1,354
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Advances in physiological functions and mechanisms of (−)-epicatechin

, , ORCID Icon, , , , ORCID Icon & ORCID Icon show all

References

  • Actis-Goretta, L., A. Leveques, F. Giuffrida, F. Romanov-Michailidis, F. Viton, D. Barron, M. Duenas-Paton, S. Gonzalez-Manzano, C. Santos-Buelga, G. Williamson, et al. 2012. Elucidation of (-)-epicatechin metabolites after ingestion of chocolate by healthy humans. Free Radical Biology and Medicine 53 (4):787–95. doi: 10.1016/j.freeradbiomed.2012.05.023.
  • Alañón, M. E., S. M. Castle, G. Serra, A. Lévèques, L. Poquet, L. Actis-Goretta, and J. P. E. Spencer. 2019. Acute study of dose-dependent effects of (-)-epicatechin on vascular function in healthy male volunteers: A randomized controlled trial. Clinical Nutrition 41 (3):1–9. doi: 10.1016/j.clnu.2019.03.041.
  • Alonso-Alonso, M. 2015. Cocoa flavanols and cognition: Regaining chocolate in old age? The American Journal of Clinical Nutrition 101 (3):423–4. doi: 10.3945/ajcn.114.106146.
  • Alvarez-Cilleros, D., M. A. Martin, and S. Ramos. 2018. (-)-Epicatechin and the colonic 2,3-dihydroxybenzoic acid metabolite regulate glucose uptake, glucose production, and improve insulin signaling in renal NRK-52E cells. Molecular Nutrition & Food Research 62 (4):1–33. doi: 10.1002/mnfr.201700470.
  • Álvarez-Cilleros, D., M. Á. Martín, L. Goya, and S. Ramos. 2018. (−)-Epicatechin and the colonic metabolite 3,4-dihydroxyphenylacetic acid protect renal proximal tubular cell against high glucose-induced oxidative stress by modulating NOX-4/SIRT-1 signalling. Journal of Functional Foods 46:19–28. doi: 10.1016/j.jff.2018.04.051.
  • Amor, S., F. Puentes, D. Baker, and P. V. der Valk. 2014. Inflammation in neurodegenerative diseases. Insect Science 129 (2):154–69. doi: 10.1111/imm.12233.
  • André, I., A. Gonzalez, B. Wang, J. Katz, and D. Mathis. 1996. Checkpoints in the progression of autoimmune disease: Lessons from diabetes models. Proceedings of the National Academy of Sciences of the United States of America 93 (6):2260–3. doi: 10.1073/pnas.93.6.2260.
  • Anker, S. D., A. J. Coats, J. E. Morley, G. Rosano, R. Bernabei, S. von Haehling, and K. Kalantar-Zadeh. 2014. Muscle wasting disease: A proposal for a new disease classification. Journal of Cachexia, Sarcopenia and Muscle 5 (1):1–3. doi: 10.1007/s13539-014-0135-0.
  • Aron, P. M., and J. A. Kennedy. 2008. Flavan-3-ols: Nature, occurrence and biological activity. Molecular Nutrition & Food Research 52 (1):79–104. doi: 10.1002/mnfr.200700137.
  • Augustin, S., I. T. Johnson, and S. Mike. 2005. Polyphenols: Antioxidants and beyond. The American Journal of Clinical Nutrition 81 (1 Suppl):215S. doi: 10.1079/PHN2004668.
  • Avogaro, A., and G. P. Fadini. 2014. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications. Diabetes Care 37 (10):2884–94. doi: 10.2337/dc14-0865.
  • Barnett, C. F., A. Moreno-Ulloa, S. Shiva, I. Ramirez-Sanchez, P. R. Taub, Y. Su, G. Ceballos, S. Dugar, G. Schreiner, and F. Villarreal. 2015. Pharmacokinetic, partial pharmacodynamic and initial safety analysis of (-)-epicatechin in healthy volunteers. Food & Function 6 (3):824–33. doi: 10.1039/C4FO00596A.
  • Bettaieb, A., E. Cremonini, H. Kang, J. Kang, F. G. Haj, and P. I. Oteiza. 2016. Anti-inflammatory actions of (-)-epicatechin in the adipose tissue of obese mice. The International Journal of Biochemistry & Cell Biology 81 (Pt B):383–92. doi: 10.1016/j.biocel.2016.08.044.
  • Bettaieb, A., M. A. Vazquez Prieto, C. Rodriguez Lanzi, R. M. Miatello, F. G. Haj, C. G. Fraga, and P. I. Oteiza. 2014. (-)-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress. Free Radical Biology and Medicine 72:247–56. doi: 10.1016/j.freeradbiomed.2014.04.011.
  • Betts, J., M. Hornsey, D. Wareham, and R. La Ragione. 2017. In vitro and in vivo activity of theaflavin-epicatechin combinations versus multidrug-resistant Acinetobacter baumannii. European Congress of Clinical Microbiology and Infectious Diseases (2017) 6:435–42. doi: 10.1007/s40121-017-0161-2.
  • Bitu Pinto, N., B. da Silva Alexandre, K. R. Neves, A. H. Silva, L. K. Leal, and G. S. Viana. 2015. Neuroprotective properties of the standardized extract from Camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of Parkinson’s disease. Evidence-Based Complementary and Alternative Medicine 2015:1–12. doi: 10.1155/2015/161092.
  • Bolanos, V., A. Diaz-Martinez, J. Soto, M. A. Rodriguez, C. Lopez-Camarillo, L. A. Marchat, and E. Ramirez-Moreno. 2014. The flavonoid (-)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. Journal of Proteomics 111:74–85. doi: 10.1016/j.jprot.2014.05.017.
  • Borges, G., J. Van Der Hooft, and A. Crozier. 2016. A comprehensive evaluation of the [2-(14)C](-)-epicatechin metabolome in rats. Free Radical Biology and Medicine 99:128–38. doi: 10.1016/j.
  • Cachofeiro, V., M. Goicochea, S. G. De Vinuesa, P. Oubiña, V. Lahera, and J. Luño. 2008. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney International 74 (111):S4–S9. doi: 10.1038/ki.2008.516.
  • Calabro, V., B. Piotrkowski, L. Fischerman, M. A. Vazquez Prieto, M. Galleano, and C. G. Fraga. 2016. Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (-)-epicatechin. Food & Function 7 (4):1876–83. doi: 10.1039/C6FO00048G.
  • Carbonaro, M., A. Di Venere, A. Filabozzi, P. Maselli, V. Minicozzi, S. Morante, E. Nicolai, A. Nucara, E. Placidi, and F. Stellato. 2016. Role of dietary antioxidant (-)-epicatechin in the development of beta-lactoglobulin fibrils. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1864 (7):766–72. doi: 10.1016/j.bbapap.2016.03.017.
  • Carnevale, R., L. Loffredo, C. Nocella, S. Bartimoccia, T. Bucci, E. De Falco, M. Peruzzi, I. Chimenti, G. Biondi-Zoccai, P. Pignatelli, et al. 2014. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease. Oxidative Medicine and Cellular Longevity 2014:1–9. doi: 10.1155/2014/691015.
  • Chang, C. F., S. Cho, and J. Wang. 2014. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Annals of Clinical and Translational Neurology 1 (4):258–71. doi: 10.1002/acn3.54.
  • Chen, L., and A. A. Knowlton. 2011. Mitochondrial dynamics in heart failure. Congestive Heart Failure 17 (6):257. doi: 10.1111/j.1751-7133.2011.00255.x.
  • Chen, Z., Y. Liu, B. Sun, H. Li, J. Dong, L. Zhang, L. Wang, P. Wang, Y. Zhao, and C. Chen. 2014. Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation. Small 10 (12):2362–72. doi: 10.1002/smll.201302825.
  • Cheng, T., W. Wang, Q. Li, X. Han, J. Xing, C. Qi, X. Lan, J. Wan, A. Potts, F. Guan, et al. 2016. Cerebroprotection of flavanol (-)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. Free Radical Biology and Medicine 92:15–28. doi: 10.1016/j.freeradbiomed.2015.12.027.
  • Contreras, T. C., E. Ricciardi, E. Cremonini, and P. I. Oteiza. 2015. (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Archives of Biochemistry and Biophysics 573:84–91. doi: 10.1016/j.abb.2015.01.024.
  • Copp, S. W., T. Inagaki, M. J. White, D. M. Hirai, S. K. Ferguson, C. T. Holdsworth, G. E. Sims, D. C. Poole, and T. I. Musch. 2013. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats. American Journal of Physiology-Heart and Circulatory Physiology 304 (2):H206–214. doi: 10.1152/ajpheart.00714.2012.
