856
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry

, &

References

  • Ajani, C., S. Curcio, R. Dejchanchaiwong, and P. Tekasakul. 2019. Influence of shrinkage during natural rubber sheet drying: Numerical modelling of heat and mass transfer. Applied Thermal Engineering 149:798–806. doi: 10.1016/j.applthermaleng.2018.12.054.
  • Allais, I., G. Alvarez, and D. Flick. 2006. Modelling cooling kinetics of a stack of spheres during mist chilling. Journal of Food Engineering 72 (2):197–209. doi: 10.1016/j.jfoodeng.2004.11.010.
  • Ambaw, A., M. A. Delele, T. Defraeye, Q. T. Ho, L. U. Opara, B. M. Nicolaï, and P. Verboven. 2013. The use of CFD to characterize and design post-harvest storage facilities: Past, present and future. Computers and Electronics in Agriculture 93:184–94. doi: 10.1016/j.compag.2012.05.009.
  • Ambaw, A., P. Verboven, T. Defraeye, E. Tijskens, A. Schenk, U. Linus, and B. M. Nicolai. 2013. Porous medium modelling and parameter sensitivity analysis of 1-MCP distribution in boxes with apple fruit. Journal of Food Engineering 119 (1):13–21. doi: 10.1016/j.jfoodeng.2013.05.007.
  • Ambaw, A., P. Verboven, M. A. Delele, T. Defraeye, E. Tijskens, A. Schenk, and B. M. Nicolai. 2013. CFD Modelling of the 3D spatial and temporal distribution of 1-methylcyclopropene in a fruit storage container. Food and Bioprocess Technology 6 (9):2235–50. doi: 10.1007/s11947-012-0913-7.
  • Ambaw, A., D. Dekeyser, T. Vanwalleghem, W. Van Hemelrijck, D. Nuyttens, M. A. Delele, H. Ramon, B. Nicolai, D. Bylemans, U. L. Opara, et al. 2017. Experimental and numerical analysis of the spray application on apple fruit in a bin for postharvest treatments. Journal of Food Engineering 202:34–45. doi: 10.1016/j.jfoodeng.2017.01.026.
  • Ambaw, A., M. Mukama, and U. L. Opara. 2017. Analysis of the effects of package design on the rate and uniformity of cooling of stacked pomegranates: Numerical and experimental studies. Computers and Electronics in Agriculture 136:13–24. doi: 10.1016/j.compag.2017.02.015.
  • Argyropoulos, C. D., and N. C. Markatos. 2015. Recent advances on the numerical modelling of turbulent flows. Applied Mathematical Modelling 39 (2):693–732. doi: 10.1016/j.apm.2014.07.001.
  • Baerdemaeker, J. D., M. A. Delele, P. Verboven, and B. M. Nicolaï. 2011. Multiscale Modelling of Postharvest Storage of Fruit and Vegetables in a Plant Factory Context. 18th IFAC World Congress Milano (Italy), 616–20.
  • Battiato, I., V. P. T. Ferrero, O. D. Malley, C. T. Miller, P. S. Takhar, F. J. Valdés-Parada, and B. D. Wood. 2019. Theory and Applications of Macroscale Models in Porous Media. Transport in Porous Media 130 (1):5–76. doi: 10.1007/s11242-019-01282-2.
  • Berry, T. M., T. Defraeye, B. M. Nicola, and U. L. Opara. 2016. Multiparameter analysis of cooling efficiency of ventilated fruit cartons using CFD: Impact of vent hole design and internal packaging. Food and Bioprocess Technology 9 (9):1481–93. doi: 10.1007/s11947-016-1733-y.
  • Berry, T. M., T. S. Fadiji, T. Defraeye, and U. Linus. 2017. The role of horticultural carton vent hole design on cooling efficiency and compression strength: A multi-parameter approach. Postharvest Biology and Technology 124:62–74. doi: 10.1016/j.postharvbio.2016.10.005.
  • Biscarini, C., S. Francesco, F. Di, F. Nardi, and P. Manciola. 2013. Detailed simulation of complex hydraulic problems with macroscopic and mesoscopic mathematical methods. Mathematical Problems in Engineering 2013:1–14. doi: 10.1155/2013/928309.
