900
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Radio frequency processing and recent advances on thawing and tempering of frozen food products

ORCID Icon & ORCID Icon

References

  • Awuah, G. B., H. S. Ramaswamy, and J. Tang. 2014. Radio frequency heating in food processing: Principles and applications. Boca Raton, FL: CRC Press Taylor and Francis Group.
  • Bedane, T. F., O. Altin, B. Erol, F. Marra, and F. Erdogdu. 2018. Thawing of frozen food products in a staggered through-field electrode radio frequency system: A case study for frozen chicken breast meat with effects on drip loss and texture. Innovative Food Science & Emerging Technologies 50:139–47. doi: 10.1016/j.ifset.2018.09.001.
  • Bedane, T. F., L. Chen, F. Marra, and S. Wang. 2017. Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt. Journal of Food Engineering 201:17–25. doi: 10.1016/j.jfoodeng.2017.01.010.
  • Bedane, T. F., F. Marra, and S. Wang. 2017. Performance comparison between batch and continuous thawing of food products assisted by radio frequency heating. Chemical Engineering Transactions 57:2017–22. doi: 10.3303/CET1757337.
  • Bengtsson, N. 1963. Electronic defrosting of meat and fish at 35 and 2450 MHz ‒ A laboratory comparison. Food Technology 17 (10):1309–12.
  • Bernard, J. P., J. M. Jacomino, and M. Radoiu. 2015. RF 50 Ω technology versus variable-frequency RF technology. In Radio-frequency heating in food processing—Principles and applications, ed. G. B. Awuah, H. S. Ramaswamy, and J. Tang, Chapter 7, 119–140. Boca Raton, FL: CRC Press Taylor and Francis Group.
  • Birla, S. L., S. Wang, and J. Tang. 2008. Computer simulation of radio frequency heating of model fruit immersed in water. Journal of Food Engineering 84 (2):270–80. doi: 10.1016/j.jfoodeng.2007.05.020.
  • Boonsumrej, S., S. Chaiwanichsiri, S. Tantratian, T. Suzuki, and R. Takai. 2007. Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. Journal of Food Engineering 80 (1):292–9. doi: 10.1016/j.jfoodeng.2006.04.059.
  • Boreddy, S. R., and J. Subbiah. 2016. Temperature and moisture dependent dielectric properties of egg white powder. Journal of Food Engineering 168:60–7. doi: 10.1016/j.jfoodeng.2015.07.023.
  • Cai, L., M. Cao, A. Cao, J. Regenstein, J. Li, and R. Guan. 2018. Ultrasound or microwave vacuum thawing of red seabream (Pagrus major) fillets. Ultrasonics Sonochemistry 47:122–32. doi: 10.1016/j.ultsonch.2018.05.001.
  • Cai, L., M. Cao, J. Regenstein, and A. Cao. 2019. Recent advances in food thawing technologies. Comprehensive Reviews in Food Science and Food Safety 18 (4):953–70. doi: 10.1111/1541-4337.12458.
  • Cathcart, W., and J. J. Parker. 1946. Defrosting frozen foods by high-frequency heat. Food Research 11 (4):341–4. doi: 10.1111/j.1365-2621.1946.tb16359.x.
  • Chakravorti, S. 2015. Electric field analysis (Chapter 6). Boca Raton, FL: CRC Press Taylor and Francis Group.
  • Chamchong, M., and A. K. Datta. 1999. Thawing of foods in a microwave oven: I. Effect of power levels and power cycling. Journal of Microwave Power and Electromagnetic Energy 34 (1):9–21. doi: 10.1080/08327823.1999.11688384.
  • Chan, T. V., J. Tang, and F. Younce. 2004. 3-Dimensional numerical modeling of an industrial radio frequency heating system using finite elements. Journal of Microwave Power and Electromagnetic Energy 39 (2):87–105. doi: 10.1080/08327823.2004.11688511.
  • Chen, J., J. Tang, and F. Liu. 2008. Simulation model for moving food packages in microwave heating processes using conformal FDTD method. Journal of Food Engineering 88 (3):294–305. doi: 10.1016/j.jfoodeng.2008.02.020.
