1,518
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon &

References

  • Acevedo-Fani, A., R. Soliva-Fortuny, and O. Martín-Belloso. 2017. Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends in Food Science & Technology 60:12–22. doi: 10.1016/j.tifs.2016.10.027.
  • Ahmad, R., S. Srivastava, S. Ghosh, and S. K. Khare. 2021. Phytochemical delivery through nanocarriers: A review. Colloids and Surfaces B: Biointerfaces 197:111389. doi: 10.1016/j.colsurfb.2020.111389.
  • Amalaradjou, M. A. R., and K. Venkitanarayanan. 2011. Effect of trans-cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. Journal of Food Protection 74 (2):200–8. doi: 10.4315/0362-028X.JFP-10-296.
  • Artini, M., A. Patsilinakos, R. Papa, M. Božović, M. Sabatino, S. Garzoli, G. Vrenna, M. Tilotta, F. Pepi, R. Ragno, et al. 2018. Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different Mediterranean plants against Pseudomonas aeruginosa. Molecules 23 (2):482. doi: 10.3390/molecules23020482.
  • Azeredo, J., N. F. Azevedo, R. Briandet, N. Cerca, T. Coenye, A. R. Costa, M. Desvaux, G. D. Bonaventura, M. Hébraud, Z. Jaglic, et al. 2017. Critical review on biofilm methods. Critical Reviews in Microbiology 43 (3):313–51. doi: 10.1080/1040841X.2016.1208146.
  • Bai A, J., and R. R. Vittal. 2014. Quorum sensing inhibitory and anti-biofilm activity of essential oils and their in vivo efficacy in food systems. Food Biotechnology 28 (3):269–92. doi: 10.1080/08905436.2014.932287.
  • Baskaran, S. A., A. Kollanoor-Johny, M. S. Nair, and K. Venkitanarayanan. 2016. Efficacy of plant-derived antimicrobials in controlling Enterohemorrhagic Escherichia coli virulence in vitro. Journal of Food Protection 79 (11):1965–70. doi: 10.4315/0362-028X.JFP-16-104.
  • Bazargani, M. M., and J. Rohloff. 2016. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61:156–64. doi: 10.1016/j.foodcont.2015.09.036.
  • Becerril, R., C. Nerín, and R. Gómez-Lus. 2012. Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathogens and Disease 9 (8):699–705. doi: 10.1089/fpd.2011.1097.
  • Branda, S. S., A. Vik, L. Friedman, and R. Kolter. 2005. Biofilms: The matrix revisited. Trends in Microbiology 13 (1):20–6. doi: 10.1016/j.tim.2004.11.006.
  • Budri, P. E., N. C. Silva, E. C. Bonsaglia, A. F. Júnior, J. A. Júnior, J. T. Doyama, J. L. Gonçalves, M. V. Santos, D. Fitzgerald-Hughes, and V. L. Rall. 2015. Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. Journal of Dairy Science 98 (9):5899–904. doi: 10.3168/jds.2015-9442.
  • Burt, S. A., R. van der Zee, A. P. Koets, A. M. de Graaff, F. van Knapen, W. Gaastra, H. P. Haagsman, and E. J. Veldhuizen. 2007. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Applied and Environmental Microbiology 73 (14):4484–90. doi: 10.1128/AEM.00340-07.
  • Campana, R., L. Casettari, L. Fagioli, M. Cespi, G. Bonacucina, and W. Baffone. 2017. Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. International Journal of Food Microbiology 241:132–40. doi: 10.1016/j.ijfoodmicro.2016.10.021.
  • Chemsa, A. E., E. Erol, M. Öztürk, A. Zellagui, C. Özgür, N. Gherraf, and M. E. Duru. 2016. Chemical constituents of essential oil of endemic Rhanterium suaveolens Desf. growing in Algerian Sahara with antibiofilm, antioxidant and anticholinesterase activities. Natural Product Research 30 (18):2120–4. doi: 10.1080/14786419.2015.1110705.
  • Chorianopoulos, N. G., E. D. Giaouris, P. N. Skandamis, S. A. Haroutounian, and G. J. Nychas. 2008. Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers. Journal of Applied Microbiology 104 (6):1586–96. doi: 10.1111/j.1365-2672.2007.03694.x.
  • Coelho, F. A. B. L., and M. O. Pereira. 2013. Exploring new treatment strategies for Pseudomonas aeruginosa biofilm infections based on plant essential oils. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, ed. A., Méndez-Vilas, 83–9. Badajoz: Formatex Research Center.
  • Coughlan, L. M., P. D. Cotter, C. Hill, and A. Alvarez-Ordóñez. 2016. New weapons to fight old enemies: Novel strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Frontiers in Microbiology 7:1641. doi: 10.3389/fmicb.2016.01641.
  • Cui, H., M. Bai, M. M. Rashed, and L. Lin. 2018. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. International Journal of Food Microbiology 266:69–78. doi: 10.1016/j.ijfoodmicro.2017.11.019.