  • Buyel, J. F., H. M. Gruchow, N. Tödter, and M. Wehner. 2016. Determination of the thermal properties of leaves by non-invasive contact-free laser probing. Journal of Biotechnology 217:100–8. doi: 10.1016/j.jbiotec.2015.11.008.
  • Cardinale, T., P. Fazio, and F. Grandizio. 2016. Numerical and experimental computation of airflow in a transport container. International Journal of Heat and Technology 34 (4):734–42. doi: 10.18280/ijht.340426.
  • Che, M., and S. Elbel. 2019. An experimental method to quantify local air-side heat transfer coefficient through mass transfer measurements utilizing color change coatings. International Journal of Heat and Mass Transfer 144:118624–16. doi: 10.1016/j.ijheatmasstransfer.2019.118624.
  • Cheng, W., D.-W. Sun, H. Pu, and Q. Wei. 2018a. Characterization of myofibrils cold structural deformation degrees of frozen pork using hyperspectral imaging coupled with spectral angle mapping algorithm. Food Chemistry 239:1001–08.
  • Cheng, W., D.-W. Sun, H. Pu, and Q. Wei. 2018b. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage. Food Chemistry 248:119–27.
  • Cortella, G. 2019. CFD aided retail cabinets design. In D.-W. Sun (Ed.), Computational fluid dynamics in food processing, 2nd ed., 3–21. Boca Raton, USA: Taylor & Francis Group, LLC.
  • Defraeye, T., B. Blocken, and J. Carmeliet. 2010. CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer. International Journal of Heat and Mass Transfer 53 (1-3):297–308. doi: 10.1016/j.ijheatmasstransfer.2009.09.029.
  • Defraeye, T., P. Cronj, T. Berry, U. Linus, A. East, M. Hertog, P. Verboven, and B. Nicolai. 2015. Towards integrated performance evaluation of future packaging for fresh produce in the cold chain. Trends in Food Science & Technology 44:201–25.
  • Defraeye, T., D. Derome, P. Verboven, J. Carmeliet, and B. Nicolai. 2014. Cross-scale modelling of transpiration from stomata via the leaf boundary layer. Annals of Botany 114 (4):711–23. doi: 10.1093/aob/mct313.
  • Defraeye, T., E. Herremans, P. Verboven, J. Carmeliet, and B. Nicolai. 2012. Convective heat and mass exchange at surfaces of horticultural products: A microscale CFD modelling approach. Agricultural and Forest Meteorology 162–163:71–84.
  • Defraeye, T., P. Verboven, Q. T. Ho, and B. Nicolai. 2013. Convective heat and mass exchange predictions at leaf surfaces: Applications, methods and perspectives. Computers and Electronics in Agriculture 96:180–201. doi: 10.1016/j.compag.2013.05.008.
  • Defraeye, T., P. Verboven, D. Derome, J. Carmeliet, and B. Nicolai. 2013. Stomatal transpiration and droplet evaporation on leaf surfaces by a microscale modelling approach. International Journal of Heat and Mass Transfer 65:180–91. doi: 10.1016/j.ijheatmasstransfer.2013.05.075.
  • Defraeye, T., P. Verboven, and B. Nicolai. 2013. CFD modelling of flow and scalar exchange of spherical food products: Turbulence and boundary-layer modelling. Journal of Food Engineering 114 (4):495–504. doi: 10.1016/j.jfoodeng.2012.09.003.
  • Dehghannya, J., M. Ngadi, and C. Vigneault. 2010. Mathematical modelling procedures for airflow, heat and mass transfer during forced convection cooling of produce: A review. Food Engineering Reviews 2 (4):227–43. doi: 10.1007/s12393-010-9027-z.
  • Delele, M. A., K. D. Kuffi, B. Nicolai, and P. Verboven. 2019. CFD modelling to improve cooling of large beef carcasses. In D.-W. Sun (Ed.), Computational Fluid Dynamics in Food Processing, 2nd ed., 61–85. Boca Raton, USA: Taylor & Francis Group, LLC.
