1,691
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Plant extracts in prevention of obesity

, , &

References

  • Aguirre, L., A. Fernandez-Quintela, N. Arias, and M. P. Portillo. 2014. Resveratrol: Anti-obesity mechanisms of action. Molecules (Basel, Switzerland) 19 (11):18632–55. doi: 10.3390/molecules191118632.
  • Ahn, J., H. Lee, S. Kim, and T. Ha. 2010. Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling. American Journal of Physiology. Cell Physiology 298 (6):C1510–C1516. doi: 10.1152/ajpcell.00369.2009.
  • Ahn, J., H. Lee, S. Kim, J. Park, and T. Ha. 2008. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochemical and Biophysical Research Communications 373 (4):545–9. doi: 10.1016/j.bbrc.2008.06.077.
  • Alberdi, G., V. M. Rodriguez, J. Miranda, M. T. Macarulla, N. Arias, C. Andres-Lacueva, and M. P. Portillo. 2011. Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutrition & Metabolism 8 (1):29. doi: 10.1186/1743-7075-8-29.
  • Alberdi, G., V. M. Rodriguez, J. Miranda, M. T. Macarulla, I. Churruca, and M. P. Portillo. 2013. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chemistry 141 (2):1530–5. doi: 10.1016/j.foodchem.2013.03.085.
  • Arias, N., M. T. Macarulla, L. Aguirre, I. Milton, and M. P. Portillo. 2016. The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. European Journal of Nutrition 55 (1):341–8. doi: 10.1007/s00394-015-0854-9.
  • Baskaran, P., V. Krishnan, J. Ren, and B. Thyagarajan. 2016. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. British Journal of Pharmacology 173 (15):2369–89. doi: 10.1111/bph.13514.
  • Betz, M. J., and S. Enerback. 2018. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nature Reviews. Endocrinology 14 (2):77–87. doi: 10.1038/nrendo.2017.132.
  • Bonet, M. L., J. A. Canas, J. Ribot, and A. Palou. 2015. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Archives of Biochemistry and Biophysics 572:112–25. doi: 10.1016/j.abb.2015.02.022.
  • Carrasco-Pozo, C., M. J. Cires, and M. Gotteland. 2019. Quercetin and epigallocatechin gallate in the prevention and treatment of obesity: From molecular to clinical studies. Journal of Medicinal Food 22 (8):753–70. doi: 10.1089/jmf.2018.0193.
  • Casanova, E., J. Salvado, A. Crescenti, and A. Gibert-Ramos. 2019. Epigallocatechin gallate modulates muscle homeostasis in type 2 diabetes and obesity by targeting energetic and redox pathways: A narrative review. International Journal of Molecular Sciences 20 (3): 532. doi: 10.3390/ijms20030532.
  • Chang, C. J., T. F. Tzeng, S. S. Liou, Y. S. Chang, and I. M. Liu. 2011. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels. Planta Medica 77 (17):1876–82. doi: 10.1055/s-0031-1279992.
  • Chen, I. J., C. Y. Liu, J. P. Chiu, and C. H. Hsu. 2016. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clinical Nutrition (Edinburgh, Scotland) 35 (3):592–9. doi: 10.1016/j.clnu.2015.05.003.
  • Chen, J., L. Li, Y. Li, X. Liang, Q. Sun, H. Yu, J. Zhong, Y. Ni, J. Chen, Z. Zhao, et al. 2015. Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+ influx. Cardiovascular Diabetology 14:22. doi: 10.1186/s12933-015-0183-6.
  • Chen, Q., P. Shou, C. Zheng, M. Jiang, G. Cao, Q. Yang, J. Cao, N. Xie, T. Velletri, X. Zhang, et al. 2016. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death and Differentiation 23 (7):1128–39. doi: 10.1038/cdd.2015.168.
  • Choi, Y. R., J. Shim, and M. J. Kim. 2020. Genistin: A novel potent anti-adipogenic and anti-lipogenic agent. Molecules 25 (9):2042. doi: 10.3390/molecules25092042.
  • Chouchani, E. T., L. Kazak, and B. M. Spiegelman. 2019. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metabolism 29 (1):27–37. doi: 10.1016/j.cmet.2018.11.002.
  • Desjardins, E. M., and G. R. Steinberg. 2018. Emerging role of AMPK in Brown and Beige Adipose tissue (BAT): Implications for obesity, insulin resistance, and type 2 diabetes. Current Diabetes Reports 18 (10):80. doi: 10.1007/s11892-018-1049-6.
