factor study. British Journal of Nutrition 100 (4):890–5. doi: 10.1017/S0007114508945694.
  • Nait Chabane, M., A. Al Ahmad, J. Peluso, C. D. Muller, and G. Ubeaud. 2009. Quercetin and naringenin transport across human intestinal caco-2 cells. Journal of Pharmacy and Pharmacology 61 (11):1473–83. doi: 10.1211/jpp/61.11.0006.
  • Najmanova, I., J. Pourova, M. Voprsalova, V. Pilarova, V. Semecky, L. Novakova, and P. Mladenka. 2016. The flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rat. Molecular Nutrition Food Research 60 (05):981–91. doi: 10.1002/mnfr.201500761.
  • Nemeth, K., G. W. Plumb, J. G. Berrin, N. Juge, R. Jacob, H. Y. Naim, G. Williamson, D. M. Swallow, and P. A. Kroon. 2003. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. European Journal of Nutrition 42 (1):29–42. doi: 10.1007/s00394-003-0397-3.
  • Nielsen, I. L., W. S. Chee, L. Poulsen, E. Offord-Cavin, S. E. Rasmussen, H. Frederiksen, M. Enslen, D. Barron, M. N. Horcajada, and G. Williamson. 2006. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. The Journal of Nutrition 136 (2):404–8. doi: 10.1093/jn/136.2.404.
  • Nielsen, S. E., V. Breinholt, U. Justesen, C. Cornett, and L. O. Dragsted. 1998. In vitro biotransformation of flavonoids by rat liver microsomes. Xenobiotica 28 (4):389–401. doi: 10.1080/004982598239498.
  • Orrego-Lagaron, N., M. Martinez-Huelamo, P. Quifer-Rada, R. M. Lamuela-Raventos, and E. Escribano-Ferrer. 2016a. Absorption and disposition of naringenin and quercetin after simultaneous administration via intestinal perfusion in mice. Food & Function 7 (9):3880–9. doi: 10.1039/C6FO00633G.
  • Orrego-Lagaron, N., A. Vallverdu-Queralt, M. Martinez-Huelamo, R. M. Lamuela-Raventos, and E. Escribano-Ferrer. 2016b. Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 120:38–45. doi: 10.1016/j.jpba.2015.10.040.
  • Pereira-Caro, G., G. Borges, I. Ky, A. Ribas, L. Calani, D. Del Rio, M. N. Clifford, S. A. Roberts, and A. Crozier. 2015a. In vitro colonic catabolism of orange juice (poly)phenols. Molecular Nutrition & Food Research 59 (3):465–75. doi: 10.1002/mnfr.201400779.
  • Pereira-Caro, G., G. Borges, J. van der Hooft, M. N. Clifford, D. Del Rio, M. E. Lean, S. A. Roberts, M. B. Kellerhals, and A. Crozier. 2014. Orange juice (poly)phenols are highly bioavailable in humans. The American Journal of Clinical Nutrition 100 (5):1378–84. doi: 10.3945/ajcn.114.090282.
  • Pereira-Caro, G., B. Fernandez-Quiros, I. A. Ludwig, I. Pradas, A. Crozier, and J. M. Moreno-Rojas. 2018. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. European Journal of Nutrition 57 (1):231–42. doi: 10.1007/s00394-016-1312-z.
  • Pereira-Caro, G., C. M. Oliver, R. Weerakkody, T. Singh, M. Conlon, G. Borges, L. Sanguansri, T. Lockett, S. A. Roberts, A. Crozier, and M. A. Augustin. 2015b. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radical Biology and Medicine 84:206–14. doi: 10.1016/j.freeradbiomed.2015.03.010.
  • Pereira-Caro, G., T. Polyviou, I. A. Ludwig, A. M. Nastase, J. M. Moreno-Rojas, A. L. Garcia, D. Malkova, and A. Crozier. 2017. Bioavailability of orange juice (poly)phenols: The impact of short-term cessation of training by male endurance athletes. American Journal of Clinical Nutrition 106 (3):791–800. doi: 10.3945/ajcn.116.149898.
  • Pimpao, R. C., M. R. Ventura, R. B. Ferreira, G. Williamson, and C. N. Santos. 2015. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit puree. British Journal of Nutrition 113 (3):454–63. doi: 10.1017/S0007114514003511.