  • Cui, H., W. Li, C. Li, and L. Lin. 2016. Synergistic effect between Helichrysum italicum essential oil and cold nitrogen plasma against Staphylococcus aureus biofilms on different food‐contact surfaces. International Journal of Food Science & Technology 51 (11):2493–501. doi: 10.1111/ijfs.13231.
  • Cui, H., W. Li, C. Li, S. Vittayapadung, and L. Lin. 2016. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 32 (2):215–25. doi: 10.1080/08927014.2015.1134516.
  • Cui, H., C. Ma, and L. Lin. 2016a. Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157: H7 biofilms on lettuce. Food Control 66:8–16. doi: 10.1016/j.foodcont.2016.01.035.
  • Cui, H., C. Ma, and L. Lin. 2016b. Co-loaded proteinase K/thyme oil liposomes for inactivation of Escherichia coli O157:H7 biofilms on cucumber. Food & Function 7 (9):4030–40. doi: 10.1039/c6fo01201a.
  • Cui, H., L. Yuan, C. Li, and L. Lin. 2017. Control of Staphylococcus aureus on soya bean products by D‐amino acids/nutmeg essential oil‐co‐loaded nanofilms. International Journal of Food Science & Technology 52 (11):2393–403. doi: 10.1111/ijfs.13523.
  • Cui, H., C. Zhang, C. Li, and L. Lin. 2018. Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control 94:140–6. doi: 10.1016/j.foodcont.2018.07.007.
  • Cui, H., C. Zhang, C. Li, and L. Lin. 2019. Antimicrobial mechanism of oregano essential oil. Industrial Crops and Products 139:111498. doi: 10.1016/j.indcrop.2019.111498.
  • Cui, H., C. Zhang, C. Li, and L. Lin. 2020. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT 122:109057. doi: 10.1016/j.lwt.2020.109057.
  • da Silva Gündel, S.,. M. E. de Souza, P. M. Quatrin, B. Klein, R. Wagner, A. Gündel, R. de Almeida Vaucher, R. C. Vianna Santos, and A. F. Ourique. 2018. Nanoemulsions containing Cymbopogon flexuosus essential oil: Development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microbial Pathogenesis 118:268–76. doi: 10.1016/j.micpath.2018.03.043.
  • D'Amato, S., A. Serio, C. Chaves López, and A. Paparella. 2018. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control 86:126–37. doi: 10.1016/j.foodcont.2017.10.030.
  • Davey, M. E., and G. A. O'toole. 2000. Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews 64 (4):847–67. doi: 10.1128/mmbr.64.4.847-867.2000.
  • De Kerchove, A. J., and M. Elimelech. 2008. Bacterial swimming motility enhances cell deposition and surface coverage. Environmental Science & Technology 42 (12):4371–7. doi: 10.1021/es703028u.
  • de Matos, S. P., L. G. Lucca, and L. S. Koester. 2019. Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta 195:204–14. doi: 10.1016/j.talanta.2018.11.029.
  • de Oliveira, M. M. M., D. F. Brugnera, M. das Graças Cardoso, E. Alves, and R. H. Piccoli. 2010. Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface. Food Control 21 (4):549–53. doi: 10.1016/j.foodcont.2009.08.003.
  • de Oliveira, M. M. M., D. F. Brugnera, J. A. do Nascimento, N. N. Batista, and R. H. Piccoli. 2012. Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. European Food Research and Technology 234 (5):821–32. doi: 10.1007/s00217-012-1694-y.
  • Desai, M. A., K. A. Soni, R. Nannapaneni, M. W. Schilling, and J. L. Silva. 2012. Reduction of Listeria monocytogenes biofilms on stainless steel and polystyrene surfaces by essential oils. Journal of Food Protection 75 (7):1332–7. doi: 10.4315/0362-028X.JFP-11-517.
  • Di Ciccio, P., A. Vergara, A. R. Festino, D. Paludi, E. Zanardi, S. Ghidini, and A. Ianieri. 2015. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control 50:930–6. doi: 10.1016/j.foodcont.2014.10.048.
  • Di Vito, M., M. G. Bellardi, F. Mondello, M. Modesto, M. Michelozzi, F. Bugli, M. Sanguinetti, M. C. Sclocchi, M. L. Sebastiani, S. Biffi, et al. 2019. Monarda citriodora hydrolate vs essential oil comparison in several anti-microbial applications. Industrial Crops and Products 128:206–12. doi: 10.1016/j.indcrop.2018.11.007.
  • dos Santos Rodrigues, J. B., R. J. de Carvalho, N. T. de Souza, K. de Sousa Oliveira, O. L. Franco, D. Schaffner, E. L. de Souza, and M. Magnani. 2017. Effects of oregano essential oil and carvacrol on biofilms of Staphylococcus aureus from food-contact surfaces. Food Control 73:1237–46. doi: 10.1016/j.foodcont.2016.10.043.