  • Cordero-Herrera, I., M. Á. Martín, E. Fernández-Millán, C. Álvarez, L. Goya, and S. Ramos. 2015. Cocoa and cocoa flavanol epicatechin improve hepatic lipid metabolism in in vivo and in vitro models. Role of PKCζ. Journal of Functional Foods 17:761–73. doi: 10.1016/j.jff.2015.06.033.
  • Cordero-Herrera, I., M. Á. Martín, L. Goya, and S. Ramos. 2014. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food and Chemical Toxicology 64 (2):10–9. doi: 10.1016/j.fct.2013.11.014.
  • Cordero-Herrera, I., X. Chen, S. Ramos, and S. Devaraj. 2017. (-)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes. European Journal of Nutrition 56 (3):1369–73. doi: 10.1007/s00394-015-1136-2.
  • Cortese-Krott, M. M., T. Krenz, A. Rodriguez-Mateos, F. Oberle, K. Weber, S. Thasian-Sivarajah, M. Kelm, and C. Heiss. 2012. (-)-Epicatechin increases NO bioavailability and Nrf2 dependent response in the vessel wall in vivo. Free Radical Biology and Medicine 53:S179. doi: 10.1016/j.freeradbiomed.2012.10.493.
  • Cortese-Krott, M. M., T. Krenz, A. Rodriguez-Mateos, F. Oberle, S. Sivarajah, and M. Kelm. 2012. (-)-Epicatechin increases systemic Nrf2-dependent response and vascular function in mice. Free Radical Biology and Medicine 53:S45. doi: 10.1016/j.freeradbiomed.2012.08.515.
  • Cortese-Krott, M. M., T. Krenz, A. Rodriguez-Matheos, F. Oberle, K. Weber, D. Pullmann, M. Haeberlein, S. Thasian-Sivarajah, J. Spencer, M. Kelm, et al. 2013. P69: Analysis of acute and chronic effects of (−)-epicatechin on NO bioavailability and organ redox state in the cardiovascular system in vivo. Nitric Oxide 31:S43. doi: 10.1016/j.niox.2013.02.071.
  • Cox, C. J., F. Choudhry, E. Peacey, M. S. Perkinton, J. C. Richardson, D. R. Howlett, S. F. Lichtenthaler, P. T. Francis, and R. J. Williams. 2015. Dietary ()-epicatechin as a potent inhibitor of bg-secretase amyloid precursor protein processing. Neurobiology of Aging 36 (1):178–87. doi: 10.1016/j.neurobiolaging.2014.07.032.
  • Cremonini, E., A. Bettaieb, F. G. Haj, C. G. Fraga, and P. I. Oteiza. 2016. (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Archives of Biochemistry and Biophysics 599:13–21. doi: 10.1016/j.abb.2016.03.006.
  • Cremonini, E., and P. I. Oteiza. 2018. (-)-Epicatechin and its metabolites prevent palmitate-induced NADPH oxidase upregulation, oxidative stress and insulin resistance in HepG2 cells. Archives of Biochemistry and Biophysics 646:55–63. doi: 10.1016/j.abb.2018.03.027.
  • Cremonini, E., C. G. Fraga, and P. I. Oteiza. 2019. (-)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radical Biology and Medicine 130:478–88. doi: 10.1016/j.freeradbiomed.2018.11.010.
  • Crozier, A. 2013. Absorption, metabolism, and excretion of (-)-epicatechin in humans: An evaluation of recent findings. The American Journal of Clinical Nutrition 98 (4):861–2. doi: 10.3945/ajcn.113.072009.
  • Cruz, P. D. L., P. Carrillo-Mora, and A. Santamaría. 2012. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. International Journal of Tryptophan Research 5 (5):1–8. doi: 10.4137/IJTR.S8158.
  • Cruz-Gonzalez, T., E. Cortez-Torres, F. Perez-Severiano, B. Espinosa, J. Guevara, A. Perez-Benitez, F. J. Melendez, A. Diaz, and R. E. Ramirez. 2016. Antioxidative stress effect of epicatechin and catechin induced by Abeta25-35 in rats and use of the electrostatic potential and the Fukui function as a tool to elucidate specific sites of interaction. Neuropeptides 59:89–95. doi: 10.1016/j.npep.2016.04.001.
  • Cuevas, E., D. Limon, F. Perez-Severiano, A. Diaz, L. Ortega, E. Zenteno, and J. Guevara. 2009. Antioxidant effects of epicatechin on the hippocampal toxicity caused by amyloid-beta 25-35 in rats. European Journal of Pharmacology 616 (1–3):122–7. doi: 10.1016/j.ejphar.2009.06.013.
  • Cui, L., Y. Liu, T. Liu, Y. Yuan, T. Yue, R. Cai, and Z. Wang. 2017. Extraction of epigallocatechin gallate and epicatechin gallate from tea leaves using Î2-cyclodextrin. Journal of Food Science 82 (2):394–400. doi: 10.1111/1750-3841.13622.
  • Cushnie, T. P., P. W. Taylor, Y. Nagaoka, S. Uesato, Y. Hara, and A. J. Lamb. 2008. Investigation of the antibacterial activity of 3-O-octanoyl-(-)-epicatechin. Journal of Applied Microbiology 105 (5):1461–9. doi: 10.1111/j.1365-2672.2008.03881.x.
  • Daveri, E., and P. I. Oteiza. 2017. GLP-2 in the capacity of (-)-epicatechin and anthocyanidins to improve insulin sensitivity. Free Radical Biology and Medicine 108:S72. doi: 10.1016/j.freeradbiomed.2017.04.243.
  • De Los Santos, S., V. Garcia-Perez, S. Hernandez-Resendiz, C. Palma-Flores, C. J. Gonzalez-Gutierrez, C. Zazueta, P. Canto, and R. M. Coral-Vazquez. 2017. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Molecular Nutrition & Food Research 61 (2):1–32. doi: 10.1002/mnfr.201600343.
  • Dennis, M. K., A. S. Field, R. Burai, C. Ramesh, W. K. Petrie, C. G. Bologa, T. I. Oprea, Y. Yamaguchi, S.-I. Hayashi, L. A. Sklar, et al. 2011. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. The Journal of Steroid Biochemistry and Molecular Biology 127 (3–5):358–66. doi: 10.1016/j.jsbmb.2011.07.002.
  • Dickerhof, N., N. J. Magon, J. D. Tyndall, A. J. Kettle, and M. B. Hampton. 2014. Potent inhibition of macrophage migration inhibitory factor (MIF) by myeloperoxidase-dependent oxidation of epicatechins. Biochemical Journal 462 (2):303–14. doi: 10.1042/BJ20140612.
  • Dietrich-Muszalska, A., B. Kontek, B. Olas, and J. Rabe-Jabłońska. 2012. Epicatechin inhibits human plasma lipid peroxidation caused by haloperidol in vitro. Neurochemical Research 37 (3):557–62. doi: 10.1007/s11064-011-0642-8.
  • Dong, Z. X., L. Wan, R. J. Wang, Y. Q. Shi, G. Z. Liu, S. J. Zheng, H. L. Hou, W. Han, and X. Hai. 2017. (-)-Epicatechin suppresses angiotensin II-induced cardiac hypertrophy via the activation of the SP1/SIRT1 signaling pathway. Cellular Physiology and Biochemistry 41 (5):2004–15. doi: 10.1159/000475396.
  • Donnan, G. A., G. J. Hankey, and S. M. Davis. 2010. Intracerebral haemorrhage: A need for more data and new research directions. Lancet Neurology 9 (2):167–76. doi: 10.1016/S1474-4422(10)70001-6.
  • Doré, S. 2011. Potential efficacy and mechanism of action of the flavanol (−)-epicatechin in acute brain trauma. In Nutrition and traumatic brain injury—improving acute and subacute health outcomes in military personnel, eds. J. Erdman, M. Oria, and L. Pillsbury, 369–81. Washington, DC: The National Academies Press.
  • Doria, A. 2014. Genetics of diabetes complications. Current Diabetes Reports 25 (9–10):384–400. doi: 10.1007/s00335-014-9543-x.
  • Dower, J. I., J. M. Geleijnse, L. Gijsbers, C. Schalkwijk, D. Kromhout, and P. C. Hollman. 2015. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: A randomized double-blind, placebo-controlled, crossover trial. The Journal of Nutrition 145 (7):1459–63. doi: 10.3945/jn.115.211888.
  • Dower, J. I., J. M. Geleijnse, L. Gijsbers, P. L. Zock, D. Kromhout, and P. C. Hollman. 2015. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: A randomized, double-blind, placebo-controlled, crossover trial. The American Journal of Clinical Nutrition 101 (5):914–21. doi: 10.3945/ajcn.114.098590.
  • Dower, J. I., J. M. Geleijnse, P. C. Hollman, S. S. Soedamah-Muthu, and D. Kromhout. 2016. Dietary epicatechin intake and 25-y risk of cardiovascular mortality: The Zutphen Elderly Study. The American Journal of Clinical Nutrition 104 (1):58–64. doi: 10.3945/ajcn.115.128819.