  • Pingili, R., S. Vemulapalli, S. S. Mullapudi, S. Nuthakki, S. Pendyala, and N. Kilaru. 2016. Pharmacokinetic interaction study between flavanones (hesperetin, naringenin) and rasagiline mesylate in wistar rats. Drug Development and Industrial Pharmacy 42 (7):1110–7. doi: 10.3109/03639045.2015.1115868.
  • Piskula, M. K., J. Yamakoshi, and Y. Iwai. 1999. Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Letters 447 (2–3):287–91. doi: 10.1016/S0014-5793(99)00307-5.
  • Pourova, J., I. Najmanova, M. Voprsalova, T. Migkos, V. Pilarova, L. Applova, L. Novakova, and P. Mladenka. 2018. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vascular Pharmacology 111:36–43. doi: 10.1016/j.vph.2018.08.008.
  • Quintieri, L., S. Bortolozzo, S. Stragliotto, S. Moro, M. Pavanetto, A. Nassi, P. Palatini, and M. Floreani. 2010. Flavonoids diosmetin and hesperetin are potent inhibitors of cytochrome P450 2C9-mediated drug metabolism in vitro. Drug Metabolism and Pharmacokinetics 25 (5):466–76. doi: 10.2133/dmpk.DMPK-10-RG-044.
  • Rechner, A. R., M. A. Smith, G. Kuhnle, G. R. Gibson, E. S. Debnam, S. K. Srai, K. P. Moore, and C. A. Rice-Evans. 2004. Colonic metabolism of dietary polyphenols: Influence of structure on microbial fermentation products. Free Radical Biology and Medicine 36 (2):212–25. doi: 10.1016/j.freeradbiomed.2003.09.022.
  • Rodriguez-Mateos, A., D. Vauzour, C. G. Krueger, D. Shanmuganayagam, J. Reed, L. Calani, P. Mena, D. Del Rio, and A. Crozier. 2014. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Archives of Toxicology 88 (10):1803–53. doi: 10.1007/s00204-014-1330-7.
  • Roowi, S., W. Mullen, C. A. Edwards, and A. Crozier. 2009. Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Molecular Nutrition & Food Research 53 (S1):S68–S75. doi: 10.1002/mnfr.200800287.
  • Salerno, R., F. Casale, C. Calandruccio, and A. Procopio. 2016. Characterization of flavonoids in citrus bergamia (bergamot) polyphenolic fraction by liquid chromatography–high resolution mass spectrometry (LC/HRMS). PharmaNutrition 4:S1–S7. doi: 10.1016/j.phanu.2015.10.001.
  • Santes-Palacios, R., A. Romo-Mancillas, R. Camacho-Carranza, and J. J. Espinosa-Aguirre. 2016. Inhibition of human and rat CYP1A1 enzyme by grapefruit juice compounds. Toxicology Letters 258:267–75. doi: 10.1016/j.toxlet.2016.07.023.
  • Semaming, Y., P. Pannengpetch, S. C. Chattipakorn, and N. Chattipakorn. 2015. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evidence Based Complementary and Alternative Medicine 2015:1. doi: 10.1155/2015/593902.
  • Silberberg, M., A. Gil-Izquierdo, L. Combaret, C. Remesy, A. Scalbert, and C. Morand. 2006. Flavanone metabolism in healthy and tumor-bearing rats. Biomedicine & Pharmacotherapy 60 (9):529–35. doi: 10.1016/j.biopha.2006.07.083.
  • Sommella, Eduardo, Giacomo Pepe, Francesco Pagano, Gian Carlo Tenore, Stefania Marzocco, Michele Manfra, Giorgio Calabrese, Rita Patrizia Aquino, and Pietro Campiglia. 2014. UHPLC profiling and effects on LPS-stimulated J774A.1 macrophages of flavonoids from bergamot (Citrus bergamia) juice, an underestimated waste product with high anti-inflammatory potential. Journal of Functional Foods 7:641–9. doi: 10.1016/j.jff.2013.12.021.
