1,238
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Nutritive vitamins as epidrugs

, , , , &

References

  • Agger, K., P.A. Cloos, J. Christensen, D. Pasini, S. Rose, J. Rappsilber, I. Issaeva, E. Canaani, A. E. Salcini, and K. Helin. 2007. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449 (7163):731–4. doi: 10.1038/nature06145.
  • Anderson, C. M., S. L. Gillespie, D. K. Thiele, J. L. Ralph, and J. E. Ohm. 2018. Effects of maternal vitamin D supplementation on the maternal and infant epigenome. Breastfeeding Medicine 13 (5):371–80. doi: 10.1089/bfm.2017.0231.
  • Arts, R. J., B. A. Blok, R. van Crevel, L. A. Joosten, P. Aaby, C. S. Benn, and M. G. Netea. 2015. Vitamin A induces inhibitory histone methylation modifications and down-regulates trained immunity in human monocytes. Journal of Leukocyte Biology 98 (1):129–36. doi: 10.1189/jlb.6AB0914-416R.
  • Beckett, E. L., M. Veysey, and M. Lucock. 2017. Folate and microRNA: Bidirectional interactions. Clinica Chimica Acta 474:60–6. doi: 10.1016/j.cca.2017.09.001.
  • Bikle, D. D. 2014. Vitamin D metabolism, mechanism of action, and clinical applications. Chemistry & Biology 21 (3):319–29. doi: 10.1016/j.chembiol.2013.12.016.
  • Binda, O., A. Sevilla, G. LeRoy, I. R. Lemischka, B. A. Garcia, and S. Richard. 2013. SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics 8 (2):177–83. doi: 10.4161/epi.23416.
  • Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes & Development 16 (1):6–21. doi: 10.1101/gad.947102.
  • Blaschke, K., K. T. Ebata, M. M. Karimi, J. A. Zepeda-Martinez, P. Goyal, S. Mahapatra, A. Tam, D. J. Laird, M. Hirst, A. Rao, et al. 2013. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500 (7461):222–6. doi: 10.1038/nature12362.
  • Bocker, M. T., F. Tuorto, G. Raddatz, T. Musch, F.-C. Yang, M. Xu, F. Lyko, and A. Breiling. 2012. Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Nature Communications 3 (1):818. doi: 10.1038/ncomms1826.
  • Camarena, V., and G. Wang. 2016. The epigenetic role of vitamin C in health and disease. Cellular and Molecular Life Sciences 73 (8):1645–58. doi: 10.1007/s00018-016-2145-x.
  • Carlberg, C., and S. Seuter. 2009. A genomic perspective on vitamin D signaling. Anticancer Research 29 (9):3485–349.
  • Carlos-Reyes, Á., J. S. López-González, M. Meneses-Flores, D. Gallardo-Rincón, E. Ruíz-García, L. A. Marchat, H. Astudillo-de la Vega, O. N. Hernández de la Cruz, and C. López-Camarillo. 2019. Dietary compounds as epigenetic modulating agents in cancer. Frontiers in Genetics 10:791. doi: 10.3389/fgene.2019.00079. eCollection
  • Cerami, E., J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy, A. Jacobsen, C. J. Byrne, M. L. Heuer, E. Larsson, et al. 2012. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery 2 (5):401–4. doi: 10.1158/2159-8290.CD-12-0095.
  • Chen, D. J., L. J. Li, X. K. Yang, T. Yu, R. X. Leng, H. F. Pan, and D. Q. Ye. 2017. Altered microRNAs expression in T cells of patients with SLE involved in the lack of vitamin D. Oncotarget 8 (37):62099–110. doi: 10.18632/oncotarget.19062.
  • Chen, J., L. Guo, L. Zhang, H. Wu, J. Yang, H. Liu, X. Wang, X. Hu, T. Gu, Z. Zhou, et al. 2013. Vitamin C modulates TET1 function during somatic cell reprogramming. Nature Genetics 45 (12):1504–9. doi: 10.1038/ng.2807.
  • Cheong, H. S., H. C. Lee, B. L. Park, H. Kim, M. J. Jang, Y. M. Han, S. Y. Kim, Y. S. Kim, and H. D. Shin. 2010. Epigenetic modification of retinoic acid-treated human embryonic stem cells. BMB Reports 43 (12):830–5. doi: 10.5483/BMBRep.2010.43.12.830.