  • Ding, L. L., J. M. Li, B. L. Song, X. Xiao, B. F. Zhang, M. Qi, W. D. Huang, L. Yang, and Z. T. Wang. 2016. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicology and Applied Pharmacology 304:99–109. doi: 10.1016/j.taap.2016.05.011.
  • Doan, K. V., C. M. Ko, A. W. Kinyua, D. J. Yang, Y. H. Choi, I. Y. Oh, N. M. Nguyen, A. Ko, J. W. Choi, Y. Jeong, et al. 2015. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology 156 (1):157–68. doi: 10.1210/en.2014-1354.
  • Ejaz, A., D. Wu, P. Kwan, and M. Meydani. 2009. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. The Journal of Nutrition 139 (5):919–25. doi: 10.3945/jn.108.100966.
  • Fan, L., H. Xu, R. Yang, Y. Zang, J. Chen, and H. Qin. 2019. Combination of capsaicin and capsiate induces browning in 3T3-L1 white adipocytes via activation of the peroxisome proliferator-activated receptor gamma/beta3-adrenergic receptor signaling pathways. Journal of Agricultural and Food Chemistry 67 (22):6232–40. doi: 10.1021/acs.jafc.9b02191.
  • Fan, R., M. You, A. M. Toney, J. Kim, D. Giraud, Y. Xian, F. Ye, L. Gu, A. E. Ramer-Tait, and S. Chung. 2019. Red raspberry polyphenols attenuate high-fat diet-driven activation of NLRP3 inflammasome and its paracrine suppression of adipogenesis via histone modifications. Molecular Nutrition & Food Research 64 (15):1900995. doi: 10.1002/mnfr.201900995.
  • Floyd, Z. E., Z. Q. Wang, G. Kilroy, and W. T. Cefalu. 2008. Modulation of peroxisome proliferator-activated receptor gamma stability and transcriptional activity in adipocytes by resveratrol. Metabolism: Clinical and Experimental 57 (7 Suppl 1):S32–S38. doi: 10.1016/j.metabol.2008.04.006.
  • Forney, L. A., N. R. Lenard, L. K. Stewart, and T. M. Henagan. 2018. Dietary quercetin attenuates adipose tissue expansion and inflammation and alters adipocyte morphology in a tissue-specific manner. International Journal of Molecular Sciences 19 (3):895. doi: 10.3390/ijms19030895.
  • Funakoshi, T., N. Kanzaki, Y. Otsuka, T. Izumo, H. Shibata, and S. Machida. 2018. Quercetin inhibits adipogenesis of muscle progenitor cells in vitro. Biochemistry and Biophysics Reports 13:39–44. doi: 10.1016/j.bbrep.2017.12.003.
  • Gabriel, B. M., and J. R. Zierath. 2017. The limits of exercise physiology: From performance to health. Cell Metabolism 25 (5):1000–11. doi: 10.1016/j.cmet.2017.04.018.
  • Gandhi, G. R., G. Jothi, P. J. Antony, K. Balakrishna, M. G. Paulraj, S. Ignacimuthu, A. Stalin, and N. A. Al-Dhabi. 2014. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. European Journal of Pharmacology 745:201–16. doi: 10.1016/j.ejphar.2014.10.044.
  • Goh, K. P., H. Y. Lee, D. P. Lau, W. Supaat, Y. H. Chan, and A. F. Koh. 2014. Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. International Journal of Sport Nutrition and Exercise Metabolism 24 (1):2–13. doi: 10.1123/ijsnem.2013-0045.
  • Gomez-Zorita, S., A. Lasa, N. Abendano, A. Fernandez-Quintela, A. Mosqueda-Solis, M. P. Garcia-Sobreviela, J. M. Arbones-Mainar, and M. P. Portillo. 2017. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes. Journal of Translational Medicine 15 (1):237. doi: 10.1186/s12967-017-1343-0.
  • Gomez-Zorita, S., K. Treguer, J. Mercader, and C. Carpene. 2013. Resveratrol directly affects in vitro lipolysis and glucose transport in human fat cells. Journal of Physiology and Biochemistry 69 (3):585–93. doi: 10.1007/s13105-012-0229-0.
  • Gonzalez-Hurtado, E., J. Lee, J. Choi, and M. J. Wolfgang. 2018. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing. Molecular Metabolism 7:45–56. doi: 10.1016/j.molmet.2017.11.004.