  • Duenas, M., S. Gonzalez-Manzano, A. Gonzalez-Paramas, and C. Santos-Buelga. 2010. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Journal of Pharmaceutical and Biomedical Analysis 51 (2):443–9. doi: 10.1016/j.jpba.2009.04.007.
  • Dugar, S., F. Villarreal, F. H. Hollinger, D. Mahajan, I. Ramirez-Sanchez, A. Moreno-Ulloa, G. Ceballos, and G. Schreiner. 2020. 11-β-hydroxysterols as possible endogenous stimulators of mitochondrial biogenesis as inferred from epicatechin molecular mimicry. Pharmacological Research 151:104540. doi: 10.1016/j.phrs.2019.104540.
  • Edwards, M. H., E. M. Dennison, A. Aihie Sayer, R. Fielding, and C. Cooper. 2015. Osteoporosis and sarcopenia in older age. Bone 80:126–30. doi: 10.1016/j.bone.2015.04.016.
  • Elbaz, H. A., I. Lee, D. A. Antwih, J. Liu, M. Huttemann, and S. P. Zielske. 2014. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation. PLoS One 9 (2):e88322. doi: 10.1371/journal.pone.0088322.
  • Esser, D., J. M. Geleijnse, J. C. Matualatupauw, J. I. Dower, D. Kromhout, P. C. H. Hollman, and L. A. Afman. 2018. Pure flavonoid epicatechin and whole genome gene expression profiles in circulating immune cells in adults with elevated blood pressure: A randomised double-blind, placebo-controlled, crossover trial. PLoS One 13 (4):e0194229. doi: 10.1371/journal.pone.0194229.
  • Esser, N., S. Legrand-Poels, J. Piette, A. J. Scheen, and N. Paquot. 2014. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Research and Clinical Practice 105 (2):141–50. doi: 10.1016/j.diabres.2014.04.006.
  • Fakhri, S., F. Abbaszadeh, L. Dargahi, and M. Jorjani. 2018. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacological Research 136:1–20. doi: 10.1016/j.phrs.2018.08.012.
  • Farese, R. V., and M. P. Sajan. 2010. Metabolic functions of atypical protein kinase C: “Good” and “bad” as defined by nutritional status. American Journal of Physiology-Endocrinology and Metabolism 298 (3):E385–394. doi: 10.1152/ajpendo.00608.2009.
  • Fernã, n-G R., J. M. Matamala, R. Carrasco, R. Gutiã©Rrez, R. Melo, and R. Rodrigo. 2014. Novel therapeutic strategies for traumatic brain injury: Acute antioxidant reinforcement. CNS Drugs 28 (3):229–48. doi: 10.1007/s40263-013-0138-y.
  • Fernell, M., C. Swinton, and K. Lukowiak. 2016. Epicatechin, a component of dark chocolate, enhances memory formation if applied during the memory consolidation period. Communicative & Integrative Biology 9 (4):e1205772. doi: 10.1080/19420889.2016.1205772.
  • Flemmig, J., J. Remmler, F. Rohring, and J. Arnhold. 2014. (-)-Epicatechin regenerates the chlorinating activity of myeloperoxidase in vitro and in neutrophil granulocytes. Journal of Inorganic Biochemistry 130:84–91. doi: 10.1016/j.jinorgbio.2013.10.002.
  • Fraga, C. G. 2007. Plant polyphenols: How to translate their in vitro antioxidant actions to in vivo conditions. Iubmb Life 59 (4):308–15. doi: 10.1080/15216540701230529.
  • Fraga, C. G., and P. I. Oteiza. 2011. Dietary flavonoids: Role of (−)-epicatechin and related procyanidins in cell signaling. Free Radical Biology and Medicine 51 (4):813–23. doi: 10.1016/j.freeradbiomed.2011.06.002.
  • Fraga, C. G., M. Galleano, S. V. Verstraeten, and P. I. Oteiza. 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Molecular Aspects of Medicine 31 (6):435–45. doi: 10.1016/j.mam.2010.09.006.
  • Fruson, L., S. Dalesman, and K. Lukowiak. 2012. A flavonol present in cocoa [(-)epicatechin] enhances snail memory. Journal of Experimental Biology 215 (20):3566–76. doi: 10.1242/jeb.070300.
  • Fu, D. G. 2015. Cardiac arrhythmias: Diagnosis, symptoms, and treatments. Cell Biochemistry and Biophysics 73 (2):291–6. doi: 10.1007/s12013-015-0626-4.
  • Fujiki, H. 2005. Green tea: Health benefits as cancer preventive for humans. The Chemical Record 5 (3):119–32. doi: 10.1002/tcr.20039.
  • Galleano, M., I. Bernatova, A. Puzserova, P. Balis, N. Sestakova, O. Pechanova, and C. G. Fraga. 2013. (-)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life 65 (8):710–5. doi: 10.1002/iub.1185.
  • Galleano, M., S. V. Verstraeten, P. I. Oteiza, and C. G. Fraga. 2010. Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics 501 (1):23–30. doi: 10.1016/j.abb.2010.04.005.
  • Gasper, A., W. Hollands, A. Casgrain, S. Saha, B. Teucher, J. R. Dainty, D. P. Venema, P. C. Hollman, M. J. Rein, R. Nelson, et al. 2014. Consumption of both low and high (-)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: A randomized controlled trial. Archives of Biochemistry and Biophysics 559:29–37. doi: 10.1016/j.abb.2014.05.026.
  • George, R. C., J. Lew, and D. J. Graves. 2013. Interaction of cinnamaldehyde and epicatechin with tau: Implications of beneficial effects in modulatingAlzheimer’s disease pathogenesis. Journal of Alzheimer’s Disease 36 (1):21–40. doi: 10.3233/JAD-122113.
  • Gettings, J. V., R. O’Connor, J. O’Doherty, A. Hannigan, W. Cullen, L. Hickey, and A. O’Regan. 2018. A snapshot of type two diabetes mellitus management in general practice prior to the introduction of diabetes cycle of care. Irish Journal of Medical Science 187 (4):953–957. doi: 10.1007/s11845-018-1754-9.
  • Ghovanloo, M. R., M. Abdelsayed, and P. C. Ruben. 2016. Effects of amiodarone and N-desethylamiodarone on cardiac voltage-gated sodium channels. Frontiers in Pharmacology 7 (3):39. doi: 10.3389/fphar.2016.00039.
  • Gómez-Guzmán, M., R. Jimenez, M. Sanchez, M. J. Zarzuelo, P. Galindo, A. M. Quintela, R. Lopez-Sepulveda, M. Romero, J. Tamargo, F. Vargas, et al. 2012. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radical Biology and Medicine 52 (1):70–9. doi: 10.1016/j.freeradbiomed.2011.09.015.
  • Gómez-Guzmán, M., R. Jiménez, M. Sánchez, M. Romero, F. O’Valle, R. Lopez-Sepulveda, A. M. Quintela, P. Galindo, M. J. Zarzuelo, E. Bailon, et al. 2011. Chronic (-)-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats. British Journal of Nutrition 106 (9):1337–48. doi: 10.1017/S0007114511004314.
  • Gong, Y., F. Fang, X. Zhang, B. Liu, H. Luo, Z. Li, X. Zhang, Z. Zhang, and X. Pang. 2018. B type and complex A/B type epicatechin trimers isolated from Litchi pericarp aqueous extract show high antioxidant and anticancer activity. International Journal of Molecular Sciences 19 (1):1–19. doi: 10.3390/ijms19010301.
  • Gonzalez-Manzano, S., A. M. Gonzalez-Paramas, L. Delgado, S. Patianna, F. Surco-Laos, M. Duenas, and C. Santos-Buelga. 2012. Oxidative status of stressed Caenorhabditis elegans treated with epicatechin. Journal of Agricultural and Food Chemistry 60 (36):8911–6. doi: 10.1021/jf3004256.
  • Granado-Serrano, A. B., M. Angeles Martin, L. Goya, L. Bravo, and S. Ramos. 2009. Time-course regulation of survival pathways by epicatechin on HepG2 cells. The Journal of Nutritional Biochemistry 20 (2):115–24. doi: 10.1016/j.jnutbio.2007.12.006.
  • Greenberg, J., E. Martinez, A. Negrin, R. O'Donnell, A. Uribe, and E. J. Kennelly. 2018. A 1.6 mg/kg dose of epicatechin in a supplemented cocoa mixture yielded the largest acute decrease in food intake in humans. Journal of Functional Foods 42:356–61. doi: 10.1016/j.jff.2017.11.033.
  • Gregg, E. W., N. Sattar, and M. K. Ali. 2016. The changing face of diabetes complications. The Lancet Diabetes & Endocrinology 4 (6):537–47. doi: 10.1016/S2213-8587(16)30010-9.