  • Choi, S. W., and S. Friso. 2010. Epigenetics: A new bridge between nutrition and health. Advances in Nutrition 1 (1):8–16. doi: 10.3945/an.110.1004.
  • Cimmino, L., B. G. Neel, and I. Aifantis. 2018. Vitamin C in stem cell reprogramming and cancer. Trends in Cell Biology 28 (9):698–708. doi: 10.1016/j.tcb.2018.04.001.
  • Couturier, A., J. Keller, E. Most, R. Ringseis, and K. Eder. 2014. Niacin in pharmacological doses alters microRNA expression in skeletal muscle of obese Zucker rats. PLoS One 9 (5):e98313. doi: 10.1371/journal.pone.0098313.
  • Dadon, B. E. S., and R. Reifen. 2017. Vitamin A and the epigenome. Critical Reviews in Food Science and Nutrition 57 (11):2404–11. doi: 10.1080/10408398.2015.1060940.
  • Dambal, S., A. A. Giangreco, A. M. Acosta, A. Fairchild, Z. Richards, R. Deaton, D. Wagner, R. Vieth, P. H. Gann, A. Kajdacsy-Balla, et al. 2017. microRNAs and DICER1 are regulated by 1,25-dihydroxyvitamin D in prostate stroma. The Journal of Steroid Biochemistry and Molecular Biology 167:192–202. doi: 10.1016/j.jsbmb.2017.01.004.
  • Delhommeau, F., S. Dupont, V. Della Valle, C. James, S. Trannoy, A. Massé, O. Kosmider, J. P. Le Couedic, F. Robert, A. Alberdi, et al. 2009. Mutation in TET2 in myeloid cancers. New England Journal of Medicine 360 (22):2289–301. doi: 10.1056/NEJMoa0810069.
  • Doig, C. L., P. K. Singh, V. K. Dhiman, J. L. Thorne, S. Battaglia, M. Sobolewski, O. Maguire, L. P. O'Neill, B. M. Turner, C. J. McCabe, et al. 2013. Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns. Carcinogenesis 34 (2):248–56. doi: 10.1093/carcin/bgs331.
  • Doldo, E., G. Costanza, S. Agostinelli, C. Tarquini, A. Ferlosio, G. Arcuri, D. Passeri, M. G. Scioli, and A. Orlandi. 2015. Vitamin A, cancer treatment and prevention: The new role of cellular retinol binding proteins. BioMed Research International 2015:624627. doi: 10.1155/2015/624627.
  • Dragnev, K. H., J. R. Rigas, and E. Dmitrovsky. 2000. The retinoids and cancer prevention mechanisms. The Oncologist 5 (5):361–8. doi: 10.1634/theoncologist.5-5-361.
  • Drouin, G., J. R. Godin, and B. Page. 2011. The genetics of vitamin C loss in vertebrates. Current Genomics 12 (5):371–8. doi: 10.2174/138920211796429736.
  • Ducasse, M., and M. A. Brown. 2006. Epigenetic aberrations and cancer. Molecular Cancer 5 (1):60. doi: 10.1186/1476-4598-5-60.
  • Ebata, K. T., K. Mesh, S. Liu, M. Bilenky, A. Fekete, M. G. Acker, M. Hirst, B. A. Garcia, and M. Ramalho-Santos. 2017. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b. Epigenetics & Chromatin 10:36. doi: 10.1186/s13072-017-0143-3.
  • Fan, P., L. He, N. Hu, J. Luo, J. Zhang, L. F. Mo, Y. H. Wang, D. Pu, X. H. Lv, Z. M. Hao, et al. 2017. Effect of 1,25-(OH)2D3 on proliferation of fibroblast-like synoviocytes and expressions of pro-inflammatory cytokines through regulating MicroRNA-22 in a rat model of rheumatoid arthritis. Cellular Physiology and Biochemistry 42 (1):145–55. doi: 10.1159/000477123.