  • Chen, Q., D. M. Fan, H. W. Cao, J. L. Huang, J. X. Zhao, B. W. Yan, W.-g. Zhou, W.-h. Zhang, and H. Zhang. 2017. Study on thawing effect of radio frequency on frozen minced fish. Food Research & Development 38 (22):90–6. doi: 10.3969/j.issn.1005-6521.2017.22.019.
  • Chen, Y., J. He, F. Li, J. Tang, and Y. Jiao. 2021. Model food development for tuna (Thunnus obesus) in radio frequency and microwave tempering using grass carp mince. Journal of Food Engineering 292:110267. doi: 10.1016/j.jfoodeng.2020.110267.
  • Choi, E. J., H. W. Park, H. S. Yang, J. S. Kim, and H. H. Chun. 2017. Effects of 27.12 MHz radio frequency on the rapid and uniform tempering of cylindrical frozen pork loin (Longissimus thoracis et lumborum). Korean Journal for Food Science of Animal Resources 37 (4):518–28. doi: 10.5851/kosfa.2017.37.4.518.
  • Choi, W., S. H. Lee, C. T. Kim, and S. Jun. 2015. A finite element method based flow and heat transfer model of continuous flow microwave and ohmic combination heating of particulate foods. Journal of Food Engineering 149:159–70. doi: 10.1016/j.jfoodeng.2014.10.016.
  • Curet, S., O. Rouaud, and L. Boillereaux. 2014. Estimation of dielectric properties of food materials during microwave tempering and heating. Food and Bioprocess Technology 7 (2):371–84. doi: 10.1007/s11947-013-1061-4.
  • Datta, A. K., G. Sumnu, and G. S. V. Raghavan. 2014. Dielectric properties of foods. In Engineering properties of foods, ed. M. A. Rao, S. S. H. Rizvi, A. K. Datta, and J. Ahmed, Chapter 14. Boca Raton, FL: CRC Press Taylor and Francis Group.
  • Erdogdu, F., O. Altin, F. Marra, and T. F. Bedane. 2017. A computational study to design process conditions in industrial radio-frequency tempering/thawing process. Journal of Food Engineering 213:99–112. doi: 10.1016/j.jfoodeng.2017.05.003.
  • Farag, K. W., E. Duggan, D. J. Morgan, D. A. Cronin, and J. G. Lyng. 2009. A comparison of conventional and radio frequency defrosting of lean beef meats: Effects on water binding characteristics. Meat Science 83 (2):278–84. doi: 10.1016/j.meatsci.2009.05.010.
  • Farag, K. W., J. G. Lyng, D. J. Morgan, and D. A. Cronin. 2008. A comparison of conventional and radio frequency tempering of beef meats: Effects on product temperature distribution. Meat Science 80 (2):488–95. doi: 10.1016/j.meatsci.2008.01.015.
  • Farag, K. W., J. G. Lyng, D. J. Morgan, and D. A. Cronin. 2011. A comparison of conventional and radio frequency tempering of beef meats: Effects on product temperature distribution. Food and Bioprocess Technology 4 (7):1128–36. doi: 10.1007/s11947-009-0205-z.
  • FDA Food Code. 2013. U.S. Department of Health and Human Sciences, public health service. Vol. 20740, 89–90. College Park, MD: Food and Drug Administration.
  • Ferrari, J. R. S., J. Katrib, P. Palade, A. R. Batchelor, C. Dodds, and S. W. Kingman. 2016. A tool for predicting heating uniformity in industrial radio frequency processing. Food and Bioprocess Technology 9 (11):1865–73. doi: 10.1007/s11947-016-1762-6.
  • Fiore, A., R. Di Monaco, S. Cavella, A. Visconti, O. Karneili, S. Bernhardt, and V. Fogliano. 2013. Chemical profile and sensory properties of different foods cooked by a new radiofrequency oven. Food Chemistry 139 (1-4):515–20. doi: 10.1016/j.foodchem.2013.01.028.
  • Gambuteanu, C., and P. Alexe. 2015. Comparison of thawing assisted by low-intensity ultrasound on technological properties of pork longissimus dorsi muscle. Journal of Food Science and Technology 52 (4):2130–8. doi: 10.1007/s13197-013-1204-7.