  • Gutierrez-Salmean, G.,. E. Meaney, M. A. Lanaspa, C. Cicerchi, R. J. Johnson, S. Dugar, P. Taub, I. Ramirez-Sanchez, F. Villarreal, G. Schreiner, et al. 2016. A randomized, placebo-controlled, double-blind study on the effects of (-)-epicatechin on the triglyceride/HDLC ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. International Journal of Cardiology 223:500–6. doi: 10.1016/j.ijcard.2016.08.158.
  • Gutierrez-Salmean, G.,. T. P. Ciaraldi, L. Nogueira, J. Barboza, P. R. Taub, M. C. Hogan, R. R. Henry, E. Meaney, F. Villarreal, G. Ceballos, et al. 2014. Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. The Journal of Nutritional Biochemistry 25 (1):91–4. doi: 10.1016/j.jnutbio.2013.09.007.
  • Hao, C.-M., and V. H. Haase. 2010. Sirtuins and their relevance to the kidney. Journal of the American Society of Nephrology 21 (10):1620–7. doi: 10.1681/ASN.2010010046.
  • Haza, A. I., and P. Morales. 2011. Effects of (+)-catechin and (-)-epicatechin on heterocyclic amines-induced oxidative DNA damage. Journal of Applied Toxicology 31 (1):53–62. doi: 10.1002/jat.1559.
  • Hemdan, D. I. I., K. Hirasaka, R. Nakao, S. Kohno, S. Kagawa, T. Abe, A. Haradasukeno, Y. Okumura, Y. Nakaya, and J. Terao. 2009. Polyphenols prevent clinorotation-induced expression of atrogenes in mouse C2C12 skeletal myotubes. The Journal of Medical Investigation 56 (1–2):26. doi: 10.2152/jmi.56.26.
  • Huttemann, M., I. Lee, and M. H. Malek. 2012. (-)-Epicatechin maintains endurance training adaptation in mice after 14 days of detraining. The FASEB Journal 26 (4):1413–22. doi: 10.1096/fj.11-196154.
  • Huttemann, M., I. Lee, G. A. Perkins, S. L. Britton, L. G. Koch, and M. H. Malek. 2013. (-) Epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacity. Clinical Science 124 (11):663–74. doi: 10.1042/CS20120469.
  • Kaul, K.,. J. M. Tarr, S. I. Ahmad, E. M. Kohner, and R. Chibber. 2011. Introduction to diabetes mellitus. Oxygen Transport to Tissue XXXIII 771 (771):1–11. doi: 10.1007/978-1-4614-5441-0_1.
  • Kaul, K.,. J. M. Tarr, S. I. Ahmad, E. M. Kohner, and R. Chibber. 2012. Introduction to diabetes mellitus. Advances in Experimental Medicine and Biology 771 (771):1–11. doi: 10.1007/978-1-4614-5441-0_1.
  • Keys, A., C. Aravanis, H. W. Blackburn, F. S. Van Buchem, R. Buzina, B. D. Djordjević, A. S. Dontas, F. Fidanza, M. J. Karvonen, and N. Kimura. 2010. Epidemiological studies related to coronary heart disease: Characteristics of men aged 40-59 in seven countries. Journal of Internal Medicine 180 (s460):4–5. doi: 10.1111/j.0954-6820.1966.tb04737.x.
  • Khymenets, O., M. Rabassa, M. Rodriguez-Palmero, M. Rivero-Urgell, M. Urpi-Sarda, S. Tulipani, P. Brandi, C. Campoy, C. Santos-Buelga, and C. Andres-Lacueva. 2016. Dietary epicatechin is available to breastfed infants through human breast milk in the form of host and microbial metabolites. Journal of Agricultural and Food Chemistry 64 (26):5354–60. doi: 10.1021/acs.jafc.6b01947.
  • Kim, J. H., S. H. Lee, H. W. Lee, Y. N. Sun, W. H. Jang, S. Y. Yang, H. D. Jang, and Y. H. Kim. 2016. (-)-Epicatechin derivate from Orostachys japonicus as potential inhibitor of the human butyrylcholinesterase. International Journal of Biological Macromolecules 91:1033–9. doi: 10.1016/j.ijbiomac.2016.06.069.
  • Kim, J., C. S. Kim, M. K. Moon, and J. S. Kim. 2015. Epicatechin breaks preformed glycated serum albumin and reverses the retinal accumulation of advanced glycation end products. European Journal of Pharmacology 748:108–14. doi: 10.1016/j.ejphar.2014.12.010.
  • Kim, M.-J., G. R. Ryu, J.-H. Kang, S. S. Sim, D. S. Min, D.-J. Rhie, S. H. Yoon, S. J. Hahn, I.-K. Jeong, K.-J. Hong, et al. 2004. Inhibitory effects of epicatechin on interleukin-1beta-induced inducible nitric oxide synthase expression in RINm5F cells and rat pancreatic islets by down-regulation of NF-kappaB activation. Biochemical Pharmacology 68 (9):1775–85. doi: 10.1016/j.bcp.2004.06.031.
  • Kirchner, T., J. Flemmig, P. G. Furtmuller, C. Obinger, and J. Arnhold. 2010. (-)-Epicatechin enhances the chlorinating activity of human myeloperoxidase. Archives of Biochemistry and Biophysics 495 (1):21–7. doi: 10.1016/j.abb.2009.12.013.
  • Kluknavsky, M., P. Balis, A. Puzserova, J. Radosinska, A. Berenyiova, M. Drobna, S. Lukac, J. Muchova, and I. Bernatova. 2016. (-)-Epicatechin prevents blood pressure increase and reduces locomotor hyperactivity in young spontaneously hypertensive rats. Oxidative Medicine and Cellular Longevity 2016:1–14. doi: 10.1155/2016/6949020.
  • Knezevic, B., and K. Lukowiak. 2014. The flavonol epicatechin reverses the suppressive effects of a stressor on long-term memory formation. Journal of Experimental Biology 217 (22):4004–9. doi: 10.1242/jeb.110726.
  • Kopustinskiene, D. M., A. Savickas, D. Vetchy, R. Masteikova, A. Kasauskas, and J. Bernatoniene. 2015. Direct effects of (-)-epicatechin and procyanidin B2 on the respiration of rat heart mitochondria. Biomed Research International 2015:1–7. doi: 10.1155/2015/232836.
  • Kosińska, A., and W. Andlauer. 2012. Cocoa polyphenols are absorbed in Caco-2 cell model of intestinal epithelium. Food Chemistry 135 (3):999–1005. doi: 10.1016/j.foodchem.2012.05.101.
  • Kumar, N., R. Kant, P. K. Maurya, and S. I. Rizvi. 2012. Concentration dependent effect of (-)-Epicatechin on Na(+)/K(+) -ATPase and Ca(2+) -ATPase inhibition induced by free radicals in hypertensive patients: Comparison with L-ascorbic acid. Phytotherapy Research 26 (11):1644–7. doi: 10.1002/ptr.4624.
  • Kyrø, C., G. Skeie, S. Loft, R. Landberg, J. Christensen, E. Lund, L. M. Nilsson, R. Palmqvist, A. Tjønneland, and A. Olsen. 2013. Intake of whole grains from different cereal and food sources and incidence of colorectal cancer in the Scandinavian HELGA cohort. Cancer Causes & Control 24 (7):1363–74. doi: 10.1007/s10552-013-0215-z.
  • Lan, X., X. Han, Q. Li, and J. Wang. 2017. (-)-Epicatechin, a natural flavonoid compound, protects astrocytes against hemoglobin toxicity via Nrf2 and AP-1 signaling pathways. Molecular Neurobiology 54 (10):7898–907. doi: 10.1007/s12035-016-0271-y.
  • Lee, I., M. Hüttemann, A. Kruger, A. Bollig-Fischer, and M. H. Malek. 2015. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Frontiers in Pharmacology 6:43. doi: 10.3389/fphar.2015.00043.
  • Lee, J. S., S. U. Kang, H. S. Hwang, J. H. Pyun, Y. H. Choung, and C. H. Kim. 2010. Epicatechin protects the auditory organ by attenuating cisplatin-induced ototoxicity through inhibition of ERK. Toxicology Letters 199 (3):308–16. doi: 10.1016/j.toxlet.2010.09.013.
  • Lee, S. J., Y. E. Leem, G. Y. Go, Y. Choi, Y. J. Song, I. Kim, D. Y. Kim, Y. K. Kim, D. W. Seo, J. S. Kang, et al. 2017. Epicatechin elicits MyoD-dependent myoblast differentiation and myogenic conversion of fibroblasts. PLoS One 12 (4):e0175271. doi: 10.1371/journal.pone.0175271.