  • Fazi, F., L. Travaglini, D. Carotti, F. Palitti, D. Diverio, M. Alcalay, S. McNamara, W. H. Miller, F. L. Coco, P. G. Pelicci, et al. 2005. Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo. Oncogene 24 (11):1820–30. doi: 10.1038/sj.onc.1208286.
  • Feinberg, A. P. 2007. Phenotypic plasticity and the epigenetics of human disease. Nature 447 (7143):433–40. doi: 10.1038/nature05919.
  • Fernandez-Roig, S., S. C. Lai, M. M. Murphy, J. Fernandez-Ballart, and E. V. Quadros. 2012. Vitamin B12 deficiency in the brain leads to DNA hypomethylation in the TCblR/CD320 knockout mouse. Nutrition & Metabolism 9:41. doi: 10.1186/1743-7075-9-41.
  • Ferrari, N., U. Pfeffer, and G. Vidali. 1988. In vivo binding of retinol to chromatin. The binding is mediated by a lipoprotein. The Journal of Biological Chemistry 263 (1):448–53.
  • Fetahu, I. S., J. Hobaus, and E. Kallay. 2014. Vitamin D and the epigenome. Frontiers in Physiology 5:164. doi: 10.3389/fphys.2014.00164.
  • Friso, S., D. De Santis, F. Pizzolo, and S. Udali. 2020. Vitamins and epigenetics. Molecular Nutrition, 633–50. Cambridge, USA: Academic press. doi: 10.1016/B978-0-12-811907-5.00033-6.
  • Friso, S., S. Udali, D. D. Santis, and S. W. Choi. 2017. One-carbon metabolism and epigenetics. Molecular Aspects of Medicine 54:28–36. doi: 10.1016/j.mam.2016.11.007.
  • Fu, B., H. Wang, J. Wang, I. Barouhas, W. Liu, A. Shuboy, D. A. Bushinsky, D. Zhou, and M. J. Favus. 2013. Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification. PLoS One 8 (4):e61423. doi: 10.1371/journal.pone.0061423.
  • Gao, Y., Z. Han, Q. Li, Y. Wu, X. Shi, Z. Ai, J. Du, W. Li, Z. Guo, and Y. Zhang. 2015. Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression. The Febs Journal 282 (4):685–99. doi: 10.1111/febs.13173.
  • Geoffroy, A., R. Kerek, G. Pourie, D. Helle, J. L. Guéant, J. L. Daval, and C. Bossenmeyer-Pourié. 2017. Late maternal folate supplementation rescues from methyl donor deficiency-associated brain defects by restoring Let-7 and miR-34 pathways. Molecular Neurobiology 54 (7):5017–33. doi: 10.1007/s12035-016-0035-8.
  • Giangreco, A. A., and L. Nonn. 2013. The sum of many small changes: MicroRNAs are specifically and potentially globally altered by vitamin D3 metabolites. The Journal of Steroid Biochemistry and Molecular Biology 136:86–93. doi: 10.1016/j.jsbmb.2013.01.001.
  • Gillberg, L., A. D. Ørskov, A. Nasif, H. Ohtani, Z. Madaj, J. W. Hansen, N. Rapin, J. B. Mogensen, M. Liu, I. H. Dufva, et al. 2019 Oral vitamin C supplementation to patients with myeloid cancer on azacitidine treatment: Normalization of plasma vitamin C induces epigenetic changes. Clin Epigenetics 11(1):143. doi: 10.1186/s13148-019-0739-5.
  • Gille, D., and A. Schmid. 2015. Vitamin B12 in meat and dairy products. Nutrition Reviews 773 (2):106–15. doi: 10.1093/nutrit/nuu011.
  • Gruber, B. M. 2016. B-Group vitamins: Chemoprevention?. Advances in Clinical and Experimental Medicine 25 (3):561–8. doi: 10.17219/acem/33847.
  • Gudas, L. J. 2013. Retinoids induce stem cell differentiation via epigenetic changes. Seminars in Cell & Developmental Biology 24 (10-12):701–5. doi: 10.1016/j.semcdb.2013.08.002.
  • Haberland, M., R. L. Montgomery, and E. N. Olson. 2009. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics 10(1):32–42. doi: 10.1038/nrg2485.