  • Gu, Q., Y. Cai, C. Huang, Q. Shi, and H. Yang. 2012. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacognosy Magazine 8 (31):202–8. doi: 10.4103/0973-1296.99285.
  • Gupta, R. K., R. J. Mepani, S. Kleiner, J. C. Lo, M. J. Khandekar, P. Cohen, A. Frontini, D. C. Bhowmick, L. Ye, S. Cinti, et al. 2012. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metabolism 15 (2):230–9. doi: 10.1016/j.cmet.2012.01.010.
  • Guri, A. J., R. Hontecillas, H. Si, D. Liu, and J. Bassaganya-Riera. 2007. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clinical Nutrition (Edinburgh, Scotland) 26 (1):107–16. doi: 10.1016/j.clnu.2006.07.008.
  • Hadrich, F., and S. Sayadi. 2018. Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPAR gamma and CEBP-alpha. Lipids in Health and Disease 17 (1):95. doi: 10.1186/s12944-018-0738-0.
  • Haemmerle, G., A. Lass, R. Zimmermann, G. Gorkiewicz, C. Meyer, J. Rozman, G. Heldmaier, R. Maier, C. Theussl, S. Eder, et al. 2006. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science (New York, N.Y.) 312 (5774):734–7. doi: 10.1126/science.1123965.
  • Hall, J. M., H. R. Powell, L. Rajic, and K. S. Korach. 2019. The role of dietary phytoestrogens and the nuclear receptor PPAR gamma in adipogenesis: An in vitro study (vol 127, 037007, 2019). Environmental Health Perspectives 127 (10). doi: 10.1289/Ehp3444.
  • Harms, M., and P. Seale. 2013. Brown and beige fat: Development, function and therapeutic potential. Nature Medicine 19 (10):1252–63. doi: 10.1038/nm.3361.
  • Hondares, E., M. Rosell, J. Diaz-Delfin, Y. Olmos, M. Monsalve, R. Iglesias, F. Villarroya, and M. Giralt. 2011. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: Involvement of PRDM16. The Journal of Biological Chemistry 286 (50):43112–22. doi: 10.1074/jbc.M111.252775.
  • Hruby, A., J. E. Manson, L. Qi, V. S. Malik, E. B. Rimm, Q. Sun, W. C. Willett, and F. B. Hu. 2016. Determinants and consequences of obesity. American Journal of Public Health 106 (9):1656–62. doi: 10.2105/AJPH.2016.303326.
  • Hsu, C. L., and G. C. Yen. 2007. Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. Journal of Agricultural and Food Chemistry 55 (5):1730–6. doi: 10.1021/jf062912b.
  • Hu, Y., E. A. Ehli, J. Kittelsrud, P. J. Ronan, K. Munger, T. Downey, K. Bohlen, L. Callahan, V. Munson, M. Jahnke, et al. 2012. Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 19 (10):861–7. doi: 10.1016/j.phymed.2012.05.009.
  • Huang, Y., X. Zhu, K. Chen, H. Lang, Y. Zhang, P. Hou, L. Ran, M. Zhou, J. Zheng, L. Yi, et al. 2019. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging 11 (8):2217–40. doi: 10.18632/aging.101910.
  • Ilavenil, S., M. V. Arasu, J. C. Lee, D. H. Kim, S. G. Roh, H. S. Park, G. J. Choi, V. Mayakrishnan, and K. C. Choi. 2014. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 21 (5):758–65. doi: 10.1016/j.phymed.2013.11.007.
  • Imamura, H., D. Nagayama, N. Ishihara, S. Tanaka, R. Watanabe, Y. Watanabe, Y. Sato, T. Yamaguchi, N. Ban, H. Kawana, et al. 2017. Resveratrol attenuates triglyceride accumulation associated with upregulation of Sirt1 and lipoprotein lipase in 3T3-L1 adipocytes. Molecular Genetics and Metabolism Reports 12:44–50. doi: 10.1016/j.ymgmr.2017.05.003.
  • Imenshahidi, M., and H. Hosseinzadeh. 2019. Berberine and barberry (Berberis vulgaris): A clinical review. Phytotherapy Research: PTR 33 (3):504–23. doi: 10.1002/ptr.6252.