  • Leonardo, C. C., M. Agrawal, N. Singh, J. R. Moore, S. Biswal, and S. Dore. 2013. Oral administration of the flavanol (-)-epicatechin bolsters endogenous protection against focal ischemia through the Nrf2 cytoprotective pathway. European Journal of Neuroscience 38 (11):3659–68. doi: 10.1111/ejn.12362.
  • Li, J. W., X. Y. Wang, X. Zhang, L. Gao, L. F. Wang, and X. H. Yin. 2018. (‑)‑Epicatechin protects against myocardial ischemia‑induced cardiac injury via activation of the PTEN/PI3K/AKT pathway . Molecular Medicine Reports 17 (6):8300–8. doi: 10.3892/mmr.2018.8870.
  • Li, P., A. Liu, C. Liu, Z. Qu, W. Xiao, J. Huang, Z. Liu, and S. Zhang. 2019. Role and mechanism of catechin in skeletal muscle cell differentiation. The Journal of Nutritional Biochemistry 74:108225. doi: 10.1016/j.jnutbio.2019.108225.
  • Li, P., A. Liu, W. Xiong, H. Lin, W. Xiao, J. Huang, S. Zhang, and Z. Liu. 2019. Catechins enhance skeletal muscle performance. Critical Reviews in Food Science and Nutrition 11:1–14. doi: 10.1080/10408398.2018.1549534.
  • Li, S., and I. Laher. 2015. Exercise pills: At the starting line. Trends in Pharmacological Sciences 36 (12):906–17. doi: 10.1016/j.tips.2015.08.014.
  • Lin, M. T., and M. F. Beal. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443 (7113):787–95. doi: 10.1109/TMAG.2003.809874.
  • Lin, Y. T., Y. H. Wu, C. K. Tseng, C. K. Lin, W. C. Chen, Y. C. Hsu, and J. C. Lee. 2013. Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation. PLoS One 8 (1):e54466. doi: 10.1371/journal.pone.0054466.
  • Litterio, M. C., G. Jaggers, G. Sagdicoglu Celep, A. M. Adamo, M. A. Costa, P. I. Oteiza, C. G. Fraga, and M. Galleano. 2012. Blood pressure-lowering effect of dietary (-)-epicatechin administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radical Biology and Medicine 53 (10):1894–902. doi: 10.1016/j.freeradbiomed.2012.08.585.
  • Litterio, M. C., M. A. Vazquez Prieto, A. M. Adamo, R. Eles Garay, P. I. Oteiza, M. Galleano, and C. G. Fraga. 2015. (-)-Epicatechin reduces blood pressure increase in high-fructose-fed rats: Effects on the determinants of nitric oxide bioavailability. The Journal of Nutritional Biochemistry 26 (7):745–51. doi: 10.1016/j.jnutbio.2015.02.004.
  • Loke, W. M., J. M. Proudfoot, J. M. Hodgson, A. J. Mckinley, N. Hime, M. Magat, R. Stocker, and K. D. Croft. 2010. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology 30 (4):749–57. doi: 10.1161/ATVBAHA.109.199687.
  • Lu, J. M., Phyao, Q. Lin, and C. Chen. 2010. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. Journal of Cellular and Molecular Medicine 14 (4):840–60. doi: 10.1111/j.1582-4934.2009.00897.x.
  • Ma, W., P. Waffo-Téguo, M. Jourdes, H. Li, and P.-L. Teissedre. 2018. First evidence of epicatechin vanillate in grape seed and red wine. Food Chemistry 259:304–10. doi: 10.1016/j.foodchem.2018.03.134.
  • Marinko, M.,. G. Jankovic, D. Nenezic, P. Milojevic, I. Stojanovic, V. Kanjuh, and A. Novakovic. 2018. (-)-Epicatechin-induced relaxation of isolated human saphenous vein: Roles of K(+) and Ca(2+) channels. Phytotherapy Research 32 (2):267–75. doi: 10.1002/ptr.5969.
  • Martín, M. Á., E. Fernández-Millán, S. Ramos, L. Bravo, and L. Goya. 2014. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Molecular Nutrition & Food Research 58 (3):447–56. doi: 10.1002/mnfr.201300291.
  • Martin, M. A., S. Ramos, R. Mateos, M. Izquierdo-Pulido, L. Bravo, and L. Goya. 2010. Protection of human HepG2 cells against oxidative stress by the flavonoid epicatechin. Phytotherapy Research 24 (4):503–9. doi: 10.1002/ptr.2961.
  • Matsubara, K., A. Saito, A. Tanaka, N. Nakajima, R. Akagi, M. Mori, and Y. Mizushina. 2007. Epicatechin conjugated with fatty acid is a potent inhibitor of DNA polymerase and angiogenesis. Life Sciences 80 (17):1578–85. doi: 10.1016/j.lfs.2007.01.049.
  • McDonald, C., E. Henricson, B. Oskarsson, C. Aguilar, A. Nicorici, N. Joyce, D. Reddy, A. Wagner, E. deBie, E. Goude, et al. 2015. Epicatechin enhances mitochondrial biogenesis, increases dystrophin and utrophin, increases follistatin while decreasing myostatin, and improves skeletal muscle exercise response in adults with Becker muscular dystrophy (BMD). Neuromuscular Disorders 25:S314–S315. doi: 10.1016/j.nmd.2015.06.456.
  • Milenkovic, D., K. Declerck, Y. Guttman, Z. Kerem, S. Claude, and A. R. Weseler. 2019. (-)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochemical Pharmacology 101 (5):113699. doi: 10.1016/j.bcp.2019.113699.
  • Mohamed, R. H., R. A. Karam, and M. G. Amer. 2011. Epicatechin attenuates doxorubicin-induced brain toxicity: Critical role of TNF-alpha, iNOS and NF-kappaB. Brain Research Bulletin 86 (1–2):22–8. doi: 10.1016/j.brainresbull.2011.07.001.
  • Mohsen, M. M. A. E., G. Kuhnle, A. R. Rechner, H. Schroeter, S. Rose, P. Jenner, and C. A. Rice-Evans. 2002. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radical Biology and Medicine 33 (12):1693–702. doi: 10.1016/S0891-5849(02)01137-1.
  • Moreno-Ulloa, A., A. Cid, I. Rubio-Gayosso, G. Ceballos, F. Villarreal, and I. Ramirez-Sanchez. 2013. Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins. Bioorganic & Medicinal Chemistry Letters 23 (15):4441–6. doi: 10.1016/j.bmcl.2013.05.079.
  • Moreno-Ulloa, A., A. Miranda-Cervantes, A. Licea-Navarro, C. Mansour, E. Beltran-Partida, L. Donis-Maturano, H. C. Delgado De la Herran, F. Villarreal, and C. A. Delgado. 2018. (-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. European Journal of Pharmacology 822:95–107. doi: 10.1016/j.ejphar.2018.01.014.
  • Moreno-Ulloa, A., D. Mendez-Luna, E. Beltran-Partida, C. Castillo, G. Guevara, I. Ramirez-Sanchez, J. Correa-Basurto, G. Ceballos, and F. Villarreal. 2015. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER). Pharmacological Research 100:309–20. doi: 10.1016/j.phrs.2015.08.014.
  • Moreno-Ulloa, A., D. Romero-Perez, F. Villarreal, G. Ceballos, and I. Ramirez-Sanchez. 2014. Cell membrane mediated (-)-epicatechin effects on upstream endothelial cell signaling: Evidence for a surface receptor. Bioorganic & Medicinal Chemistry Letters 24 (12):2749–52. doi: 10.1016/j.bmcl.2014.04.038.
  • Morrison, M.,. R. van der Heijden, P. Heeringa, E. Kaijzel, L. Verschuren, R. Blomhoff, T. Kooistra, and R. Kleemann. 2014. Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFkappaB in vivo. Atherosclerosis 233 (1):149–56. doi: 10.1016/j.atherosclerosis.2013.12.027.
  • Mursu, J., J. K. Virtanen, T. P. Tuomainen, T. Nurmi, and S. Voutilainen. 2014. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. The American Journal of Clinical Nutrition 99 (2):328–33. doi: 10.3945/ajcn.113.069641.
  • Nagarajan, S., R. Nagarajan, S. J. Braunhut, F. Bruno, D. McIntosh, L. Samuelson, and J. Kumar. 2008. Biocatalytically oligomerized epicatechin with potent and specific anti-proliferative activity for human breast cancer cells. Molecules 13 (11):2704–16. doi: 10.3390/molecules13112704.
  • Nichols, M., J. Zhang, B. M. Polster, P. A. Elustondo, A. Thirumaran, E. V. Pavlov, and G. S. Robertson. 2015. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience 308:75–94. doi: 10.1016/j.neuroscience.2015.09.012.
  • Nogueira, L., I. Ramirez-Sanchez, G. A. Perkins, A. Murphy, P. R. Taub, G. Ceballos, F. J. Villarreal, M. C. Hogan, and M. H. Malek. 2011. (-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. The Journal of Physiology 589 (18):4615–31. doi: 10.1113/jphysiol.2011.209924.