  • Spigoni, V., P. Mena, F. Fantuzzi, M. Tassotti, F. Brighenti, R. C. Bonadonna, D. Del Rio, and A. Dei Cas. 2017. Bioavailability of bergamot (citrus bergamia) flavanones and biological activity of their circulating metabolites in human Pro-Angiogenic cells. Nutrients 9 (12):1328. doi: 10.3390/nu9121328.
  • Surya Sandeep, M., V. Sridhar, Y. Puneeth, P. Ravindra Babu, and K. Naveen Babu. 2014. Enhanced oral bioavailability of felodipine by naringenin in wistar rats and inhibition of P-glycoprotein in everted rat gut sacs in vitro. Drug Development and Industrial Pharmacy 40 (10):1371–7. doi: 10.3109/03639045.2013.819885.
  • Takumi, H., R. Mukai, S. Ishiduka, T. Kometani, and J. Terao. 2011. Tissue distribution of hesperetin in rats after a dietary intake. Bioscience Biotechnology and Biochemistry 75 (8):1608–10. doi: 10.1271/bbb.110157.
  • Tu, B., Y. Wang, R. Mi, Y. Ouyang, and Y. J. Hu. 2015. Evaluation of the interaction between naringenin and human serum albumin: Insights from fluorescence spectroscopy, electrochemical measurement and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 149:536–43. doi: 10.1016/j.saa.2015.04.087.
  • Ubeaud, G., J. Hagenbach, S. Vandenschrieck, L. Jung, and J. C. Koffel. 1999. In vitro inhibition of simvastatin metabolism in rat and human liver by naringenin. Life Sciences 65 (13):1403–12. doi: 10.1016/S0024-3205(99)00380-X.
  • Vallejo, Fernando, Mar Larrosa, Elisa Escudero, María P. Zafrilla, Begoña Cerdá, Julio Boza, María Teresa García-Conesa, Juan Carlos Espín, and Francisco A. Tomás-Barberán, 2010. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. Journal of Agricultural and Food Chemistry 58 (10):6516–24. doi: 10.1021/jf100752j.
  • Van Rymenant, E., B. Salden, S. Voorspoels, G. Jacobs, B. Noten, J. Pitart, S. Possemiers, G. Smagghe, C. Grootaert, and J. Van Camp. 2018. A critical evaluation of in vitro hesperidin 2S bioavailability in a model combining luminal (microbial) digestion and caco-2 cell absorption in comparison to a randomized controlled human trial. Molecular Nutrition & Food Research 62 (8):1700881. doi: 10.1002/mnfr.201700881.
  • Wang, M. J., P. D. L. Chao, Y. Ch. Hou, and S. L. Hsiu. 2006. Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations. Journal of Food and Drug Analysis 14 (3):247–253.
  • Williamson, G., C. D. Kay, and A. Crozier. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety 17 (5):1054–112. doi: 10.1111/1541-4337.12351.
  • Wolffram, S., M. BlöCk, and P. Ader. 2002. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. Journal of Nutrition 132 (4):630–5. doi: 10.1093/jn/132.4.630.
  • Xu, H., K. H. Kulkarni, R. Singh, Z. Yang, S. W. Wang, V. H. Tam, and M. Hu. 2009. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Molecular Pharmaceutics 6 (6):1703–15. doi: 10.1021/mp900013d.
  • Zamora-Ros, R., V. Knaze, J. A. Rothwell, B. Hemon, A. Moskal, K. Overvad, A. Tjonneland, C. Kyro, G. Fagherazzi, M. C. Boutron-Ruault., et al. 2016. Dietary polyphenol intake in Europe: The European prospective investigation into cancer and nutrition (EPIC) study. European Journal of Nutrition 55 (4):1359–75. doi: 10.1007/s00394-015-0950-x.
  • Zeng, X., Y. Bai, W. Peng, and W. Su. 2017. Identification of naringin metabolites in human urine and feces. European Journal of Drug Metabolism and Pharmacokinetics 42 (4):647–56. doi: 10.1007/s13318-016-0380-z.
  • Zou, W., Y. Wang, H. Liu, Y. Luo, S. Chen, and W. Su. 2013. Melitidin: A flavanone glycoside from citrus grandis ‘tomentosa’. Natural Product Communications 8 (4):457–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.