  • Imran, K. M., N. Rahman, D. Yoon, M. Jeon, B. T. Lee, and Y. S. Kim. 2017. Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1862 (10 Pt A):1110–20. doi: 10.1016/j.bbalip.2017.08.001.
  • Inoue, M., H. Tanabe, A. Matsumoto, M. Takagi, K. Umegaki, S. Amagaya, and J. Takahashi. 2012. Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor γ modulator in adipocytes and macrophages. Biochemical Pharmacology 84 (5):692–700. doi: 10.1016/j.bcp.2012.05.021.
  • Jaacks, L. M., S. Vandevijvere, A. Pan, C. J. McGowan, C. Wallace, F. Imamura, D. Mozaffarian, B. Swinburn, and M. Ezzati. 2019. The obesity transition: Stages of the global epidemic. The Lancet. Diabetes & Endocrinology 7 (3):231–40. doi: 10.1016/S2213-8587(19)30026-9.
  • Jamar, G., D. Estadella, and L. P. Pisani. 2017. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors (Oxford, England) 43 (4):507–16. doi: 10.1002/biof.1365.
  • Jang, H. J., S. D. Ridgeway, and J. A. Kim. 2013. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction. American Journal of Physiology. Endocrinology and Metabolism 305 (12):E1444–51. doi: 10.1152/ajpendo.00434.2013.
  • Jang, J., Y. Jung, S. J. Seo, S. M. Kim, Y. J. Shim, S. H. Cho, S. I. Chung, and Y. Yoon. 2017. Berberine activates AMPK to suppress proteolytic processing, nuclear translocation and target DNA binding of SREBP-1c in 3T3-L1 adipocytes. Molecular Medicine Reports 15 (6):4139–47. doi: 10.3892/mmr.2017.6513.
  • Jiang, D., D. Wang, X. Zhuang, Z. Wang, Y. Ni, S. Chen, and F. Sun. 2016. Berberine increases adipose triglyceride lipase in 3T3-L1 adipocytes through the AMPK pathway. Lipids in Health and Disease 15 (1):214. doi: 10.1186/s12944-016-0383-4.
  • Jimenez-Gomez, Y., J. A. Mattison, K. J. Pearson, A. Martin-Montalvo, H. H. Palacios, A. M. Sossong, T. M. Ward, C. M. Younts, K. Lewis, J. S. Allard, et al. 2013. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metabolism 18 (4):533–45. doi: 10.1016/j.cmet.2013.09.004.
  • Jin, T., Z. Song, J. Weng, and I. G. Fantus. 2018. Curcumin and other dietary polyphenols: Potential mechanisms of metabolic actions and therapy for diabetes and obesity. American Journal of Physiology. Endocrinology and Metabolism 314 (3):E201–5. doi: 10.1152/ajpendo.00285.2017.
  • Jung, U. J., Y. Y. Cho, and M. S. Choi. 2016. Apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients 8 (5): 305. doi: 10.3390/nu8050305.
  • Kang, J. H., C. S. Kim, I. S. Han, T. Kawada, and R. Yu. 2007. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Letters 581 (23):4389–96. doi: 10.1016/j.febslet.2007.07.082.
  • Kang, Q., W. X. Song, Q. Luo, N. Tang, J. Y. Luo, X. J. Luo, J. Chen, Y. Bi, B. C. He, J. K. Park, et al. 2009. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells and Development 18 (4):545–59. doi: 10.1089/scd.2008.0130.
  • Khan, M. I., J. H. Shin, T. S. Shin, M. Y. Kim, N. J. Cho, and J. D. Kim. 2018. Anthocyanins from Cornus kousa ethanolic extract attenuate obesity in association with anti-angiogenic activities in 3T3-L1 cells by down-regulating adipogeneses and lipogenesis. PLoS One 13 (12):e0208556. doi: 10.1371/journal.pone.0208556.
  • Kim, E. J., S. N. Jung, K. H. Son, S. R. Kim, T. Y. Ha, M. G. Park, I. G. Jo, J. G. Park, W. Choe, S. S. Kim, et al. 2007. Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Molecular Pharmacology 72 (1):62–72. doi: 10.1124/mol.107.034447.
  • Kim, M. A., K. Kang, H. J. Lee, M. Kim, C. Y. Kim, and C. W. Nho. 2014. Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sciences 101 (1–2):64–72. doi: 10.1016/j.lfs.2014.02.012.