  • Noll, C., J. Lameth, J. L. Paul, and N. Janel. 2013. Effect of catechin/epicatechin dietary intake on endothelial dysfunction biomarkers and proinflammatory cytokines in aorta of hyperhomocysteinemic mice. European Journal of Nutrition 52 (3):1243–50. doi: 10.1007/s00394-012-0435-0.
  • Novakovic, A., A. Vranic, G. Jankovic, I. Stojanovic, P. Milojevic, N. Ugresic, V. Kanjuh, Q. Yang, and H. Guo-Wei. 2014a. Cardioprotective effect of (-) epicatechin. Atherosclerosis 235 (2):e111. doi: 10.1016/j.atherosclerosis.2014.05.300.
  • Novakovic, A., A. Vranic, G. Jankovic, I. Stojanovic, P. Milojevic, N. Ugresic, V. Kanjuh, Q. Yang, and G.-W. He. 2014b. PT276 Relaxation of arterial graft induced by epicatechin. Global Heart 9 (1):e220. doi: 10.1016/j.gheart.2014.03.2019.
  • Novakovic, A., M. Marinko, A. Vranic, G. Jankovic, I. Stojanovic, P. Milojevic, N. Ugresic, V. Kanjuh, Q. Yang, and G. W. He. 2015. Epicatechin induced vasorelaxation of human internal mammary artery. Atherosclerosis 241 (1):e50. doi: 10.1016/j.atherosclerosis.2015.04.178.
  • Novakovic, A., M. Marinko, A. Vranic, G. Jankovic, P. Milojevic, I. Stojanovic, D. Nenezic, N. Ugresic, V. Kanjuh, Q. Yang, et al. 2015. Mechanisms underlying the vasorelaxation of human internal mammary artery induced by (-)-epicatechin. European Journal of Pharmacology 762:306–12. doi: 10.1016/j.ejphar.2015.05.066.
  • Ortiz-Vilchis, P., M. Ortiz-Flores, M. Pacheco, I. Ramirez-Sanchez, A. Moreno-Ulloa, L. Vega, A. Ortiz, F. Villarreal, I. Rubio-Gayosso, N. Najera, et al. 2018. The cardioprotective effects of (-)-Epicatechin are mediated through arginase activity inhibition in a murine model of ischemia/reperfusion. European Journal of Pharmacology 818:335–42. doi: 10.1016/j.ejphar.2017.11.007.
  • Ottaviani, J. I., G. Borges, T. Y. Momma, J. P. E. Spencer, C. L. Keen, A. Crozier, and H. Schroeter. 2016. The metabolome of [2-14C](−)-epicatechin in humans: Implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Scientific Reports 6 (1):29034. doi: 10.1038/srep29034.
  • Ottaviani, J. I., T. Y. Momma, G. K. Kuhnle, C. L. Keen, and H. Schroeter. 2012. Structurally related (-)-epicatechin metabolites in humans: Assessment using de novo chemically synthesized authentic standards. Free Radical Biology and Medicine 52 (8):1403. doi: 10.1016/j.freeradbiomed.2011.12.010.
  • Panneerselvam, M., S. S. Ali, J. C. Finley, S. E. Kellerhals, M. Y. Migita, B. P. Head, P. M. Patel, D. M. Roth, and H. H. Patel. 2013. Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent. Molecular Nutrition & Food Research 57 (6):1007–14. doi: 10.1002/mnfr.201300026.
  • Peluso, I., and M. Serafini. 2017. Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms. British Journal of Pharmacology 174 (11):1195–208. doi: 10.1111/bph.13649.
  • Perumal, P., and K. Saravanabhavan. 2018. Antidiabetic and antioxidant activities of ethanolic extract of Piper betle L. leaves in catfish, clarias gariepinus. Asian Journal of Pharmaceutical and Clinical Research 11 (3):194. doi: 10.22159/ajpcr.2018.v11i3.22393.
  • Pierce, B. L., R. Ballard-Barbash, L. Bernstein, R. N. Baumgartner, M. L. Neuhouser, M. H. Wener, K. B. Baumgartner, F. D. Gilliland, B. E. Sorensen, A. McTiernan, et al. 2009. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. Journal of Clinical Oncology 27 (21):3437–44. doi: 10.1200/JCO.2008.18.9068.
  • Piotrkowski, B., V. Calabro, M. Galleano, and C. G. Fraga. 2015. (-)-Epicatechin prevents alterations in the metabolism of superoxide anion and nitric oxide in the hearts of L-NAME-treated rats. Food & Function 6 (1):155–61. doi: 10.1039/c4fo00554f.
  • Pisoschi, A. M., and A. Pop. 2015. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry 46 (31):55–74. doi: 10.1016/j.ejmech.2015.04.040.
  • Prince, P. D., C. R. Lanzi, J. E. Toblli, R. Elesgaray, P. I. Oteiza, C. G. Fraga, and M. Galleano. 2016. Dietary (-)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radical Biology and Medicine 90:35–46. doi: 10.1016/j.freeradbiomed.2015.11.009.
  • Prince, P. D., G. Fraga Cesar, and M. Galleano. 2019. (-)-Epicatechin administration protects kidneys against modifications induced by short-term l-NAME treatment in rats. Food & Function 11 (1):318–27. doi: 10.1039/c9fo02234a.
  • Prince, P. D., L. Fischerman, J. E. Toblli, C. G. Fraga, and M. Galleano. 2017. LPS-induced renal inflammation is prevented by (-)-epicatechin in rats. Redox Biology 11:342–9. doi: 10.1016/j.redox.2016.12.023.
  • Prince, P. S. 2013. (-) Epicatechin prevents alterations in lysosomal glycohydrolases, cathepsins and reduces myocardial infarct size in isoproterenol-induced myocardial infarcted rats. European Journal of Pharmacology 706 (1–3):63–9. doi: 10.1016/j.ejphar.2013.02.003.
  • Proshkina, E., E. Lashmanova, E. Dobrovolskaya, N. Zemskaya, A. Kudryavtseva, M. Shaposhnikov, and A. Moskalev. 2016. Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in Drosophila melanogaster. Frontiers in Pharmacology 7:505. doi: 10.3389/fphar.2016.00505.
  • Prywer, J., M. Olszynski, and E. Mielniczek Brzóska. 2017. Green tea and struvite crystals in relation to infectious urinary stones: The role of (−)-epicatechin. Crystal Growth & Design 17 (11):5953–64. doi: 10.1021/acs.cgd.7b01043.
  • Pyun, J. H., S. U. Kang, H. S. Hwang, Y. T. Oh, S. H. Kang, Y. A. Lim, O. S. Choo, and C. H. Kim. 2011. Epicatechin inhibits radiation-induced auditory cell death by suppression of reactive oxygen species generation. Neuroscience 199:410–20. doi: 10.1016/j.neuroscience.2011.09.012.
  • Quinonez-Bastidas, G. N., C. Cervantes-Duran, H. I. Rocha-Gonzalez, J. Murbartian, and V. Granados-Soto. 2013. Analysis of the mechanisms underlying the antinociceptive effect of epicatechin in diabetic rats. Life Sciences 93 (17):637–45. doi: 10.1016/j.lfs.2013.08.022.
  • Ramirez-Sanchez, I., A. Rodriguez, A. Moreno-Ulloa, G. Ceballos, and F. Villarreal. 2016. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase. Diabetes and Vascular Disease Research 13 (3):201–10. doi: 10.1177/1479164115620982.
  • Ramirez-Sanchez, I., G. Ceballos, A. Moreno-Ulloa, T. Ciaraldi, R. H. Robert, and F. Villarreal. 2014. Evaluation and comparison of epicatechin epimer effects on skeletal muscle structure, function, and regulators of metabolism. Diabetes 63 (1 suppl):A478–A478.
  • Ramirez-Sanchez, I., L. Maya, G. Ceballos, and F. Villarreal. 2010. (-)-epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertension 55 (6):1398–405. doi: 10.1161/HYPERTENSIONAHA.109.147892.
  • Ramirez-Sanchez, I., L. Nogueira, A. Moreno, A. Murphy, P. Taub, G. Perkins, G. M. Ceballos, M. Hogan, M. Malek, and F. Villarreal. 2012. Stimulatory effects of the flavanol (-)-epicatechin on cardiac angiogenesis: Additive effects with exercise. Journal of Cardiovascular Pharmacology 60 (5):429–38. doi: 10.1097/FJC.0b013e318269ae0d.
  • Ramirez-Sanchez, I., P. R. Taub, T. P. Ciaraldi, L. Nogueira, T. Coe, G. Perkins, M. Hogan, A. S. Maisel, R. R. Henry, G. Ceballos, et al. 2013. (-)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. International Journal of Cardiology 168 (4):3982–90. doi: 10.1016/j.ijcard.2013.06.089.