  • dos Santos Rodrigues, J. B., N. T. de Souza, J. O. A. Scarano, J. M. de Sousa, M. C. Lira, R. C. B. Q. de Figueiredo, E. L. de Souza, and M. Magnani. 2018. Efficacy of using oregano essential oil and carvacrol to remove young and mature Staphylococcus aureus biofilms on food-contact surfaces of stainless steel. LWT 93:293–9. doi: 10.1016/j.lwt.2018.03.052.
  • Duarte, A., S. Ferreira, F. Silva, and F. C. Domingues. 2012. Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 19 (3-4):236–8. doi: 10.1016/j.phymed.2011.11.010.
  • Dunn, L. L., M. L. Harness, D. M. Smith, S. J. Gorman, Q. Zhong, P. M. Davidson, and F. J. Critzer. 2019. Essential oil emulsions as postharvest sanitizers to mitigate Salmonella cross-contamination on peppers. Journal of Food Protection 82 (1):159–63. doi: 10.4315/0362-028X.JFP-18-190.
  • Efsa, 2019. The European Union One Health 2018 zoonoses report. EFSA Journal 17:5926. doi: 10.2903/j.efsa.2019.5926.
  • Flamminii, F.,. C. D. Di Mattia, M. Nardella, M. Chiarini, L. Valbonetti, L. Neri, G. Difonzo, and P. Pittia. 2020. Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food Hydrocolloids 108:105849. doi: 10.1016/j.foodhyd.2020.105849.
  • Flemming, H. C., J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice, and S. Kjelleberg. 2016. Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology 14 (9):563–75. doi: 10.1038/nrmicro.2016.94.
  • Friedman, M. 2017. Antimicrobial activities of plant essential oils and their components against antibiotic-susceptible and antibiotic-resistant foodborne pathogens. In Essential Oils and Nanotechnology for Treatment of Microbial Diseases, ed. M. Rai, S. Zacchino, and M. Derita, 26–50. Boca Raton: CRC Press.
  • Galiè, S., C. García-Gutiérrez, E. M. Miguélez, C. J. Villar, and F. Lombó. 2018. Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology 9:898. doi: 10.3389/fmicb.2018.00898.
  • Ganesh, P. S., and R. R. Vittal. 2015. In vitro antibiofilm activity of Murraya koenigii essential oil extracted using supercritical fluid CO2 method against Pseudomonas aeruginosa PAO1. Natural Product Research 29 (24):2295–8. doi: 10.1080/14786419.2015.1004673.
  • Gao, Z., W. Zhong, K. Chen, P. Tang, and J. Guo. 2020. Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against Listeria monocytogenes. Industrial Crops and Products 144:112036. doi: 10.1016/j.indcrop.2019.112036.
  • García-Gonzalo, D., and R. Pagán. 2015. Influence of environmental factors on bacterial biofilm formation in the food industry: A review. Journal of Postdoctoral Research 3:3–13. doi: 10.14304/SURYA.JPR.V3N6.2..
  • Garzoli, S., S. Petralito, E. Ovidi, G. Turchetti, V. L. Masci, A. Tiezzi, J. Trilli, S. Cesa, M. A. Casadei, P. Giacomello, et al. 2020. Lavandula x intermedia essential oil and hydrolate: Valuation of chemical composition and antibacterial activity before and after formulation in nanoemulsion. Industrial Crops and Products 145:112068. doi: 10.1016/j.indcrop.2019.112068.
  • Ghavidel, F., M. M. Zarshenas, Y. Ghasemi, A. Gholami, A. Sakhteman, and P. Faridi. 2018. Impact of two different extraction methods on chemical composition and antimicrobial activities of multi-ingredients essential oils and hydrosols. Trends in Pharmaceutical Sciences 4:161–76.
  • Grande-Tovar, C. D., C. Chaves-López, A. Serio, C. Rossi, and A. Paparella. 2018. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology 78:61–71. doi: 10.1016/j.tifs.2018.05.019.
  • Guo, J., Z. Gao, G. Li, F. Fu, Z. Liang, H. Zhu, and Y. Shan. 2019. Antimicrobial and antibiofilm efficacy and mechanism of essential oil from Citrus Changshan-huyou YB chang against Listeria monocytogenes. Food Control 105:256–64. doi: 10.1016/j.foodcont.2019.06.014.
  • Hay, Y. O., M. A. Abril-Sierra, L. G. Sequeda-Castañeda, C. Bonnafous, and C. Raynaud. 2018. Evaluation of combinations of essential oils and essential oils with hydrosols on antimicrobial and antioxidant activities. Journal of Pharmacy & Pharmacognosy Research 6:216–30.
  • Hu, Q., M. Zhou, and S. Wei. 2018. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. Journal of Food Science 83 (6):1476–83. doi: 10.1111/1750-3841.14180.
  • Husain, F. M., I. Ahmad, M. Asif, and Q. Tahseen. 2013. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. Journal of Biosciences 38 (5):835–44. doi: 10.1007/s12038-013-9385-9.
  • Husain, F. M., I. Ahmad, M. S. Khan, E. Ahmad, Q. Tahseen, M. S. Khan, and N. A. Alshabib. 2015. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Frontiers in Microbiology 6:420. doi: 10.3389/fmicb.2015.00420.