  • Kim, M. H., J. S. Park, M. S. Seo, J. W. Jung, Y. S. Lee, and K. S. Kang. 2010. Genistein and daidzein repress adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via Wnt/β-catenin signalling or lipolysis. Cell Proliferation 43 (6):594–605. doi: 10.1111/j.1365-2184.2010.00709.x.
  • Knab, A. M., R. A. Shanely, F. X. Jin, M. D. Austin, W. Sha, and D. C. Nieman. 2011. Quercetin with vitamin C and niacin does not affect body mass or composition. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme 36 (3):331–8. doi: 10.1139/H11-015.
  • Lagouge, M., C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, et al. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127 (6):1109–22. doi: 10.1016/j.cell.2006.11.013.
  • Lee, B., M. Kwon, J. S. Choi, H. O. Jeong, H. Y. Chung, and H. R. Kim. 2015. Kaempferol isolated from nelumbo nucifera inhibits lipid accumulation and increases fatty acid oxidation signaling in adipocytes. Journal of Medicinal Food 18 (12):1363–70. doi: 10.1089/jmf.2015.3457.
  • Lee, J. E., H. Schmidt, B. Lai, and K. Ge. 2019. Transcriptional and epigenomic regulation of adipogenesis. Molecular and Cellular Biology 39 (11):e00601-18. doi: 10.1128/MCB.00601-18.
  • Lee, J. S., Y. J. Cha, K. H. Lee, and J. E. Yim. 2016. Onion peel extract reduces the percentage of body fat in overweight and obese subjects: A 12-week, randomized, double-blind, placebo-controlled study. Nutrition Research and Practice 10 (2):175–81. doi: 10.4162/nrp.2016.10.2.175.
  • Lee, S., K. I. Keirsey, R. Kirkland, Z. I. Grunewald, J. G. Fischer, and C. B. de La Serre. 2018. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. The Journal of Nutrition 148 (2):209–19. doi: 10.1093/jn/nxx027.
  • Leiherer, A., K. Stoemmer, A. Muendlein, C. H. Saely, E. Kinz, E. M. Brandtner, P. Fraunberger, and H. Drexel. 2016. Quercetin impacts expression of metabolism- and obesity-associated genes in SGBS adipocytes. Nutrients 8 (5):282. doi: 10.3390/nu8050282.
  • Leng, E., Y. Xiao, Z. Mo, Y. Li, Y. Zhang, X. Deng, M. Zhou, C. Zhou, Z. He, J. He, et al. 2018. Synergistic effect of phytochemicals on cholesterol metabolism and lipid accumulation in HepG2 cells. BMC Complementary and Alternative Medicine 18 (1):122. doi: 10.1186/s12906-018-2189-6.
  • Li, F., C. Gao, P. Yan, M. Zhang, Y. H. Wang, Y. Hu, X. Y. Wu, X. J. Wang, and J. Sheng. 2018. EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Frontiers in Pharmacology 9:1366. doi: 10.3389/fphar.2018.01366.
  • Li, L., Q. Dong, Y. F. Wang, Q. L. Feng, P. F. Zhou, X. Y. Ou, Q. R. Meng, T. C. He, and J. Y. Luo. 2015. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. International Journal of Molecular Medicine 35 (6):1641–50. doi: 10.3892/ijmm.2015.2172.
  • Li, Y., Y. Liu, Y. Tian, Y. Guo, C. Xue, and J. Wang. 2020. Comparison of different molecular forms of astaxanthin in inhibiting lipogenesis and its mechanism. Current Pharmaceutical Biotechnology. doi: 10.2174/1389201021666200626162301.
  • Liang, H., L. Xu, X. Zhao, K. Pan, Z. Yi, J. Bai, X. Qi, J. Xin, M. Li, K. Ouyang, et al. 2020. RNA-Seq analysis reveals the potential molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle. Journal of Animal Physiology and Animal Nutrition 104 (1):1–11. doi: 10.1111/jpn.13218.
  • Liu, M. H., Liu, H. M. J. H. Xie, Q. Xu, C. Pan, J. J. Wang, X. Wu, Sanabil, M. Z. Zheng, and J. S. Liu. 2017. Anti-obesity effects of zeaxanthin on 3T3-L1 preadipocyte and high fat induced obese mice. Food & Function 8 (9):3327–38. doi: 10.1039/c7fo00486a.