  • Delele, M. A., A. Schenk, E. Tijskens, H. Ramon, B. M. Nicolaï, and P. Verboven. 2009. Optimization of the humidification of cold stores by pressurized water atomizers based on a multiscale CFD model. Journal of Food Engineering 91 (2):228–39. doi: 10.1016/j.jfoodeng.2008.08.027.
  • Delele, M. A., A. Schenk, H. Ramon, B. M. Nicolaï, and P. Verboven. 2009. Evaluation of a chicory root cold store humidification system using computational fluid dynamics. Journal of Food Engineering 94 (1):110–21. doi: 10.1016/j.jfoodeng.2009.03.004.
  • Delele, M. A., E. Tijskens, Y. T. Atalay, Q. T. Ho, H. Ramon, B. M. Nicolaï, and P. Verboven. 2008. Combined discrete element and CFD modelling of airflow through random stacking of horticultural products in vented boxes. Journal of Food Engineering 89 (1):33–41. doi: 10.1016/j.jfoodeng.2008.03.026.
  • Djebali, R. 2018. Lattice Boltzmann method computation of turbulent high-temperature plasma jets. Global Journal of Engineering Sciences 1 (1):7. doi: 10.33552/GJES.2018.01.000503.
  • Drikakis, D., M. Frank, and G. Tabor. 2019. Multiscale computational fluid dynamics. Energies 12 (17):3272–17. doi: 10.3390/en12173272.
  • Euston, S. R. 2013. Modelling and computer simulation of food structures. In V. J. Morris & K. Groves (Eds.), Food microstructures: Microscopy, measurement and modelling, 336–85. UK: Woodhead Publishing Limited
  • Fabricius, J., E. Miroshnikova, and P. Wall. 2017. Homogenization of the Stokes equation with mixed boundary condition in a porous medium. Cogent Mathematics 4 (1):1–13. doi: 10.1080/23311835.2017.1327502.
  • Gaedtke, M., S. Wachter, M. Rädle, H. Nirschl, and M. J. Krause. 2018. Application of a lattice Boltzmann method combined with a Smagorinsky turbulence model to spatially resolved heat flux inside a refrigerated vehicle. Computers & Mathematics with Applications 76 (10):2315–29. doi: 10.1016/j.camwa.2018.08.018.
  • Gavagnin, E., and C. A. Yates. 2018. Stochastic and deterministic modelling of cell migration. In Integrated population biology and modelling, part A, eds. S. R. Arni and C. R. Rao, 1st ed. Amsterdam, Netherlands: Elsevier B.V.
  • Getahun, S., A. Ambaw, M. Delele, C. J. Meyer, and U. L. Opara. 2017a. Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part I – Model development and validation. Journal of Food Engineering 203:58–68. doi: 10.1016/j.jfoodeng.2017.02.010.
  • Getahun, S., A. Ambaw, M. Delele, C. J. Meyer, and U. L. Opara. 2017b. Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part II – Evaluation of apple packaging design and vertical flow resistance. Journal of Food Engineering 203:83–94. doi: 10.1016/j.jfoodeng.2017.02.011.
  • Getahun, S., A. Ambaw, M. Delele, C. J. Meyer, and U. L. Opara. 2018. Experimental and numerical investigation of airflow inside refrigerated shipping containers. Food and Bioprocess Technology 11 (6):1164–76. doi: 10.1007/s11947-018-2086-5.
  • Griebel, M., and M. Klitz. 2010. Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Modeling & Simulation 8 (4):1439–60. doi: 10.1137/09077059X.
  • Gruyters, W., P. Verboven, E. Diels, S. Rogge, B. Smeets, H. Ramon, T. Defraeye, and B. Nicolaï. 2018. Modelling cooling of packaged fruit using 3D shape models. Food and Bioprocess Technology 11 (11):2008–20. doi: 10.1007/s11947-018-2163-9.
  • Han, J., R. Bad, and C. Zhao. 2016. CFD simulation of airflow and heat transfer during forced-air precooling of apples. Journal of Food Process Engineering 40:1–11.