  • Iseppi, R., S. Camellini, C. Sabia, and P. Messi. 2020. Combined antimicrobial use of essential oils and bacteriocin bacLP17 as seafood biopreservative to control Listeria monocytogenes both in planktonic and in sessile forms. Research in Microbiology. doi: 10.1016/j.resmic.2020.07.002.
  • Jadhav, S., R. Shah, M. Bhave, and E. A. Palombo. 2013. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control 29 (1):125–30. doi: 10.1016/j.foodcont.2012.05.071.
  • Jiang, B., F. Wang, L. Liu, S. Tian, W. Li, X. Yang, Y. Wu, Y. Huang, J. Yi, C. Yu, et al. 2017. Antibacterial activity and action mechanism of the Echinops ritro L. essential oil against foodborne pathogenic bacteria. Journal of Essential Oil Bearing Plants 20 (5):1172–83. doi: 10.1080/0972060X.2017.1399090.
  • Kang, J., W. Jin, J. Wang, Y. Sun, X. Wu, and L. Liu. 2019. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT 101:639–45. doi: 10.1016/j.lwt.2018.11.093.
  • Karampoula, F., E. Giaouris, J. Deschamps, A. I. Doulgeraki, G. J. E. Nychas, and F. Dubois-Brissonnet. 2016. Hydrosol of Thymbra capitata is a highly efficient biocide against Salmonella enterica serovar Typhimurium biofilms. Applied and Environmental Microbiology 82 (17):5309–19. doi: 10.1128/AEM.01351-16.
  • Kerekes, E. B., É. Deák, M. Takó, R. Tserennadmid, T. Petkovits, C. Vágvölgyi, and J. Krisch. 2013. Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. Journal of Applied Microbiology 115 (4):933–42. doi: 10.1111/jam.12289.
  • Khalaf, Z. Z., and L. A. Zahra. 2020. Evaluation of the activity of assential oil and hydrosol from Eucalyptus camaldulensis against some bacterial species. Iraqi Journal of Science 61:1282–8. doi: 10.24996/ijs.2020.61.6.5.
  • Khan, M. S. A., M. Zahin, S. Hasan, F. M. Husain, and I. Ahmad. 2009. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Letters in Applied Microbiology 49 (3):354–60. doi: 10.1111/j.1472-765X.2009.02666.x.
  • Kim, Y. G., J. H. Lee, G. Gwon, S. I. Kim, J. G. Park, and J. Lee. 2016. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Scientific Reports 6:36377. doi: 10.1038/srep36377.
  • Kim, Y. G., J. H. Lee, S. I. Kim, K. H. Baek, and J. Lee. 2015. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. International Journal of Food Microbiology 195:30–9. doi: 10.1016/j.ijfoodmicro.2014.11.028.
  • Kostoglou, D., I. Protopappas, and E. Giaouris. 2020. Common plant-derived terpenoids present increased anti-biofilm potential against Staphylococcus bacteria compared to a quaternary ammonium biocide. Foods 9 (6):697. doi: 10.3390/foods9060697.
  • Kumar, C. G., and S. K. Anand. 1998. Significance of microbial biofilms in food industry: A review. International Journal of Food Microbiology 42 (1-2):9–27. . (98)00060-9. doi: 10.1016/S0168-1605(98)00060-9.
  • Kumar, L., S. Chhibber, R. Kumar, M. Kumar, and K. Harjai. 2015. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia 102:84–95. doi: 10.1016/j.fitote.2015.02.002.
  • Lahesaare, A., H. Ainelo, A. Teppo, M. Kivisaar, H. J. Heipieper, and R. Teras. 2016. LapF and its regulation by Fis affect the cell surface hydrophobicity of Pseudomonas putida. PloS One 11 (11):e0166078. doi: 10.1371/journal.pone.0166078.
  • Lang, M., S. Rodrigues, R. Boulho, E. Duteil, A. Bazire, and G. Bedoux. 2016. An essential oil blend prevents P. aeruginosa PA01 from forming biofilms. Journal of Bacteriology & Parasitology 7 (268):1–8. doi: http://dx.doi.org/10.4172/2155-9597.1000268..
  • Lopez-Romero, J. C., H. González-Ríos, A. Borges, and M. Simões. 2015. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine : eCAM 2015:795435 doi:10.1155/2015/795435. PMC: 26221178
  • Lou, Z., J. Chen, F. Yu, H. Wang, X. Kou, C. Ma, and S. Zhu. 2017. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. LWT 80:371–7. doi: 10.1016/j.lwt.2017.02.037.
  • Maciel, M. V. D. O. B., A. D. R. Almeida, M. H. Machado, A. P. Z. D. Melo, C. G. D. Rosa, D. Z. D. Freitas, C. M. Noronha, G. Lopes Teixeira, R. D. de Armas, and P. L. M. Barreto. 2019. Syzygium aromaticum L.(clove) essential oil as a reducing agent for the green synthesis of silver nanoparticles. Open Journal of Applied Sciences 09 (02):45–54. doi: 10.4236/ojapps.2019.92005.