  • Liu, X., H. Zhao, Q. Jin, W. You, H. Cheng, Y. Liu, E. Song, G. Liu, X. Tan, X. Zhang, et al. 2018. Resveratrol induces apoptosis and inhibits adipogenesis by stimulating the SIRT1-AMPKα-FOXO1 signalling pathway in bovine intramuscular adipocytes. Molecular and Cellular Biochemistry 439 (1–2):213–23. doi: 10.1007/s11010-017-3149-z.
  • Lone, J., J. H. Choi, S. W. Kim, and J. W. Yun. 2016. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. The Journal of Nutritional Biochemistry 27:193–202. doi: 10.1016/j.jnutbio.2015.09.006.
  • Lorthongpanich, C., K. Thumanu, K. Tangkiettrakul, N. Jiamvoraphong, C. Laowtammathron, N. Damkham, Y. U-Pratya, and S. Issaragrisil. 2019. YAP as a key regulator of adipo-osteogenic differentiation in human MSCs. Stem Cell Research & Therapy 10 (1):402. doi: 10.1186/s13287-019-1494-4.
  • Luna-Vital, D., M. Weiss, and E. Gonzalez de Mejia. 2017. Anthocyanins from purple corn ameliorated tumor necrosis factor-alpha-induced inflammation and insulin resistance in 3T3-L1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation. Molecular Nutrition & Food Research 61 (12). doi: 10.1002/mnfr.201700362.
  • Mahmmoud, Y. A. 2008. Capsaicin stimulates uncoupled ATP hydrolysis by the sarcoplasmic reticulum calcium pump. The Journal of Biological Chemistry 283 (31):21418–26. doi: 10.1074/jbc.M803654200.
  • Mahmmoud, Y. A., and M. Gaster. 2012. Uncoupling of sarcoplasmic reticulum Ca2+-ATPase by N-arachidonoyl dopamine. Members of the endocannabinoid family as thermogenic drugs. British Journal of Pharmacology 166 (7):2060–9. doi: 10.1111/j.1476-5381.2012.01899.x.
  • Maithilikarpagaselvi, N., M. G. Sridhar, R. P. Swaminathan, R. Sripradha, and B. Badhe. 2016. Curcumin inhibits hyperlipidemia and hepatic fat accumulation in high-fructose-fed male Wistar rats. Pharmaceutical Biology 54 (12):2857–63. doi: 10.1080/13880209.2016.1187179.
  • Maurya, S. K., J. L. Herrera, S. K. Sahoo, F. C. G. Reis, R. B. Vega, D. P. Kelly, and M. Periasamy. 2018. Sarcolipin signaling promotes mitochondrial biogenesis and oxidative metabolism in skeletal muscle. Cell Reports 24 (11):2919–31. doi: 10.1016/j.celrep.2018.08.036.
  • Mendez-del Villar, M., M. Gonzalez-Ortiz, E. Martinez-Abundis, K. G. Perez-Rubio, and R. Lizarraga-Valdez. 2014. Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metabolic Syndrome and Related Disorders 12 (10):497–501. doi: 10.1089/met.2014.0082.
  • Mi, J., W. He, J. Lv, K. Zhuang, H. Huang, and S. Quan. 2019. Effect of berberine on the HPA-axis pathway and skeletal muscle GLUT4 in type 2 diabetes mellitus rats. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 12:1717–25. doi: 10.2147/DMSO.S211188.
  • Mi, Y., X. Liu, H. Tian, H. Liu, J. Li, G. Qi, and X. Liu. 2018. EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-α-triggered insulin resistance in adipocytes. Food & Function 9 (6):3374–86. doi: 10.1039/c8fo00167g.
  • Moon, H. S., C. S. Chung, H. G. Lee, T. G. Kim, Y. J. Choi, and C. S. Cho. 2007. Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity (Silver Spring, MD) 15 (11):2571–82. doi: 10.1038/oby.2007.309.
  • Mun, J. M., H. M. Ok, and O. Kwon. 2014. Corn gluten hydrolysate and capsaicin have complimentary actions on body weight reduction and lipid-related genes in diet-induced obese rats. Nutrition Research (New York, N.Y.) 34 (5):458–65. doi: 10.1016/j.nutres.2014.04.009.
  • Nettore, I. C., C. Rocca, G. Mancino, L. Albano, D. Amelio, F. Grande, F. Puoci, T. Pasqua, S. Desiderio, R. Mazza, et al. 2019. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. The Journal of Nutritional Biochemistry 69:151–62. doi: 10.1016/j.jnutbio.2019.03.019.