  • Hassan, Y. I., and J. Zempleni. 2006. Epigenetic regulation of chromatin structure and gene function by biotin. The Journal of Nutrition 136 (7):1763–5. doi: 10.1093/jn/136.7.1763.
  • Haussler, M. R., P. W. Jurutka, M. Mizwicki, and A. W. Norman. 2011. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Practice & Research Clinical Endocrinology & Metabolism 25 (4):543–59. doi: 10.1016/j.beem.2011.05.010.
  • He, L., and G. J. Hannon. 2004. MicroRNAs: Small RNAs with a big role in gene regulation. Nature Reviews Genetics 5 (7):522–31. doi: 10.1038/nrg1379.
  • Herceg, Z. 2007. Epigenetics and cancer: Towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22 (2):91–103. doi: 10.1093/mutage/gel068.
  • Hong, S., Y. W. Cho, L. R. Yu, H. Yu, T. D. Veenstra, and K. Ge. 2007. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proceedings of the National Academy of Sciences of United States of America 104 (47):18439–44. doi: 10.1073/pnas.0707292104.
  • Hore, T. A. 2017. Modulating epigenetic memory through vitamins and TET: Implications for regenerative medicine and cancer treatment. Epigenomics 9 (6):863–71. doi: 10.2217/epi-2017-0021.
  • Horton, J. R., A. K. Upadhyay, H. H. Qi, X. Zhang, Y. Shi, and X. Cheng. 2010. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nature Structural & Molecular Biology 17 (1):38–43. doi: 10.1038/nsmb.1753.
  • Hou, N., L. Ren, M. Gong, Y. Bi, Y. Gu, Z. Dong, Y. Liu, J. Chen, and T. Li. 2015. Vitamin A deficiency impairs spatial learning and memory: The mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Molecular Neurobiology 51 (2):633–47. doi: 10.1007/s12035-014-8741-6.
  • Ito, S., A. C. D’Alessio, O. V. Taranova, K. Hong, L. C. Sowers, and Y. Zhang. 2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466 (7310):1129–33. doi: 10.1038/nature09303.
  • Jian, P., Z. W. Li, T. Y. Fang, W. Jian, Z. Zhuan, L.X. Mei, W.S. Yan, and N. Jian. 2011. Retinoic acid induces HL-60 cell differentiation via the upregulation of miR-663. Journal of Hematology & Oncology 4 (1):20. doi: 10.1186/1756-8722-4-20.
  • Kennedy, D. O. 2016. B vitamins and the brain: Mechanisms, dose and efficacy–a review. Nutrients 8 (2):68. doi: 10.3390/nu8020068.
  • Khan, M. I., S. Rath, V. M. Adhami, and H. Mukhtar. 2018. Targeting epigenome with dietary nutrients in cancer: Current advances and future challenges. Pharmacological Research 129:375–87. doi: 10.1016/j.phrs.2017.12.008.
  • Khan, S., D. Wall, C. Curran, J. Newell, M. J. Kerin, and R. M. Dwyer. 2015. MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 15 (1):345. doi: 10.1186/s12885-015-1374-y.
  • Kirkland, J. B. 2009. Niacin status impacts chromatin structure. The Journal of Nutrition 139 (12):2397–401. doi: 10.3945/jn.109.111757.
  • Kok, D. E., R. A. Dhonukshe-Rutten, C. Lute, S. G. Heil, A. G. Uitterlinden, N. van der Velde, J. B. van Meurs, N. M. van Schoor, G. J. Hooiveld, L. C. de Groot, et al. 2015. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clinical Epigenetics 7 (1):121. doi: 10.1186/s13148-015-0154-5.
  • Kolhe, R., A. K. Mondal, C. Pundkar, S. Periyasamy-Thandavan, B. Mendhe, M. Hunter, C. M. Isales, W. D. Hill, M. W. Hamrick, and S. Fulzele. 2018. Modulation of miRNAs by vitamin C in human bone marrow stromal cells. Nutrients 10 (2):186. doi: 10.3390/nu10020186.
  • Kostecki, L. M., M. Thomas, G. Linford, M. Lizotte, L. Toxopeus, A. P. Bartleman, and J. B. Kirkland. 2007. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 625 (1-2):50–61. doi: 10.1016/j.mrfmmm.2007.05.008.