  • Han, J., J. Qian, C. Zhao, X. Yang, and B. Fan. 2017. International Journal of Heat and Mass Transfer Mathematical modelling of cooling efficiency of ventilated packaging: Integral performance evaluation. International Journal of Heat and Mass Transfer 111:386–97. doi: 10.1016/j.ijheatmasstransfer.2017.04.015.
  • Han, J., C. Zhao, J. Qian, L. Ruiz-Garcia, and X. Zhang. 2018. Numerical modelling of forced-air cooling of palletized apple: Integral evaluation of cooling efficiency. International Journal of Refrigeration 89:131–41. doi: 10.1016/j.ijrefrig.2018.02.012.
  • Ho, Q. T., P. Verboven, H. K. Mebatsion, B. E. Verlinden, S. Vandewalle, and B. M. Nicolaï. 2009. Microscale mechanisms of gas exchange in fruit tissue. The New Phytologist 182 (1):163–74. doi: 10.1111/j.1469-8137.2008.02732.x.
  • Ho, Q. T., J. Carmeliet, A. K. Datta, T. Defraeye, M. A. Delele, E. Herremans, L. Opara, H. Ramon, E. Tijskens, R. Van Der Sman, et al. 2013. Multiscale modeling in food engineering. Journal of Food Engineering 114 (3):279–91. doi: 10.1016/j.jfoodeng.2012.08.019.
  • Hoang, H.,. S. Duret, D. Flick, and O. Laguerre. 2015. Preliminary study of air flow and heat transfer in a cold room filled with apple pallets: Comparison between two modelling approaches and experimental results. Applied Thermal Engineering 76:367–81. doi: 10.1016/j.applthermaleng.2014.11.012.
  • Hou, T. Y., X. Hu, and F. Hussain. 2013. Multiscale modelling of incompressible turbulent flows. Journal of Computational Physics 232 (1):383–96. doi: 10.1016/j.jcp.2012.08.029.
  • Hu, Z., and D.-W. Sun. 2000. CFD simulation of heat and moisture transfer for predicting cooling rate and weight loss of cooked ham during air-blast chilling process. Journal of Food Engineering 46 (3):189–97. doi: 10.1016/S0260-8774(00)00082-0.
  • Jacob, B. 2018. Theory and Applications of Transport in Porous Media Modelling Phenomena of Flow and Transport in Porous Media. Cham, Switzerland: Springer international publishing AG.
  • Jin, T. X., and L. Xu. 2006. Numerical study on the performance of vacuum cooler and evaporation-boiling phenomena during vacuum cooling of cooked meat. Energy Conversion and Management 47 (13-14):1830–42. doi: 10.1016/j.enconman.2005.10.007.
  • Khan, F. A., C. Fischer, and A. G. Straatman. 2015. Numerical model for non-equilibrium heat and mass exchange in conjugate fluid/solid/porous domains with application to evaporative cooling and drying. International Journal of Heat and Mass Transfer 80:513–28. doi: 10.1016/j.ijheatmasstransfer.2014.09.051.
  • Kimura, K., D. Yasutake, A. Yamanami, and M. Kitano. 2020. Spatial examination of leaf-boundary-layer conductance using artificial leaves for assessment of light airflow within a plant canopy under different controlled greenhouse conditions. Agricultural and Forest Meteorology 280:107773–11. doi: 10.1016/j.agrformet.2019.107773.
  • Kitazawa, H. 2019. Optimization of ventilation ports of packaging for fresh produce using CFD. In Computational fluid dynamics in food processing, ed. D.-W. Sun, 2nd ed., 149–67. Boca Raton, USA: Taylor & Francis Group, LLC.
  • Kitazawa, H., and N. Hasegawa. 2014. Improving the layout of ventilation ports in packaging for fresh produce using computational fluid dynamics. Journal of Food, Agriculture and Environment 12 (3–4):46–50.
  • Kuffi, K. D., T. Defraeye, B. M. Nicolai, S. De Smet, A. Geeraerd, and P. Verboven. 2016. CFD modelling of industrial cooling of large beef carcasses. International Journal of Refrigeration 69:324–39. doi: 10.1016/j.ijrefrig.2016.06.013.