  • Gökoğlu, N., and P. Yerlikaya. 2015. Seafood chilling, refrigeration and freezing: Science and technology. West Sussex, UK: John Wiley & Sons.
  • Guo, C., A. S. Mujumdar, and M. Zhang. 2019. New development in radio frequency heating for fresh food processing: A review. Food Engineering Reviews 11 (1):29–43. doi: 10.1007/s12393-018-9184-z.
  • Guan, D., M. Cheng, Y. Wang, and J. Tang. 2004. Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science 69 (1):FEP30-FEP37. doi: 10.1111/j.1365-2621.2004.tb17864.x.
  • Hansen, J. D., S. R. Drake, M. A. Watkins, M. L. Heidt, P. A. Anderson, and J. Tang. 2006. Radio frequency pulse application for heating uniformity in postharvest codling moth (Lepidoptera tortricidae) control of fresh apples (Malus domestica borkh.). Journal of Food Quality 29 (5):492–504. doi: 10.1111/j.1745-4557.2006.00089.x.
  • Hou, L., B. Ling, and S. Wang. 2014. Development of thermal treatment protocol for disinfesting chestnuts using radio frequency energy. Postharvest Biology and Technology 98:65–71. doi: 10.1016/j.postharvbio.2014.07.007.
  • Huang, Z., F. Marra, andS. Wang. 2016. A novel strategy for improving radio frequency heating uniformity of dry food products using computational modeling. Innovative Food Science & Emerging Technologies 34:100–11. doi:10.1016/j.ifset.2016.01.005.
  • Icier, F., and T. Baizal. 2004. Dielectrical properties of food materials–2: Measurement techniques. Critical Reviews in Food Science and Nutrition 44 (6):473–8. doi: 10.1080/10408690490892361.
  • Izadifar, M., and O. D. Baik. 2008. Dielectric properties of a packed bed of the rhizome of P. peltatum with an ethanol/water solution for radio frequency-assisted extraction of podophyllotoxin. Biosystems Engineering 100 (3):376–88. doi: 10.1016/j.biosystemseng.2008.04.007.
  • Jeong, S. G., and D. H. Kang. 2014. Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating. International Journal of Food Microbiology 176:15–22. doi: 10.1016/j.ijfoodmicro.2014.01.011.
  • Jia, G. L., X. L. He, S. Nirasawa, E. Tatsumi, H. J. Liu, and H. J. Liu. 2017. Effect of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin. Journal of Food Engineering 204:18–26. doi: 10.1016/j.jfoodeng.2017.01.020.
  • Jiao, Y., D. Luan, and J. Tang. 2014. Principles of radio-frequency and microwave heating. In Radio-frequency heating in food processing: Principles and applications, ed. G. B. Awuah, H. S. Ramaswamy, and J. Tang, Chapter 1. Boca Raton, FL: Taylor & Francis Group.
  • Jiao, Y., J. Tang, S. Wang, and T. Koral. 2014. Influence of dielectric properties on the heating rate in free-running oscillator radio frequency systems. Journal of Food Engineering 120:197–203. doi: 10.1016/j.jfoodeng.2013.07.032.
  • Jiao, Y., J. Tang, Y. Wang, and T. L. Koral. 2018. Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology 9:105–27. doi: 10.1146/annurev-food-041715-033038.
  • Karthikeyan, J. S., M. K. Desai, D. Salvi, R. Bruins, and M. K. Karwe. 2015. Effect of temperature abuse on frozen army rations. Part I: Developing a heat transfer numerical model based on thermos-physical properties. Food Research International 76:595–604. doi: 10.1016/j.foodres.2015.07.007.
  • Kim, J., J. W. Park, S. Park, D. S. Choi, S. R. Choi, Y. H. Kim, S. J. Lee, C. W. Park, G. J. Han, and B.-K. Cho. 2016. Study of radio frequency thawing for cylindrical pork sirloin. Journal of Biosystems Engineering 41 (2):108–15. doi: 10.5307/JBE.2016.41.2.108.
  • Knoerzer, K., M. Regier, and H. Schubert. 2008. A computational model for calculating temperature distributions in microwave food applications. Innovative Food Science & Emerging Technologies 9 (3):374–84. doi: 10.1016/j.ifset.2007.10.007.