  • Kothapalli, N., G. Camporeale, A. Kueh, Y. C. Chew, A. M. Oommen, J. B. Griffin, and J. Zempleni. 2005. Biological functions of biotinylated histones. The Journal of Nutritional Biochemistry 16 (7):446–8. doi: 10.1016/j.jnutbio.2005.03.025.
  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128 (4):693–705. doi: 10.1016/j.cell.2007.02.005.
  • Lee Chong, T., E. L. Ahearn, and L. Cimmino. 2019. Reprogramming the epigenome with vitamin C. Frontiers in Cell and Developmental Biology 7 (7):128. doi: 10.3389/fcell.2019.00128. eCollection 2019.
  • Lin, J. R., H. H. Qin, W. Y. Wu, S. J. He, and J. H. Xu. 2014. Vitamin C protects against UV irradiation-induced apoptosis through reactivating silenced tumor suppressor genes p21 and p16 in a Tet-dependent DNA demethylation manner in human skin cancer cells. Cancer Biotherapy and Radiopharmaceuticals 29 (6):257–64. doi: 10.1089/cbr.2014.1647.
  • Liu, B., C. Liu, W. Cong, N. Li, N. Zhou, Y. Tang, C. Wei, H. Bai, Y. Zhang, and J. Xiao. 2017. Retinoid acid-induced microRNA-31-5p suppresses myogenic proliferation and differentiation by targeting CamkIIδ. Skeletal Muscle 7 (1):8. doi: 10.1186/s13395-017-0126-x.
  • Lopes, N., J. Carvalho, C. Duraes, B. Sousa, M. Gomes, J. L. Costa, C. Oliveira, J. Paredes, and F. Schmitt. 2012. 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Research 32 (1):249–57.
  • Lopes, N., B. Sousa, D. Martins, M. Gomes, D. Vieira, L. A. Veronese, F. Milanezi, J. Paredes, J. L. Costa, and F. Schmitt. 2010. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: A study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer 10 (1):483. doi: 10.1186/1471-2407-10-483.
  • Lorsbach, R. B., J. Moore, S. Mathew, S. C. Raimondi, S. T. Mukatira, and J. R. Downing. 2003. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17 (3):637–41. doi: 10.1038/sj.leu.2402834.
  • Luger, K. 2003. Structure and dynamic behavior of nucleosomes. Current Opinion in Genetics & Development 13 (2):127–35. doi: 10.1016/S0959-437X(03)00026-1.
  • Manning, J., B. Mitchell, D. A. Appadurai, A. Shakya, L. J. Pierce, H. Wang, V. Nganga, P. C. Swanson, J. M. May, D. Tantin, et al. 2013. Vitamin C promotes maturation of T-cells. Antioxidants & Redox Signaling 19 (17):2054–67. doi: 10.1089/ars.2012.
  • Maruti, S. S., C. Ulrich, E. R. Jupe, and E. White. 2009. MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: A nested case-control study. Breast Cancer Research 11 (6):R91. doi: 10.1186/bcr2462.
  • Montgomery, M., and A. Srinivasan. 2019. Epigenetic gene regulation by dietary compounds in cancer prevention. Advances in Nutrition 10 (6):1012–28. 1 doi: 10.1093/advances/nmz046.
  • Nervi, C., and F. Grignani. 2014. RARs and microRNAs. Sub-Cellular Biochemistry 70:151–79. doi: 10.1007/978-94-017-9050-5_8.
  • Orellana, E. A., S. Tenneti, L. Rangasamy, L. T. Lyle, P. S. Low, and A. L. Kasinski. 2017. FolamiRs: Ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer. Science Translational Medicine 9 (401):eaam9327. doi: 10.1126/scitranslmed.aam9327.
  • Padayatty, S. J., and M. Levine. 2016. Vitamin C: The known and the unknown and Goldilocks. Oral Diseases 22 (6):463–93. doi: 10.1111/odi.12446.
  • Pangrekar, J., K. Krishnaswamy, and V. Jagadeesan. 1993. Effects of riboflavin deficiency and riboflavin administration on carcinogen-DNA binding. Food and Chemical Toxicology 31 (10):745–50. doi: 10.1016/0278-6915(93)90146-P.