  • Ramirez-Sanchez, I., S. De los Santos, S. Gonzalez-Basurto, P. Canto, P. Mendoza-Lorenzo, C. Palma-Flores, G. Ceballos-Reyes, F. Villarreal, A. Zentella-Dehesa, and R. Coral-Vazquez. 2014. (-)-Epicatechin improves mitochondrial-related protein levels and ameliorates oxidative stress in dystrophic delta-sarcoglycan null mouse striated muscle. FEBS Journal 281 (24):5567–80. doi: 10.1111/febs.13098.
  • Rebbapragada, A., H. Benchabane, J. L. Wrana, A. J. Celeste, and L. Attisano. 2003. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Molecular and Cellular Biology 23 (20):7230–42. doi: 10.1128/MCB.23.20.7230-7242.2003.
  • Rein, D., S. Lotito, R. R. Holt, C. L. Keen, H. H. Schmitz, C. G. Fraga, J. W. Erdman Jr., J. Wills, and D. Finley. 2000. Epicatechin in human plasma: In vivo determination and effect of chocolate consumption on plasma oxidation status. The Journal of Nutrition 130 (8):2109S–14S. doi: 10.1046/j.1365-277x.2000.00245.x.
  • Rodriguez-Mateos, A., N. Toro-Funes, T. Cifuentes-Gomez, M. Cortese-Krott, C. Heiss, and J. P. Spencer. 2014. Uptake and metabolism of (-)-epicatechin in endothelial cells. Archives of Biochemistry and Biophysics 559:17–23. doi: 10.1016/j.abb.2014.03.014.
  • Rozza, A. L., C. A. Hiruma-Lima, A. Tanimoto, and C. H. Pellizzon. 2012. Morphologic and pharmacological investigations in the epicatechin gastroprotective effect. Evidence-Based Complementary and Alternative Medicine 2012:1–8. doi: 10.1155/2012/708156.
  • Rubio-Osornio, M., E. Gorostieta-Salas, S. Montes, F. Perez-Severiano, C. Rubio, C. Gomez, C. Rios, and J. Guevara. 2015. Epicatechin reduces striatal MPP(+)-induced damage in rats through slight increases in SOD-Cu, Zn activity. Oxidative Medicine and Cellular Longevity 2015:1–6. doi: 10.1155/2015/276039.
  • Ruijters, E. J. B., A. R. Weseler, C. Kicken, G. R. M. M. Haenen, and A. Bast. 2013. The flavanol (-)-epicatechin and its metabolites protect against oxidative stress in primary endothelial cells via a direct antioxidant effect. European Journal of Pharmacology 715 (1–3):147–53. doi: 10.1016/j.ejphar.2013.05.029.
  • Ruijters, E. J. B., G. R. M. M. Haenen, A. R. Weseler, and A. Bast. 2014a. The anti-inflammatory efficacy of dexamethasone is protected by (−)-epicatechin. PharmaNutrition 2 (2):47–52. doi: 10.1016/j.phanu.2014.04.001.
  • Ruijters, E. J. B., G. R. M. M. Haenen, A. R. Weseler, and A. Bast. 2014b. The cocoa flavanol (-)-epicatechin protects the cortisol response. Pharmacological Research 79:28–33. doi: 10.1016/j.phrs.2013.11.004.
  • Saha, A., T. Kuzuhara, N. Echigo, M. Suganuma, and H. Fujiki. 2010. New role of (-)-epicatechin in enhancing the induction of growth inhibition and apoptosis in human lung cancer cells by curcumin. Cancer. Cancer Prevention Research 3 (8):953–62. doi: 10.1158/1940-6207.CAPR-09-0247.
  • Saito, A., Y. Mizushina, A. Tanaka, and N. Nakajima. 2009. Versatile synthesis of epicatechin series procyanidin oligomers, and their antioxidant and DNA polymerase inhibitory activity. Tetrahedron 65 (36):7422–8. doi: 10.1016/j.tet.2009.07.018.
  • Sansone, R., J. I. Ottaviani, A. Rodriguez-Mateos, Y. Heinen, D. Noske, J. P. Spencer, A. Crozier, M. W. Merx, M. Kelm, H. Schroeter, et al. 2017. Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: Randomized, double-masked controlled studies. The American Journal of Clinical Nutrition 105 (2):352–60. doi: 10.3945/ajcn.116.140046.
  • Santamaría, D., V. Espinoza-González, C. Ríos, and A. Santamaría. 1999. Nomega-nitro-L-arginine, a nitric oxide synthase inhibitor, antagonizes quinolinic acid-induced neurotoxicity and oxidative stress in rat striatal slices. Neurochemical Research 24 (7):843–8.
  • Santamaria-Del Angel, D.,. N. A. Labra-Ruiz, M. E. Garcia-Cruz, D. Calderon-Guzman, A. Valenzuela-Peraza, and H. Juarez-Olguin. 2016. Comparative effects of catechin, epicatechin and N-Omega-nitroarginine on quinolinic acid-induced oxidative stress in rat striatum slices. Biomedicine & Pharmacotherapy 78:210–5. doi: 10.1016/j.biopha.2016.01.016.
  • Schroeter, H., P. Bahia, J. P. Spencer, O. Sheppard, M. Rattray, E. Cadenas, C. Rice-Evans, and R. J. Williams. 2007. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. Journal of Neurochemistry 101 (6):1596–606. doi: 10.1111/j.1471-4159.2006.04434.x.
  • Schuler, D. 2013. P52: (−)-Epicatechin increases angiogenesis after hindlimb ischemia. Nitric Oxide 31 (Suppl 2):S35–S36.
  • Sedeek, M., A. C. Montezano, R. L. Hebert, S. P. Gray, E. Di Marco, J. C. Jha, M. E. Cooper, K. Jandeleit-Dahm, E. L. Schiffrin, J. L. Wilkinson-Berka, et al. 2012. Oxidative stress, nox isoforms and complications of diabetes—Potential targets for novel therapies. Journal of Cardiovascular Translational Research 5 (4):509–18. doi: 10.1007/s12265-012-9387-2.
  • Serra, A., A. Macià, M. P. Romero, N. Anglès, J. R. Morelló, and M. J. Motilva. 2011. Distribution of procyanidins and their metabolites in rat plasma and tissues after an acute intake of hazelnut extract. Food & Function 2 (9):562–8. doi: 10.1039/c1fo10083a.
  • Shah, Z. A., R.-C. Li, A. S. Ahmad, T. W. Kensler, M. Yamamoto, S. Biswal, and S. Doré. 2010. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. Journal of Cerebral Blood Flow & Metabolism 30 (12):1951–61. doi: 10.1038/jcbfm.2010.53.
  • Shaki, F., Y. Shayeste, M. Karami, E. Akbari, M. Rezaei, and R. Ataee. 2017. The effect of epicatechin on oxidative stress and mitochondrial damage induced by homocycteine using isolated rat hippocampus mitochondria. Research in Pharmaceutical Sciences 12 (2):119–27. doi: 10.1039/c1fo10083a.
  • Shay, J., H. A. Elbaz, I. Lee, S. P. Zielske, M. H. Malek, and M. Hüttemann. 2015. Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxidative Medicine and Cellular Longevity 2015:1–13. doi: 10.1155/2015/181260.
  • Si, H., X. Wang, L. Zhang, L. D. Parnell, B. Ahmed, T. LeRoith, T.-A. Ansah, L. Zhang, J. Li, J. M. Ordovás, et al. 2019. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice. The FASEB Journal 33 (1):965–77. doi: 10.1096/fj.201800554RR.
  • Si, H., Z. Fu, P. V. Babu, W. Zhen, T. Leroith, M. P. Meaney, K. A. Voelker, Z. Jia, R. W. Grange, and D. Liu. 2011. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster. The Journal of Nutrition 141 (6):1095–100. doi: 10.3945/jn.110.134270.
  • Siddique, H. R., D. J. Liao, S. K. Mishra, T. Schuster, L. Wang, B. Matter, P. M. Campbell, P. Villalta, S. Nanda, Y. Deng, et al. 2012. Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. International Journal of Cancer 131 (7):1720–31. doi: 10.1002/ijc.27409.
  • Silva Santos, L. F., A. Stolfo, C. Calloni, and M. Salvador. 2017. Catechin and epicatechin reduce mitochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts. Journal of Arrhythmia 33 (3):220–5. doi: 10.1016/j.joa.2016.09.004.
  • Sinegre, T., D. Teissandier, D. Milenkovic, C. Morand, and A. Lebreton. 2019. Epicatechin influences primary hemostasis, coagulation and fibrinolysis. Food & Function 10 (11):7291–8. doi: 10.1039/C9FO00816K.
  • Sousa-Victor, P., and P. Muñoz-Cánoves. 2016. Regenerative decline of stem cells in sarcopenia. Molecular Aspects of Medicine 50:109–17. doi: 10.1016/j.mam.2016.02.002.