  • Li, B., and D.-W. Sun. 2002. Novel methods for rapid freezing and thawing of foods—A review. Journal of Food Engineering 54 (3):175–82. doi: 10.1016/S0260-8774(01)00209-6.
  • Li, D., H. Zhao, A. I. Muhamma, L. Song, M. Guo, and D. Liu. 2020. The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food Chemistry 320:126614. doi: 10.1016/j.foodchem.2020.126614.
  • Li, Y., F. Li, J. Tang, R. Zhang, Y. Wang, T. Koral, and Y. Jiao. 2018. Radio frequency tempering uniformity investigation of frozen beef with various shapes and sizes. Innovative Food Science & Emerging Technologies 48:42–55. doi: 10.1016/j.ifset.2018.05.008.
  • Liu, C., and N. Sakai. 1999. Dielectric properties of tuna at 2450 MHz and 915 MHz as a function of temperature. Nippon Shokuhin Kagaku Kogaku Kaishi 46 (10):652–6. (in Japanese). doi: 10.3136/nskkk.46.652.
  • Liu, L., Y. Llave, Y. Jin, D.-Y. Zheng, M. Fukuoka, and N. Sakai. 2017. Electrical conductivity and ohmic thawing of frozen tuna at high frequencies. Journal of Food Engineering 197:68–77. doi: 10.1016/j.jfoodeng.2016.11.002.
  • Llave, Y., D. Kambayashi, M. Fukuoka, and N. Sakai. 2020. Power absorption analysis of two-component materials during microwave thawing and heating: Experimental and computer simulation. Innovative Food Science & Emerging Technologies 66:102479. doi: 10.1016/j.ifset.2020.102479.
  • Llave, Y., S. Liu, M. Fukuoka, and N. Sakai. 2015. Computer simulation of radio frequency defrosting of frozen foods. Journal of Food Engineering 152:32–42. doi: 10.1016/j.jfoodeng.2014.11.020.
  • Llave, Y., K. Mori, D. Kambayashi, M. Fukuoka, and N. Sakai. 2016. Dielectric properties and model food application of tylose water pastes during microwave thawing and heating. Journal of Food Engineering 178:20–30. doi: 10.1016/j.jfoodeng.2016.01.003.
  • Llave, Y., and N. Sakai. 2018. Dielectric defrosting of frozen foods. In Handbook of food bioengineering (Multi volume set—Volume XVIII: Food processing for increased quality and consumption), ed. A. M. Grumezescu and A. M. Holban, Chapter 13. London, UK: Elsevier.
  • Llave, Y., Y. Terada, M. Fukuoka, and N. Sakai. 2014. Dielectric properties of frozen tuna and analysis of defrosting using a radio-frequency system at low frequencies. Journal of Food Engineering 139:1–9. doi: 10.1016/j.jfoodeng.2014.04.012.
  • Maloney, N., and M. Harrison. 2016. Advanced heating technologies for food processing. In Innovation and future trends in food manufacturing and supply chain technologies, ed. C. Leadley, Chapter 8. Campden BRI, UK: Elsevier. doi: 10.1016/C2014-0-01383-4.
  • Margulies, S. 1984. Force on a dielectric slab inserted into a parallel-plate capacitor. American Journal of Physics 52 (6):515–8. doi: 10.1119/1.13861.
  • Marra, F., J. Lyng, V. Romano, and B. McKenna. 2007. Radio-frequency heating of foodstuff: Solution and validation of a mathematical model. Journal of Food Engineering 79 (3):998–1006. doi: 10.1016/j.jfoodeng.2006.03.031.
  • Metaxas, A. C. 1996. Foundations of electroheat: A unified approach. New York: Wiley.
  • Mitchell, L. 2016. The wave of the future. Retrieved January 6, 2016, from https://www.radiofrequency.com/pdfs/rf_pasteurization.pdf
  • Ozturk, S., F. B. Kong, S. Trabelsi, and R. K. Singh. 2016. Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating. Journal of Food Engineering 169:91–100. doi: 10.1016/j.jfoodeng.2015.08.008.