  • Ono, M., and K. Fujimori. 2011. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. Journal of Agricultural and Food Chemistry 59 (24):13346–52. doi: 10.1021/jf203490a.
  • Pan, M. H., G. Yang, S. Li, M. Y. Li, M. L. Tsai, J. C. Wu, V. Badmaev, C. T. Ho, and C. S. Lai. 2017. Combination of citrus polymethoxyflavones, green tea polyphenols, and Lychee extracts suppresses obesity and hepatic steatosis in high-fat diet induced obese mice. Molecular Nutrition & Food Research 61 (11). doi: 10.1002/mnfr.201601104.
  • Paraiso, A. F., J. N. Sousa, J. M. O. Andrade, E. S. Mangabeira, D. F. Lelis, A. M. B. de Paula, A. Martins, W. J. N. Lima, A. L. S. Guimaraes, G. A. Melo, et al. 2019. Oral gallic acid improves metabolic profile by modulating SIRT1 expression in obese mice brown adipose tissue: A molecular and bioinformatic approach. Life Sciences 237:116914. doi: 10.1016/j.lfs.2019.116914.
  • Park, H. J., J. Y. Yang, S. Ambati, M. A. Della-Fera, D. B. Hausman, S. Rayalam, and C. A. Baile. 2008. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. Journal of Medicinal Food 11 (4):773–83. doi: 10.1089/jmf.2008.0077.
  • Periasamy, M., J. L. Herrera, and F. C. G. Reis. 2017. Skeletal muscle thermogenesis and its role in whole body energy metabolism. Diabetes & Metabolism Journal 41 (5):327–36. doi: 10.4093/dmj.2017.41.5.327.
  • Periasamy, M., S. K. Maurya, S. K. Sahoo, S. Singh, S. K. Sahoo, F. C. G. Reis, and N. C. Bal. 2017. Role of SERCA pump in muscle thermogenesis and metabolism. Comprehensive Physiology 7 (3):879–90. doi: 10.1002/cphy.c160030.
  • Rahman, N., M. Jeon, H. Y. Song, and Y. S. Kim. 2016. Cryptotanshinone, a compound of Salvia miltiorrhiza inhibits pre-adipocytes differentiation by regulation of adipogenesis-related genes expression via STAT3 signaling. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 23 (1):58–67. doi: 10.1016/j.phymed.2015.12.004.
  • Rajakumari, S., J. Wu, J. Ishibashi, H. W. Lim, A. H. Giang, K. J. Won, R. R. Reed, and P. Seale. 2013. EBF2 determines and maintains brown adipocyte identity. Cell Metabolism 17 (4):562–74. doi: 10.1016/j.cmet.2013.01.015.
  • Rosen, E. D., and B. M. Spiegelman. 2014. What we talk about when we talk about fat. Cell 156 (1–2):20–44. doi: 10.1016/j.cell.2013.12.012.
  • Rowland, L. A., N. C. Bal, and M. Periasamy. 2015. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biological Reviews of the Cambridge Philosophical Society 90 (4):1279–97. doi: 10.1111/brv.12157.
  • Rui, L. 2017. Brown and Beige adipose tissues in health and disease. Comprehensive Physiology 7 (4):1281–306. doi: 10.1002/cphy.c170001.
  • Rustenbeck, I., V. Lier-Glaubitz, M. Willenborg, F. Eggert, U. Engelhardt, and A. Jorns. 2014. Effect of chronic coffee consumption on weight gain and glycaemia in a mouse model of obesity and type 2 diabetes. Nutrition & Diabetes 4 (6):e123. doi: 10.1038/nutd.2014.19.
  • Santos, R. M., and D. R. Lima. 2016. Coffee consumption, obesity and type 2 diabetes: A mini-review. European Journal of Nutrition 55 (4):1345–58. doi: 10.1007/s00394-016-1206-0.
  • Saponaro, C., M. Gaggini, F. Carli, and A. Gastaldelli. 2015. The subtle balance between lipolysis and lipogenesis: A critical point in metabolic homeostasis. Nutrients 7 (11):9453–74. doi: 10.3390/nu7115475.
  • Seale, P. 2015. Transcriptional regulatory circuits controlling brown fat development and activation. Diabetes 64 (7):2369–75. doi: 10.2337/db15-0203.