  • Manju, S., B. Malaikozhundan, S. Vijayakumar, S. Shanthi, A. Jaishabanu, P. Ekambaram, and B. Vaseeharan. 2016. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microbial Pathogenesis 91:129–35. doi: 10.1016/j.micpath.2015.11.021.
  • Millezi, A. F., M. D. G. Cardoso, E. Alves, and R. H. Piccoli. 2013. Reduction of Aeromonas hydrophila biofilm on stainless stell surface by essential oils. Brazilian Journal of Microbiology 44 (1):73–80. doi: 10.1590/S1517-83822013005000015.
  • Millezi, F. M., M. O. Pereira, N. N. Batista, N. Camargos, I. Auad, M. D. G. Cardoso, and R. H. Piccoli. 2012. Susceptibility of monospecies and dual-species biofilms of Staphylococcus aureus and Escherichia coli to essential oils. Journal of Food Safety 32 (3):351–9. doi: 10.1111/j.1745-4565.2012.00387.x.
  • Moghimi, R., A. Aliahmadi, H. Rafati, H. R. Abtahi, S. Amini, and M. M. Feizabadi. 2018. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii. Journal of Molecular Liquids 265:765–70. doi: 10.1016/j.molliq.2018.07.023.
  • Montes, C., M. J. Villaseñor, and Á. Ríos. 2019. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends in Food Science & Technology 90:47–62. doi: 10.1016/j.tifs.2019.06.001.
  • Myszka, K., M. T. Schmidt, M. Majcher, W. Juzwa, M. Olkowicz, and K. Czaczyk. 2016. Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds. International Biodeterioration & Biodegradation 114:252–9. doi: 10.1016/j.ibiod.2016.07.006.
  • Nostro, A., A. S. Roccaro, G. Bisignano, A. Marino, M. A. Cannatelli, F. C. Pizzimenti, P. L. Cioni, F. Procopio, and A. R. Blanco. 2007. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Medical Microbiology 56 (Pt 4):519–23. doi: 10.1099/jmm.0.46804-0.
  • Nostro, A., R. Scaffaro, M. D'Arrigo, L. Botta, A. Filocamo, A. Marino, and G. Bisignano. 2013. Development and characterization of essential oil component-based polymer films: A potential approach to reduce bacterial biofilm. Applied Microbiology and Biotechnology 97 (21):9515–23. doi: 10.1007/s00253-013-5196-z.
  • Obeizi, Z., H. Benbouzid, S. Ouchenane, D. Yılmaz, M. Culha, and M. Bououdina. 2020. Biosynthesis of Zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Materials Today Communications 25:101553. doi: 10.1016/j.mtcomm.2020.101553.
  • Ozturk, I., F. Tornuk, O. Caliskan-Aydogan, M. Z. Durak, and O. Sagdic. 2016. Decontamination of iceberg lettuce by some plant hydrosols. LWT 74:48–54. doi: 10.1016/j.lwt.2016.06.067.
  • Paparella, A., G. Mazzarrino, C. Chaves-López, C. Rossi, G. Sacchetti, O. Guerrieri, and A. Serio. 2016. Chitosan boosts the antimicrobial activity of Origanum vulgare essential oil in modified atmosphere packaged pork. Food Microbiology 59:23–31. doi: 10.1016/j.fm.2016.05.007.
  • Paparella, A., A. Serio, C. Rossi, G. Mazzarrino, and C. Chaves-López. 2018. Food-Borne Transmission of Staphylococci. In Pet-To-Man Travelling Staphylococci: A World in Progress, ed. V. Savini, 71–94. Academic Press.
  • Paparella, A., L. Taccogna, I. Aguzzi, C. Chaves-López, A. Serio, F. Marsilio, and G. Suzzi. 2008. Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control 19 (12):1174–82. doi: 10.1016/j.foodcont.2008.01.002.
  • Pellegrini, M., C. Rossi, S. Palmieri, F. Maggio, C. Chaves, C. Lo Sterzo, A. Paparella, D. De Medici, A. Ricci, and A. Serio. 2020. Salmonella enterica control in stick carrots through incorporation of coriander seeds essential oil in sustainable washing treatments. Frontiers in Sustainable Food Systems 4:14. doi: 10.3389/fsufs.2020.00014.
  • Perez, A. P., N. Perez, C. M. S. Lozano, M. J. Altube, M. A. de Farias, R. V. Portugal, F. Buzzola, M. J. Morilla, and E. L. Romero. 2019. The anti MRSA biofilm activity of Thymus vulgaris essential oil in nanovesicles. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 57:339–51. doi: 10.1016/j.phymed.2018.12.025.