  • Pain, J. P., and F. L. Muller. 2014. Modeling basics as applied to ohmic heating of liquid and wall cooling. In Ohmic heating in food processing, ed. H. S. Ramaswamy, M. Marcotte, S. Sastry, and K. Abdelrahim, Chapter 15. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Palazoğlu, T. K., and W. Miran. 2017. Experimental comparison of microwave and radio frequency tempering of frozen block of shrimp. Innovative Food Science & Emerging Technologies 41:292–300. doi: 10.1016/j.ifset.2017.04.005.
  • Pereira, R. N., and A. A. Vicente. 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International 43 (7):1936–43. doi: 10.1016/j.foodres.2009.09.013.
  • Piyasena, P., C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah. 2003. Radio frequency heating of foods: Principles, applications and related properties‒a review. Critical Reviews in Food Science and Nutrition 43 (6):587–606. doi: 10.1080/10408690390251129.
  • Rattanadecho, P. 2004. Theoretical and experimental investigation of microwave thawing of frozen layer using a microwave oven (effects of layered configurations and layer thickness). International Journal of Heat and Mass Transfer 47 (5):937–45. doi: 10.1016/j.ijheatmasstransfer.2003.08.019.
  • Romano, V., and F. Marra. 2008. A numerical analysis of radio frequency heating of regular shaped foodstuff. Journal of Food Engineering 84 (3):449–57. doi: 10.1016/j.jfoodeng.2007.06.006.
  • Rouille, J., A. Lebail, H. S. Ramaswamy, and L. Leclerc. 2002. High pressure thawing of fish and shellfish. Journal of Food Engineering 53 (1):83–8. doi: 10.1016/S0260-8774(01)00143-1.
  • Sato, M., T. Yamaguchi, and T. Nakano. 2016. Method of thawing frozen food. US Patent No. 0192-0667. Washington, DC: US Patent and Trademark Office.
  • Singh, R. P., F. Erdogdu, and J. Mannapperuma. 2002. Industrial-Scale Food Freezing Simulation Software (V.3.0). Bethesda, MD: WFLO—World Food Logistics Organization.
  • Succar, J., and K. Hayakawa. 1983. Empirical formulas for predicting thermal physical properties of food at freezing or defrosting temperature. LWT-Food Science and Technology 16:326–31.
  • Swamy, G. J., and K. Muthukumarappan. 2021. Microwave and radiofrequency processing of plant-related food products. In Innovative food processing technologies, A comprehensive review, ed. K. Knoerzer and K. Muthukumarappan, Chapter 8. London, UK: Elsevier.
  • Taher, B. J., and M. M. Farid. 2001. Cyclic microwave thawing o frozen meat: Experimental and theoretical investigation. Chemical Engineering and Processing: Process Intensification 40 (4):379–89. ‒ doi: 10.1016/S0255-2701(01)00118-0.
  • Trabelsi, S. 2015. Variation of the dielectric properties of chicken meat with frequency and temperature. Journal of Food Measurement and Characterization 9 (3):299–304. doi: 10.1007/s11694-015-9235-6.
  • Uan, D. G., M. Cheng, Y. Wang, and J. Tang. 2004. Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science 69 (1):FEP30–37. doi: 10.1111/j.1365-2621.2004.tb17864.x.
  • Uyar, R., T. F. Bedane, F. Erdogdu, T. K. Palazoglu, K. W. Farag, and F. Marra. 2015. Radio-frequency thawing of food products—A computational study. Journal of Food Engineering 146:163–71. doi: 10.1016/j.jfoodeng.2014.08.018.
  • Uyar, R., F. Erdogdu, and F. Marra. 2014. Effect of load volume on power absorption and temperature evolution during radio-frequency heating of meat cubes: A computational study. Food and Bioproducts Processing 92 (3):243–51. doi: 10.1016/j.fbp.2013.12.005.
  • Von Hippel, A. R. 1954. Dielectric and waves. New York: Wiley.
  • Wang, B., X. Du, B. Kong, Q. Liu, F. Li, N. Pan, X. Xia, and D. Zhang. 2020. Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine logissimus dorsi. Ultrasonics Sonochemistry 64:104860. doi: 10.1016/j.ultsonch.2019.104860.