  • Laguerre, O., H. M. Hoang, and D. Flick. 2013. Experimental investigation and modelling in the food cold chain: Thermal and quality evolution. Trends in Food Science & Technology 29 (2):87–97. doi: 10.1016/j.tifs.2012.08.001.
  • Lee, C. Y., and S. Cant. 2017. Assessment of LES Subgrid-scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow. Flow, Turbulence and Combustion 98 (1):155–76. doi: 10.1007/s10494-016-9751-4.
  • Li, D., Z. Zhu, and D.-W. Sun. 2018. Effects of freezing on cell structure of fresh cellular food materials: A review. Trends in Food Science & Technology 75:46–55.
  • Luo, W., D.-W. Sun, Z. Zhu, and Q.-J. Wang. 2018. Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality - A review of effective methods. Trends in Food Science & Technology 72:25–33.
  • Mahato, S., Z. Zhu, and D.-W. Sun. 2019. Glass transitions as affected by food compositions and by conventional and novel freezing technologies: A review. Trends in Food Science & Technology 94:1–11.
  • Moureh, J. 2019. CFD optimization of perturbed air curtains for refrigerated display cabinets. In Computational fluid dynamics in food processing, ed. D.-W. Sun, 2nd ed., 23–59. Boca Raton, USA: Taylor & Francis Group, LLC.
  • Murmu, S. B., and H. N. Mishra. 2016. Measurement and modelling the effect of temperature, relative humidity and storage duration on the transpiration rate of three banana cultivars. Scientia Horticulturae 209:124–31. doi: 10.1016/j.scienta.2016.06.011.
  • Norton, T., and D.-W. Sun. 2006. Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science & Technology 17 (11):600–20. doi: 10.1016/j.tifs.2006.05.004.
  • Norton, T., B. Tiwari, and D.-W. Sun. 2013. Computational fluid dynamics in the design and analysis of thermal processes: A review of recent advances. Critical Reviews in Food Science and Nutrition 53 (3):251–75. doi: 10.1080/10408398.2010.518256.
  • Onokoko, L., M. Poirier, N. Galanis, and S. Poncet. 2018. Experimental and numerical investigation of isothermal ice slurry flow. International Journal of Thermal Sciences 126:82–95. doi: 10.1016/j.ijthermalsci.2017.12.017.
  • Opara, U. L., A. Ambaw, and T. Berry. 2019. CFD investigation of fresh produce cooling processes and effects of package stacking. In Computational fluid dynamics in food processing, ed. D.-W. Sun, 121–47. Boca Raton, USA: Taylor & Francis Group, LLC.
  • Pathare, P. B., U. L. Opara, C. Vigneault, M. A. Delele, and F. A.-J. Al-Said. 2012. Design of packaging vents for cooling fresh horticultural produce. Food and Bioprocess Technology 5 (6):2031–45. doi: 10.1007/s11947-012-0883-9.
  • Peralta, J. M., and S. E. Zorrilla. 2019. CFD modelling of heat and mass transfer in a hydrofluidization system during food chilling and freezing. In Computational fluid dynamics in food processing, ed. D.-W. Sun, 2nd ed., 87–104. Boca Raton, USA: Taylor & Francis Group, LLC.
  • Pham, Q. T. 2006. Modelling heat and mass transfer in frozen foods: A review. International Journal of Refrigeration 29 (6):876–88. doi: 10.1016/j.ijrefrig.2006.01.013.
  • Sadrehaghighi, I. 2019. Turbulence modelling -A review. Report No: 1.87.4, CFD Open Series, Cincinnati, Ohio. doi: 10.13140/RG.2.2.35857.33129/2.
  • Sajadiye, S. M., H. Ahmadi, S. M. Hosseinalipour, S. S. Mohtasebi, M. Layeghi, Y. Mostofi, and A. Raja. 2011. Evaluation of a cooling performance of a typical full loaded cool storage using mono-scale CFD simulation. Modern Applied Science 6 (1):102–19. doi: 10.5539/mas.v6n1p102.