  • Piovezan, M., N. Sayuri Uchida, A. Fiori da Silva, R. Grespan, P. Regina Santos, E. Leite Silva, R. Kenji Nakamura Cuman, M. Machinski Junior, and J. Martha Graton Mikcha. 2014. Effect of cinnamon essential oil and cinnamaldehyde on Salmonella Saintpaul biofilm on a stainless steel surface. The Journal of General and Applied Microbiology 60 (3):119–21. doi: 10.2323/jgam.60.119.
  • Poli, J. P., E. Guinoiseau, D. de Rocca Serra, S. Sutour, M. Paoli, F. Tomi, Y. Quilichini, L. Berti, and V. Lorenzi. 2018. Anti-quorum sensing activity of 12 essential oils on Chromobacterium violaceum and specific action of cis-cis-p-menthenolide from corsican Mentha suaveolens ssp. insularis. Molecules 23 (9):2125. doi: 10.3390/molecules23092125.
  • Pontes, E. K. U., H. M. Melo, J. W. A. Nogueira, N. C. S. Firmino, M. G. de Carvalho, F. E. A. C. Júnior, and T. T. A. Cavalcante. 2019. Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Science and Biotechnology 28 (3):633–9. doi: 10.1007/s10068-018-0502-2.
  • Prakash, A., R. Baskaran, N. Paramasivam, and V. Vadivel. 2018. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International 111:509–23. doi: 10.1016/j.foodres.2018.05.066.
  • Rathinam, P., H. S. Vijay Kumar, and P. Viswanathan. 2017. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling 33 (8):624–39. doi: 10.1080/08927014.2017.1350655.
  • Reichling, J. 2020. Anti-biofilm and virulence factor-reducing activities of essential oils and oil components as a possible option for bacterial infection control. Planta Medica 86 (8):520–37. doi: 10.1055/a-1147-4671.
  • Reis-Teixeira, F. B., I. P. Sousa, V. F. Alves, N. A. J. C. Furtado, and E. C. P. De Martinis. 2019. Evaluation of lemongrass and ginger essential oils to inhibit Listeria monocytogenes in biofilms. Journal of Food Safety 39 (4):1–7. doi: 10.1111/jfs.12627.
  • Rossi, C., C. Chaves-López, S. S. Možina, C. D. Mattia, S. Scuota, I. Luzzi, T. Jenič, A. Paparella, and A. Serio. 2019. Salmonella enterica adhesion: Effect of Cinnamomum zeylanicum essential oil on lettuce. LWT 111:16–22. doi: 10.1016/j.lwt.2019.05.026.
  • Rossi, C., C. Chaves‐López, A. Serio, F. Anniballi, L. Valbonetti, and A. Paparella. 2018. Effect of Origanum vulgare essential oil on biofilm formation and motility capacity of Pseudomonas fluorescens strains isolated from discoloured Mozzarella cheese. Journal of Applied Microbiology 124 (5):1220–31. doi: 10.1111/jam.13707.
  • Rossi, C., A. Serio, C. Chaves-López, F. Anniballi, B. Auricchio, E. Goffredo, B. T. Cenci-Goga, F. Lista, S. Fillo, and A. Paparella. 2018. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 86:241–8. doi: 10.1016/j.foodcont.2017.11.018.
  • Sadekuzzaman, M., M. F. R. Mizan, H. S. Kim, S. Yang, and S. D. Ha. 2018. Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT 89:134–9. doi: 10.1016/j.lwt.2017.10.042.
  • Schillaci, D., E. M. Napoli, M. G. Cusimano, M. Vitale, and G. Ruberto. 2013. Origanum vulgare subsp. hirtum essential oil prevented biofilm formation and showed antibacterial activity against planktonic and sessile bacterial cells. Journal of Food Protection 76 (10):1747–52. doi: 10.4315/0362-028X.JFP-13-001.
  • Sedaghat Doost, A., M. Nikbakht Nasrabadi, V. Kassozi, H. Nakisozi, and P. Van Der Meeren. 2020. Recent advances in food colloidal delivery systems for essential oils and their main components. Trends in Food Science & Technology 99:474–86. doi:10.1016/j.tifs.2020.03.037.
  • Serio, A., M. Chiarini, E. Tettamanti, and A. Paparella. 2010. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane. Letters in Applied Microbiology 51 (2):149–57. doi: 10.1111/j.1472-765X.2010.02877.x.
  • Shahabi, N., H. Tajik, M. Moradi, M. Forough, and P. Ezati. 2017. Physical, antimicrobial and antibiofilm properties of Zataria multiflora Boiss essential oil nanoemulsion. International Journal of Food Science & Technology 52 (7):1645–52. doi: 10.1111/ijfs.13438.
  • Sharifi, A., A. Mohammadzadeh, T. Z. Salehi, and P. Mahmoodi. 2018. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. Journal of Applied Microbiology 124 (2):379–88. doi: 10.1111/jam.13639.
  • Shi, X., and X. Zhu. 2009. Biofilm formation and food safety in food industries. Trends in Food Science & Technology 20 (9):407–13. doi: 10.1016/j.tifs.2009.01.054.