  • Wang, J., K. Luechapattanaporn, Y. Wang, and J. Tang. 2012. Radio-frequency heating of heterogeneous food-meat lasagna. Journal of Food Engineering 108 (1):183–93. doi: 10.1016/j.jfoodeng.2011.05.031.
  • Wang, S., J. Tang, J. A. Johnson, E. Mitcham, J. D. Hansen, G. Hallman, S. R. Drake, and Y. Wang. 2003. Dielectric properties of fruits and insect pest as related to radio frequency and microwave treatments. Biosystems Engineering 85 (2):201–12. doi: 10.1016/S1537-5110(03)00042-4.
  • Wang, Y. Y., Y. R. Li, S. J. Wang, Z. Li, M. X. Gao, and J. M. Tang. 2011. Review of dielectric drying of fruits and agricultural products. International Journal of Agricultural and Biological Engineering 4:1–19. doi: 10.3965/j.issn.1934-6344.2011.01.001-019.
  • Yang, H., Q. Chen, H. Cao, D. Fan, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, and H. Zhang. 2019. Radiofrequency thawing of frozen minced fish based on the dielectric response mechanism. Innovative Food Science & Emerging Technologies 52:80–8. doi: 10.1016/j.ifset.2018.10.013.
  • Yu, L. H., E. S. Lee, J. Y. Jeong, H. D. Paik, J. H. Choi, and C. J. Kim. 2005. Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles. Meat Science 71 (2):375–82. doi: 10.1016/j.meatsci.2005.04.020.
  • Zhang, L., J. G. Lyng, and N. P. Brunton. 2004. Effect of radio frequency cooking on the texture, colour and sensory properties of a large diameter comminuted meat product. Meat Science 68 (2):257–68. doi: 10.1016/j.meatsci.2004.03.011.
  • Zhang, L., and F. Marra. 2010. Radio frequency heating of foods. In Mathematical modeling of food processing, ed. M. M. Farid, 691–706. Boca Raton, FL: CRC Press Taylor and Francis Group.
  • Zhang, M., H. Jiang, and R. Lim. 2010. Recent developments in microwave-assisted drying of vegetables, fruits, and aquatic products‒drying kinetics and quality considerations. Drying Technology 28 (11):1307–16. ‒ doi: 10.1080/07373937.2010.524591.
  • Zhang, R., F. Li, J. Tang, T. Koral, and Y. Jiao. 2020. Improved accuracy of radio frequency (RF) heating simulations using 3D scanning techniques for irregular-shape food. LWT 121:108951. doi: 10.1016/j.lwt.2019.108951.
  • Zhang, S., L. Y. Zhou, B. Ling, and S. J. Wang. 2016. Dielectric properties of peanut kernels associated with microwave and radio frequency drying. Biosystems Engineering 145:108–17. doi: 10.1016/j.biosystemseng.2016.03.002.
  • Zhao, Y., B. Flugstad, E. Kolbe, J. W. Park, and J. H. Wells. 2000. Using capacitive (radio frequency) dielectric heating in food processing and preservation—A review. Journal of Food Process Engineering 23 (1):25–55. doi: 10.1111/j.1745-4530.2000.tb00502.x.
  • Zhu, S. M., G. M. Su, J. S. He, H. S. Ramaswamy, A. L. Bail, and Y. Yu. 2014. Water phase transition under pressure and its application in high pressure thawing of agar gel and fish. Journal of Food Engineering 125:1–6. doi: 10.1016/j.jfoodeng.2013.10.016.
  • Zhu, X. H., W. C. Guo, and Y. P. Jia. 2014. Temperature‒dependent dielectric properties of raw cow’s and goat’s milk from 10 to 4,500 MHz relevant to radio-frequency and microwave pasteurization. Food and Bioprocess Technology 7 (6):1830–9. doi: 10.1007/s11947-014-1255-4.
  • Zhu, Y., F. Li, J. Tang, T. T. Wang, and Y. Jiao. 2019. Effects of radio frequency, air and water tempering, and different end-point tempering temperatures on pork quality. Journal of Food Process Engineering 42 (4). doi: 10.1111/jfpe.13026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.