  • Sajadiye, S. M., H. Ahmadi, M. Zolfaghari, S. S. Mohtasebi, Y. Mostofi, and A. Raja. 2013. A multi-scale three-dimensional CFD model of a full loaded cool storage. International Journal of Food Engineering 9 (2):163–78. doi: 10.1515/ijfe-2012-0015.
  • Sajadiye, S. M., and M. Zolfaghari. 2017. Simulation of in-line versus staggered arrays of vented pallet boxes for assessing cooling performance of orange in cool storage. Applied Thermal Engineering 115:337–49. doi: 10.1016/j.applthermaleng.2016.12.063.
  • Shan, X., X.-F. Yuan, and H. Chen. 2006. Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation. Journal of Fluid Mechanics 550 (1):413–41. doi: 10.1017/S0022112005008153.
  • Smale, N. J., J. Moureh, and G. Cortella. 2006. A review of numerical models of airflow in refrigerated food applications. International Journal of Refrigeration 29 (6):911–30. doi: 10.1016/j.ijrefrig.2006.03.019.
  • Succi, S. 2001. The Lattice Boltzmann equation for fluid dynamics and beyound. Oxford, England: Clarendon press Oxford.
  • Sullivan, J. L. O., M. J. Ferrua, R. Love, P. Verboven, B. Nicolaï, and A. East. 2017. Forced-air cooling of polylined horticultural produce: Optimal cooling conditions and package design. Postharvest Biology and Technology 126:67–75. doi: 10.1016/j.postharvbio.2016.11.019.
  • Sullivan, J. O., M. J. Ferrua, R. Love, P. Verboven, B. Nicolaï, and A. East. 2016. Modelling the forced-air cooling mechanisms and performance of polylined horticultural produce. Postharvest Biology and Technology 120:23–35. doi: 10.1016/j.postharvbio.2016.05.008.
  • Sullivan, J. O., M. Ferrua, R. Love, P. Verboven, B. Nicolaï, and A. East. 2014. Airflow measurement techniques for the improvement of forced-air cooling, refrigeration and drying operations. Journal of Food Engineering 143:90–101. doi: 10.1016/j.jfoodeng.2014.06.041.
  • Sun, D.-W. (Ed.). 2007. Computational fluid dynamics in food processing. Boca Raton, USA: Taylor & Francis Group, LLC.
  • Sun, D.-W. 2019. Computational fluid dynamics in food processing. In CRC Press Taylor & Francis Group, ed. D.-W. Sun, 2nd ed. Boca Raton, USA: Taylor & Francis Group, LLC.
  • Sun, J., K. M. Tsamos, and S. A. Tassou. 2017. CFD comparisons of open-type refrigerated display cabinets with/without air guiding strips. Energy Procedia 123:54–61. doi: 10.1016/j.egypro.2017.07.284.
  • Tian, Y., Z. Chen, Z. Zhu, and D.-W. Sun. 2020. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes. Ultrasonics Sonochemistry 67:105162.
  • Tian, Y., D. Li, W. Luo, Z. Zhu, W. Li, Z. Qian, G. Li and D.-W. Sun. 2020. Rapid freezing using atomized liquid nitrogen spray followed by frozen storage below glass transition temperature for cordyceps sinensis preservation: Quality attributes and storage stability. LWT – Food Science and Technology 123:109066.
  • Tian, Y., P. Zhang, Z. Zhu and D.-W. Sun. 2020. Development of a single/dual-frequency orthogonal ultrasound-assisted rapid freezing technique and its effects on quality attributes of frozen potatoes. Journal of Food Engineering 286:110112.
  • Tian, Y., Z. Zhu and D.-W. Sun. 2020. Naturally sourced biosubstances for regulating freezing points in food researches: Fundamentals, current applications and future trends. Trends in Food Science & Technology 95:131–40.
  • Verboven, P., D. Flick, B. M. Nicolaï, and G. Alvarez. 2006. Modelling transport phenomena in refrigerated food bulks, packages and stacks: Basics and advances. International Journal of Refrigeration 29 (6):985–97. doi: 10.1016/j.ijrefrig.2005.12.010.