  • Parasramka, M. A., E. Ho, D. E. Williams, and R. H. Dashwood. 2012. MicroRNAs, diet, and cancer: New mechanistic insights on the epigenetic actions of phytochemicals. Molecular Carcinogenesis 51 (3):213–30. doi: 10.1002/mc.20822.
  • Park, L. K., S. Friso, and S. W. Choi. 2012. Nutritional influences on epigenetics and age-related disease. Proceedings of the Nutrition Society 71 (1):75–83. doi: 10.1017/S0029665111003302.
  • Pera, M. F. 2013. Epigenetics, vitamin supplements and cellular reprogramming. Nature Genetics 45 (12):1412–141. doi: 10.1038/ng.2834.
  • Pereira, F., A. Barbachano, J. Silva, F. Bonilla, M. J. Campbell, A. Muñoz, and M. J. Larriba. 2011. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Human Molecular Genetics 20 (23):4655–65. doi: 10.1093/hmg/ddr399.
  • Pereira, F., A. Barbachano, P. K. Singh, M. J. Campbell, A. Muñoz, and M. J. Larriba. 2012. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle 11 (6):1081–9. doi: 10.4161/cc.11.6.19508.
  • Piyathilake, C. J., G. L. Johanning, M. Macaluso, M. Whiteside, D. K. Oelschlager, D. C. Heimburger, and W. E. Grizzle. 2000. Localized folate and vitamin B-12 deficiency in squamous cell lung cancer is associated with global DNA hypomethylation. Nutrition and Cancer 37 (1):99–107. doi: 10.1207/S15327914NC3701_13.
  • Sajadian, S. O., C. Tripura, F. S. Samani, M. Ruoss, S. Dooley, H. Baharvand, and A. K. Nussler. 2016. Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7. Clinical Epigenetics 8 (1):46. doi: 10.1186/s13148-016-0213-6.
  • Selhub, J. 2002. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. The Journal of Nutrition, Health & Aging 6 (1):39–42.
  • Seuter, S., P. Pehkonen, S. Heikkinen, and C. Carlberg. 2013. Dynamics of 1alpha,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. Biochimica et Biophysica Acta (Bba) - Gene Regulatory Mechanisms 1829 (12):1266–75. doi: 10.1016/j.bbagrm.2013.10.003.
  • Sharma, S., and A. Litonjua. 2014. Asthma, allergy, and responses to methyl donor supplements and nutrients. Journal of Allergy and Clinical Immunology 133 (5):1246–54. doi: 10.1016/j.jaci.2013.10.039.
  • Shenoy, N., T. Bhagat, E. Nieves, M. Stenson, J. Lawson, G. S. Choudhary, T. Habermann, G. Nowakowski, R. Singh, X. Wu, et al. 2017. Upregulation of TET activity with ascorbic acid induces epigenetic modulation of lymphoma cells. Blood Cancer Journal J7 (7):e587. doi: 10.1038/bcj.2017.65.
  • Shi, Y. 2007. Histone lysine demethylases: Emerging roles in development, physiology and disease. Nature Reviews Genetics 8 (11):829–33. doi: 10.1038/nrg2218.
  • Spronck, J. C., J. L. Nickerson, and J. B. Kirkland. 2007. Niacin deficiency alters p53 expression and impairs etoposide-induced cell cycle arrest and apoptosis in rat bone marrow cells. Nutrition and Cancer 57 (1):88–99. doi: 10.1080/01635580701268337.
  • Stefanska, B., H. Karlic, F. Varga, K. Fabianowska-Majewska, and A. Haslberger. 2012. Epigenetic mechanisms in anti-cancer actions of bioactive food components–the implications in cancer prevention. British Journal of Pharmacology 167 (2):279–97. doi: 10.1111/j.1476-5381.2012.02002.x.
  • Sun, M., Q. Zhang, X. Yang, S. Y. Qian, and B. Guo. 2016. Vitamin D enhances the efficacy of Irinotecan through miR-627-mediated inhibition of intratumoral drug metabolism. Molecular Cancer Therapeutics 15 (9):2086–95. doi: 10.1158/1535-7163.MCT-16-0095.