  • Silva‐Espinoza, B. A., J. J. Palomares‐Navarro, M. R. Tapia‐Rodriguez, M. R. Cruz‐Valenzuela, G. A. González‐Aguilar, E. Silva‐Campa, M. Pedroza-Montero, M. Almeida-Lopes, R. Miranda, and J. F. Ayala‐Zavala. 2020. Combination of ultraviolet light‐C and clove essential oil to inactivate Salmonella Typhimurium biofilms on stainless steel. Journal of Food Safety 40 (3):e12788. doi: 10.1111/jfs.12788.
  • Singh, N., R. K. Singh, A. K. Bhunia, and R. L. Stroshine. 2002. Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157: H7 on lettuce and baby carrots. LWT - Food Science and Technology 35 (8):720–9. doi: 10.1006/fstl.2002.0933.
  • Snoussi, M., A. Dehmani, E. Noumi, G. Flamini, and A. Papetti. 2016. Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains. Microbial Pathogenesis 90:13–21. doi: 10.1016/j.micpath.2015.11.004.
  • Snoussi, M., E. Noumi, N. Trabelsi, G. Flamini, A. Papetti, and V. De Feo. 2015. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 20 (8):14402–24. doi: 10.3390/molecules200814402.
  • Somrani, M., M. C. Inglés, H. Debbabi, F. Abidi, and A. Palop. 2020. Garlic, onion, and cinnamon essential oil anti-biofilms’ effect against Listeria monocytogenes. Foods 9 (5):567. doi: 10.3390/foods9050567.
  • Soni, K. A., Oladunjoye, A. Nannapaneni, R. M. W. Schilling, J. L. Silva, B. Mikel, R. Bailey. and H. 2013. Inhibition and inactivation of Salmonella Typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol. Journal of Food Protection 76 (2):205–12. doi: 10.4315/0362-028X.JFP-12-196.
  • Szczepanski, S., and A. Lipski. 2014. Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control 36 (1):224–9. doi: 10.1016/j.foodcont.2013.08.023.
  • Tajik, H., H. Naghili, H. Ghasemmahdi, M. Moradi, and A. Badali. 2015. Effects of Zataria multiflora boiss essential oil, ultraviolet radiation and their combination on Listeria monocytogenes biofilm in a simulated industrial model. International Journal of Food Science & Technology 50 (9):2113–9. doi: 10.1111/ijfs.12874.
  • Talagrand-Reboul, E., E. Jumas-Bilak, and B. Lamy. 2017. The social life of Aeromonas through biofilm and quorum sensing systems. Frontiers in Microbiology 8:37. doi: 10.3389/fmicb.2017.00037.
  • Tang, X., S. H. Flint, R. J. Bennett, J. D. Brooks, and R. H. Morton. 2009. Biofilm growth of individual and dual strains of Klebsiella oxytoca from the dairy industry on ultrafiltration membranes. Journal of Industrial Microbiology & Biotechnology 36 (12):1491–7. doi:10.1007/s10295-009-0637-5. PMC: 19760228
  • Tornuk, F., H. Cankurt, I. Ozturk, O. Sagdic, O. Bayram, and H. Yetim. 2011. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157: H7 and Salmonella Typhimurium on fresh cut carrots and apples. International Journal of Food Microbiology 148 (1):30–5. doi: 10.1016/j.ijfoodmicro.2011.04.022.
  • Trifan, A., S. V. Luca, H. Greige-Gerges, A. Miron, E. Gille, and A. C. Aprotosoaie. 2020. Recent advances in tackling microbial multidrug resistance with essential oils: Combinatorial and nano-based strategies. Critical Reviews in Microbiology 46 (3):338–57. doi: 10.1080/1040841X.2020.1782339.
  • Valeriano, C., T. L. C. De Oliveira, S. M. De Carvalho, M. das Graças Cardoso, E. Alves, and R. H. Piccoli. 2012. The sanitizing action of essential oil-based solutions against Salmonella enterica serotype Enteritidis S64 biofilm formation on AISI 304 stainless steel. Food Control 25 (2):673–7. doi: 10.1016/j.foodcont.2011.12.015.
  • Van Houdt, R., and S. W. Michiels. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology 109 (4):1117–31. doi: 10.1111/j.1365-2672.2010.04756.x.
  • Vasconcelos, N. G., J. Croda, and S. Simionatto. 2018. Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial Pathogenesis 120:198–203. doi: 10.1016/j.micpath.2018.04.036.
  • Vázquez-Sánchez, D., M. L. Cabo, and J. J. Rodríguez-Herrera. 2015. Antimicrobial activity of essential oils against Staphylococcus aureus biofilms. Food Science and Technology International 21 (8):559–70. doi: 10.1177/1082013214553996.
  • Vázquez-Sánchez, D., J. A. Galvão, C. M. Ambrosio, E. M. Gloria, and M. Oetterer. 2018. Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Industrial Crops and Products 121:452–60. doi: 10.1016/j.indcrop.2018.05.045.