  • Versteeg, H. K., and W. Malalasekera. 2007. An Introduction to Computational Fluid Dynamics. Essex, England: Pearson Education Limited Edinburgh Gate.
  • Welsh, Z., M. J. Simpson, M. I. H. Khan, and M. A. Karim. 2018. Multiscale modelling for food drying: State of the art. Comprehensive Reviews in Food Science and Food Safety 17 (5):1293–308. doi: 10.1111/1541-4337.12380.
  • Wu, W., and T. Defraeye. 2018. Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains. Applied Thermal Engineering 133:407–17. doi: 10.1016/j.applthermaleng.2017.11.049.
  • Wu, W., P. Häller, P. Cronjé, and T. Defraeye. 2018. Full-scale experiments in forced-air precoolers for citrus fruit: Impact of packaging design and fruit size on cooling rate and heterogeneity. Biosystems Engineering 169:115–25. doi: 10.1016/j.biosystemseng.2018.02.003.
  • Wu, X., Z. J. Chang, X. L. Zhao, W. P. Li, Y. L. Lu, and P. Yuan. 2015a. A multi-scale approach for refrigerated display cabinet coupled with supermarket HVAC system - Part I: Methodology and verification. International Journal of Heat and Mass Transfer 87:673–84. doi: 10.1016/j.ijheatmasstransfer.2015.04.004.
  • Wu, X., Z. Chang, X. Zhao, W. Li, Y. Lu, and P. Yuan. 2015b. A multi-scale approach for refrigerated display cabinet coupled with supermarket HVAC system-Part II: The performance of VORDC and energy consumption analysis. International Journal of Heat and Mass Transfer 87:685–92. doi: 10.1016/j.ijheatmasstransfer.2015.04.003.
  • Xu, L., H. Zhu, H. E. Ozkan, and H. W. Thistle. 2010. Evaporation rate and development of wetted area of water droplets with and without surfactant at different locations on waxy leaf surfaces. Biosystems Engineering 106 (1):58–67. doi: 10.1016/j.biosystemseng.2010.02.004.
  • Yue, X., and E. Weinan. 2007. The local microscale problem in the multiscale modelling of strongly heterogeneous media: Effects of boundary conditions and cell size. Journal of Computational Physics 222 (2):556–72. doi: 10.1016/j.jcp.2006.07.034.
  • Zhan, X., D.-W. Sun, Z. Zhu, and Q.-J. Wang. 2018. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: A review. Critical Reviews in Food Science and Nutrition 58:2925–38.
  • Zhan, X., Z. Zhu, and D.-W. Sun. 2019a. Effects of extremely low frequency electromagnetic field on the freezing processes of two liquid systems. LWT - Food Science and Technology 103:212–21.
  • Zhan, X., Z. Zhu, and D.-W. Sun. 2019b. Effects of pretreatments on quality attributes of long-term deep frozen storage of vegetables: A review. Critical Reviews in Food Science and Nutrition 59:743–57.
  • Zhang, P., Z. Zhu, and D.-W. Sun. 2018. Using power ultrasound to accelerate food freezing processes: effects on freezing efficiency and food microstructure. Critical Reviews in Food Science and Nutrition 58:2842–53.
  • Zhang, Z. H., Z. G. Xu, C. S. Xu, and X. L. Du. 2017. Work conjugate principle-constrained volume averaging technique for multiphase porous media. Science China Technological Sciences 60 (12):1966–74. doi: 10.1007/s11431-017-9100-2.
  • Zhao, C. J., J. W. Han, X. T. Yang, J. P. Qian, and B. L. Fan. 2016. A review of computational fluid dynamics for forced-air cooling process. Applied Energy 168:314–31. doi: 10.1016/j.apenergy.2016.01.101.
  • Zhu, Z., Y. Li, and D.-W. Sun. 2018. Developments of mathematical models for simulating vacuum cooling processes for food products – A review. Critical Reviews in Food Science and Nutrition 59 (5):715–27.
  • Zhiyin, Y. 2015. Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics 28 (1):11–24. doi: 10.1016/j.cja.2014.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.