  • Srividhya, R., R. Gayathri, and P. Kalaiselvi. 2012. Impact of epigallo catechin-3-gallate on acetylcholine-acetylcholine esterase cycle in aged rat brain. Neurochemistry International 60 (5):517–22. doi: 10.1016/j.neuint.2012.02.005.
  • Stohs, S. J., and D. Bagchi. 2015. Antioxidant, anti-inflammatory, and chemoprotective properties of Acacia catechu heartwood extracts. Phytotherapy Research 29 (6):818–24. doi: 10.1002/ptr.5335.
  • Stringer, T. P., D. Guerrieri, C. Vivar, and H. van Praag. 2015. Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice. Translational Psychiatry 5 (1):e493. doi: 10.1038/tp.2014.135.
  • Suganuma, M., A. Saha, and H. Fujiki. 2011. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Science 102 (2):317–23. doi: 10.1111/j.1349-7006.2010.01805.x.
  • Surco-Laos, F., M. Dueñas, S. González-Manzano, J. Cabello, C. Santos-Buelga, and A. M. González-Paramás. 2012. Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Research International 46 (2):514–21. doi: 10.1016/j.foodres.2011.10.014.
  • Takanashi, K., M. Suda, K. Matsumoto, C. Ishihara, K. Toda, K. Kawaguchi, S. Senga, N. Kobayashi, M. Ichikawa, M. Katoh, et al. 2017. Epicatechin oligomers longer than trimers have anti-cancer activities, but not the catechin counterparts. Scientific Reports 7 (1):7791. doi: 10.1038/s41598-017-08059-x.
  • Tang, E. H. C., and P. M. Vanhoutte. 2010. Endothelial dysfunction: A strategic target in the treatment of hypertension? Pflügers Archiv - European Journal of Physiology 459 (6):995–1004. doi: 10.1007/s00424-010-0786-4.
  • Taub, P. R., I. Ramirez-Sanchez, T. P. Ciaraldi, G. Perkins, A. N. Murphy, R. Naviaux, M. Hogan, A. S. Maisel, R. R. Henry, G. Ceballos, et al. 2012. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: Effects of epicatechin rich cocoa. Clinical and Translational Science 5 (1):43–7. doi: 10.1111/j.1752-8062.2011.00357.x.
  • Taub, P. R., I. Ramirez-Sanchez, T. P. Ciaraldi, S. Gonzalez-Basurto, R. Coral-Vazquez, G. Perkins, M. Hogan, A. S. Maisel, R. R. Henry, G. Ceballos, et al. 2013. Perturbations in skeletal muscle sarcomere structure in patients with heart failure and type 2 diabetes: Restorative effects of (-)-epicatechin-rich cocoa. Clinical Science 125 (8):383–9. doi: 10.1042/CS20130023.
  • Uhlenhut, K., and P. Högger. 2012. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (pycnogenol). Free Radical Biology and Medicine 15 (2):53. doi: 10.1016/j.freeradbiomed.2012.04.013.
  • Uttara, B., A. V. Singh, P. Zamboni, and R. T. Mahajan. 2009. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology 7 (1):65–74. doi: 10.2174/157015909787602823.
  • Varela, C. E., A. Rodriguez, M. Romero-Valdovinos, P. Mendoza-Lorenzo, C. Mansour, G. Ceballos, F. Villarreal, and I. Ramirez-Sanchez. 2017. Browning effects of (-)-epicatechin on adipocytes and white adipose tissue. European Journal of Pharmacology 811:48–59. doi: 10.1016/j.ejphar.2017.05.051.
  • Varelacastillo, O., P. Cordero, G. Gutiérreziglesias, I. Palma, I. Rubiogayosso, E. Meaney, I. Ramirezsanchez, F. Villarreal, G. Ceballos, and N. Nájera. 2018. Characterization of the cytotoxic effects of the combination of cisplatin and flavanol (-)-epicatechin on human lung cancer cell line A549. An isobolographic approach. Experimental Oncology 40 (1):19–23. doi: 10.31768/2312-8852.
  • Vazquez-Prieto, M. A., A. Bettaieb, C. Rodriguez Lanzi, F. G. Haj, C. G. Fraga, and P. I. Oteiza. 2012. (-)-Epicatechin prevents adipose tissue inflammation in animal and cell models. Free Radical Biology and Medicine 53:S8. doi: 10.1016/j.freeradbiomed.2012.08.084.
  • Vazquez-Prieto, M. A., A. Bettaieb, F. G. Haj, C. G. Fraga, and P. I. Oteiza. 2012. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Archives of Biochemistry and Biophysics 527 (2):113–8. doi: 10.1016/j.abb.2012.02.019.
  • Wang, H., and Z. Cao. 2014. Anti-inflammatory effects of (-)-epicatechin in lipopolysaccharide-stimulated raw 264.7 macrophages. Tropical Journal of Pharmaceutical Research 13 (9):1415. doi: 10.4314/tjpr.v13i9.6.
  • Wang, J. 2010. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Progress in Neurobiology 92 (4):463–77. doi: 10.1016/j.pneurobio.2010.08.001.
  • Wang, Z., M. C. Litterio, M. Müller, D. Vauzour, and I. Oteiza Patricia. 2020. (-)-Epicatechin and NADPH oxidase inhibitors prevent bile acid-induced Caco-2 monolayer permeabilization through ERK1/2 modulation. Redox Biology 28:101360. doi: 10.1016/j.redox.2019.101360.
  • Wu, B. K., R. Y. Yuan, Y. P. Chang, H. W. Lien, T. S. Chen, H. C. Chien, T. S. Tong, H. P. Tsai, C. L. Fang, Y. F. Liao, et al. 2016. Epicatechin isolated from Tripterygium wilfordii extract reduces tau-GFP-induced neurotoxicity in zebrafish embryo through the activation of Nrf2. Biochemical and Biophysical Research Communications 477 (2):283–9. doi: 10.1016/j.bbrc.2016.06.058.
  • Xavier, D., D. Llobet, J. Pallares, and X. Matias Guiu. 2005. NF-kB in development and progression of human cancer. Virchows Archiv 446 (5):475–82. doi: 10.1007/s00428-005-1264-9.
  • Xi, G., R. F. Keep, and J. T. Hoff. 2006. Mechanisms of brain injury after intracerebral haemorrhage. The Lancet Neurology 5 (1):53–63. doi: 10.1016/S1474-4422(05)70283-0.
  • Yamada, T., S. Hayasaka, Y. Shibata, T. Ojima, T. Saegusa, T. Gotoh, S. Ishikawa, Y. Nakamura, and K. Kayaba. 2011. Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: The Jichi Medical School Cohort Study. Journal of Epidemiology 21 (3):169–75. doi: 10.2188/jea.JE20100084.
  • Yamazaki, K. G., A. Y. Andreyev, P. Ortiz-Vilchis, S. Petrosyan, A. S. Divakaruni, S. E. Wiley, C. De La Fuente, G. Perkins, G. Ceballos, F. Villarreal, et al. 2014. Intravenous (-)-epicatechin reduces myocardial ischemic injury by protecting mitochondrial function. International Journal of Cardiology 175 (2):297–306. doi: 10.1016/j.ijcard.2014.05.009.
  • Yamazaki, K. G., P. R. Taub, M. Barraza-Hidalgo, M. M. Rivas, A. C. Zambon, G. Ceballos, and F. J. Villarreal. 2010. Effects of (-)-epicatechin on myocardial infarct size and left ventricular remodeling after permanent coronary occlusion. Journal of the American College of Cardiology 55 (25):2869–76. doi: 10.1016/j.jacc.2010.01.055.
  • Yang, Z., and X.-F. Ming. 2014. Functions of arginase isoforms in macrophage inflammatory responses: Impact on cardiovascular diseases and metabolic disorders. Frontiers in Immunology 5:533. doi: 10.3389/fimmu.2014.00533.
  • Zeng, Y. Q., Y. J. Wang, and X. F. Zhou. 2014. Effects of (-)epicatechin on the pathology of APP/PS1 transgenic mice. Frontiers in Neurology 5:69. doi: 10.3389/fneur.2014.00069.
  • Zhang, H., A. Deng, Z. Zhang, Z. Yu, Y. Liu, S. Peng, L. Wu, H. Qin, and W. Wang. 2016. The protective effect of epicatechin on experimental ulcerative colitis in mice is mediated by increasing antioxidation and by the inhibition of NF-kappaB pathway. Pharmacological Reports 68 (3):514–20. doi: 10.1016/j.pharep.2015.12.011.
  • Zhang, Y. J., R. Y. Gan, S. Li, Y. Zhou, A. N. Li, D. P. Xu, and H. B. Li. 2015. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20 (12):21138–56. doi: 10.3389/fneur.2014.000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.