  • Vázquez-Sánchez, D., J. A. Galvão, M. R. Mazine, E. M. Gloria, and M. Oetterer. 2018. Control of Staphylococcus aureus biofilms by the application of single and combined treatments based in plant essential oils. International Journal of Food Microbiology 286:128–38. doi: 10.1016/j.indcrop.2018.05.045..
  • Vázquez-Sánchez, D., J. A. Galvão, M. R. Mazine, E. Micotti da Gloria, and T. M. F. de Souza Vieira. 2019. Anti-biofilm efficacy of single and binary treatments based on plant essential oils against Escherichia coli persistent in food-processing facilities. Food Science and Technology International 25 (5):385–93. doi: 10.1177/1082013219826817.
  • Venditti, I. 2019. Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. Journal of King Saud University - Science 31 (3):398–411. doi: 10.1016/j.jksus.2017.10.004.
  • Venkadesaperumal, G., S. Rucha, K. Sundar, and P. H. Shetty. 2016. Anti-quorum sensing activity of spice oil nanoemulsions against food borne pathogens. LWT - Food Science and Technology 66:225–31. doi: 10.1016/j.lwt.2015.10.044.
  • Vetas, D., E. Dimitropoulou, G. Mitropoulou, Y. Kourkoutas, and E. Giaouris. 2017. Disinfection efficiencies of sage and spearmint essential oils against planktonic and biofilm Staphylococcus aureus cells in comparison with sodium hypochlorite. International Journal of Food Microbiology 257:19–25. doi: 10.1016/j.ijfoodmicro.2017.06.003.
  • Vicario, J. C., M. S. Dardanelli, and W. Giordano. 2015. Swimming and swarming motility properties of peanut-nodulating rhizobia. FEMS Microbiology Letters 362 (2):1–6. doi: 10.1093/femsle/fnu038.
  • Vitanza, L., A. Maccelli, M. Marazzato, F. Scazzocchio, A. Comanducci, S. Fornarini, M. E. Crestoni, A. Filippi, C. Fraschetti, F. Rinaldi, et al. 2019. Satureja montana L. essential oil and its antimicrobial activity alone or in combination with gentamicin. Microbial Pathogenesis 126:323–31. doi: 10.1016/j.micpath.2018.11.025.
  • Wang, Y., X. Hong, J. Liu, J. Zhu, and J. Chen. 2020. Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dual-species biofilms and sensitivity to carvacrol. Food Microbiology 91:103506. doi: 10.1016/j.fm.2020.103506.
  • Wang, F., F. Wei, C. Song, B. Jiang, S. Tian, J. Yi, C. Yu, Z. Song, L. Sun, Y. Bao, et al. 2017. Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Industrial Crops and Products 109:358–66. doi: 10.1016/j.indcrop.2017.08.058.
  • Yap, P. S. X., B. C. Yap, H. C. Ping, and S. H. E. Lim. 2014. Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal 8:6–14. doi: 10.2174/1874285801408010006.
  • Yousefi, M., A. Ehsani, and S. M. Jafari. 2019. Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Advances in Colloid and Interface Science 270:263–77. doi: 10.1016/j.cis.2019.07.005.
  • Zhang, L., F. Critzer, P. M. Davidson, and Q. Zhong. 2014. Formulating essential oil microemulsions as washing solutions for organic fresh produce production. Food Chemistry 165:113–8. doi: 10.1016/j.foodchem.2014.05.115.
  • Zhang, D., R. ‐Y. Gan, J. ‐R. Zhang, A. K. Farha, H. ‐B. Li, F. Zhu, X. ‐H. Wang, and H. Corke. 2020. Antivirulence properties and related mechanisms of spice essential oils: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 19 (3):1018–55. doi: 10.1111/1541-4337.12549.
  • Zhang, Y., J. Kong, Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2018. Essential oil components inhibit biofilm formation in Erwinia carotovora and Pseudomonas fluorescens via anti-quorum sensing activity. LWT 92:133–9. doi: 10.1016/j.lwt.2018.02.027.
  • Zhang, C., C. Li, M. A. Abdel-Samie, H. Cui, and L. Lin. 2020. Unraveling the inhibitory mechanism of clove essential oil against Listeria monocytogenes biofilm and applying it to vegetable surfaces. LWT 134:110210. doi: 10.1016/j.lwt.2020.110210.
  • Zhang, Y., X. Liu, Y. Wang, P. Jiang, and S. Quek. 2016. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59:282–9. doi: 10.1016/j.foodcont.2015.05.032.
  • Zhao, X., F. Zhao, J. Wang, and N. Zhong. 2017. Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Advances 7 (58):36670–83. doi: 10.1039/C7RA02497E.
  • Zygadlo, J. A., M. P. Zunino, R. P. Pizzolitto, C. Merlo, A. Omarini, J. S. Dambolena. 2017. Antibacterial and anti-biofilm activities of essential oils and their components including modes of action. In Essential Oils and Nanotechnology for Treatment of Microbial Diseases ed. M. Rai, S. Zacchino, and M. Derita, 112–39. Boca Raton: CRC Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.