  • Tahiliani, M., K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala, Y. Brudno, S. Agarwal, L. M. Iyer, D. R. Liu, L. Aravind, et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (5929):930–5. doi: 10.1126/science.1170116.
  • Tang, X. H., and L. J. Gudas. 2011. Retinoids, retinoic acid receptors, and cancer. Annual Review of Pathology: Mechanisms of Disease 6 (1):345–64. doi: 10.1146/annurev-pathol-011110-130303.
  • Tsukada, Y., J. Fang, H. Erdjument-Bromage, M. E. Warren, C. H. Borchers, P. Tempst, and Y. Zhang. 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439 (7078):811–6. doi: 10.1038/nature04433.
  • Uekawa, A., K. Katsushima, A. Ogata, T. Kawata, N. Maeda, K. Kobayashi, A. Maekawa, T. Tadokoro, and Y. Yamamoto. 2009. Change of epigenetic control of cystathionine beta-synthase gene expression through dietary vitamin B12 is not recovered by methionine supplementation. Journal of Nutrigenetics and Nutrigenomics 2 (1):29–36. doi: 10.1159/000165374.
  • Urvalek, A., K. B. Laursen, and L. J. Gudas. 2014. The roles of retinoic acid and retinoic acid receptors in inducing epigenetic changes. Sub-Cellular Biochemistry 70:129–49. doi: 10.1007/978-94-017-9050-5_7.
  • Wang, T., K. Chen, X. Zeng, J. Yang, Y. Wu, X. Shi, B. Qin, L. Zeng, M. A. Esteban, G. Pan, et al. 2011. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9 (6):575–87. doi: 10.1016/j.stem.2011.10.005.
  • Waterland, R. A. 2006. Assessing the effects of high methionine intake on DNA methylation. The Journal of Nutrition 136 (6):1706S–10S. doi: 10.1093/jn/136.6.1706S.
  • Wu, H., J. Zhao, B. Fu, S. Yin, C. Song, J. Zhang, S. Zhao, and Y. Zhang. 2017. Retinoic acid-induced upregulation of miR-219 promotes the differentiation of embryonic stem cells into neural cells. Cell Death & Disease 8 (7):e2953–e2953. doi: 10.1038/cddis.2017.336.
  • Yadav, D. K., S. Shrestha, K. A. Lillycrop, C. V. Joglekar, H. Pan, J. D. Holbrook, C. H. Fall, C. S. Yajnik, and G. R. Chandak. 2018. Vitamin B12 supplementation influences methylation of genes associated with Type 2 diabetes and its intermediate traits. Epigenomics 10 (1):71–90. doi: 10.2217/epi-2017-0102.
  • Yiu, T. T., and W. Li. 2015. Pediatric cancer epigenome and the influence of folate. Epigenomics 7 (6):961–73. doi: 10.2217/epi.15.42.
  • Young, J. I., S. Zuchner, and G. Wang. 2015. Regulation of the epigenome by vitamin C. Annual Review of Nutrition 35 (1):545–64. doi: 10.1146/annurev-nutr-071714-034228.
  • Yu, X. X., Y. H. Liu, X. M. Liu, P. C. Wang, S. Liu, J. K. Miao, Z. Q. Du, and C. X. Yang. 2018. Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Scientific Reports 8 (1):6132. doi: 10.1038/s41598-018-24395-y.
  • Zempleni, J. 2005. Uptake, localization, and noncarboxylase roles of biotin. Annual Review of Nutrition 25 (1):175–96. doi: 10.1146/annurev.nutr.25.121304.131724.
  • Zempleni, J., Y. C. Chew, Y. I. Hassan, and S. S. Wijeratne. 2008. Epigenetic regulation of chromatin structure and gene function by biotin: Are biotin requirements being met?. Nutrition Reviews 66 (Suppl 1):S46–S48. doi: 10.1111/j.1753-4887.2008.00073.x.
  • Zhang, J., Y. Gao, M. Yu, H. Wu, Z. Ai, Y. Wu, H. Liu, J. Du, Z. Guo, and Y. Zhang. 2015. Retinoic acid induces embryonic stem cell differentiation by altering both encoding RNA and microRNA expression. PLoS One 10 (7):e0132566. doi: 10.1371/journal.pone.0132566s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.