  • Seale, P., S. Kajimura, W. Yang, S. Chin, L. M. Rohas, M. Uldry, G. Tavernier, D. Langin, and B. M. Spiegelman. 2007. Transcriptional control of brown fat determination by PRDM16. Cell Metabolism 6 (1):38–54. doi: 10.1016/j.cmet.2007.06.001.
  • Seo, M. J., Y. J. Lee, J. H. Hwang, K. J. Kim, and B. Y. Lee. 2015. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. The Journal of Nutritional Biochemistry 26 (11):1308–16. doi: 10.1016/j.jnutbio.2015.06.005.
  • Seo, M. J., Y. J. Seo, C. H. Pan, O. H. Lee, K. J. Kim, and B. Y. Lee. 2016. Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytotherapy Research: PTR 30 (11):1802–8. doi: 10.1002/ptr.5683.
  • Seo, Y. S., O. H. Kang, S. B. Kim, S. H. Mun, D. H. Kang, D. W. Yang, J. G. Choi, Y. M. Lee, D. K. Kang, H. S. Lee, et al. 2015. Quercetin prevents adipogenesis by regulation of transcriptional factors and lipases in OP9 cells. International Journal of Molecular Medicine 35 (6):1779–85. doi: 10.3892/ijmm.2015.2185.
  • Setayesh, T., A. Nersesyan, M. Misik, R. Noorizadeh, E. Haslinger, T. Javaheri, E. Lang, M. Grusch, W. Huber, A. Haslberger, et al. 2019. Gallic acid, a common dietary phenolic protects against high fat diet induced DNA damage. European Journal of Nutrition 58 (6):2315–26. doi: 10.1007/s00394-018-1782-2.
  • Shang, A., R. Y. Gan, X. Y. Xu, Q. Q. Mao, P. Z. Zhang, and H. B. Li. 2020. Effects and mechanisms of edible and medicinal plants on obesity: An updated review. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2020.1769548.
  • Shao, M. L., J. Ishibashi, C. M. Kusminski, Q. A. Wang, C. Hepler, L. Vishvanath, K. A. MacPherson, S. B. Spurgin, K. Sun, W. L. Holland, et al. 2016. Zfp423 maintains white adipocyte identity through suppression of the Beige cell thermogenic gene program. Cell Metabolism 23 (6):1167–84. doi: 10.1016/j.cmet.2016.04.023.
  • Shen, W., M. Y. Shen, X. Zhao, H. B. Zhu, Y. H. Yang, S. G. Lu, Y. L. Tan, G. Li, M. Li, J. Wang, et al. 2017. Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila. Frontiers in Microbiology 8:1–10. doi: 10.3389/fmicb.2017.00272.
  • Song, Z., X. Revelo, W. Shao, L. Tian, K. Zeng, H. Lei, H. S. Sun, M. Woo, D. Winer, and T. Jin. 2018. Dietary curcumin intervention targets mouse white adipose tissue inflammation and brown adipose tissue UCP1 expression. Obesity (Silver Spring, MD) 26 (3):547–58. doi: 10.1002/oby.22110.
  • Sousa, J. N., A. F. Paraiso, J. M. O. Andrade, D. F. Lelis, E. M. Santos, J. P. Lima, R. S. Monteiro-Junior, M. D'Angelo, A. M. B. de Paula, A. L. S. Guimaraes, et al. 2020. Oral gallic acid improve liver steatosis and metabolism modulating hepatic lipogenic markers in obese mice. Experimental Gerontology 134:110881. doi: 10.1016/j.exger.2020.110881.
  • Steensels, S., and B. A. Ersoy. 2019. Fatty acid activation in thermogenic adipose tissue. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids 1864 (1):79–90. doi: 10.1016/j.bbalip.2018.05.008.
  • Sturla, L., E. Mannino, S. Scarfi, S. Bruzzone, M. Magnone, G. Sociali, V. Booz, L. Guida, T. Vigliarolo, C. Fresia, et al. 2017. Abscisic acid enhances glucose disposal and induces brown fat activity in adipocytes in vitro and in vivo. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids 1862 (2):131–44. doi: 10.1016/j.bbalip.2016.11.005.
  • Su, T., C. H. Huang, C. F. Yang, T. Jiang, J. F. Su, M. T. Chen, S. Fatima, R. H. Gong, X. J. Hu, Z. X. Bian, et al. 2020. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity. Pharmacological Research 152:104586. doi: 10.1016/j.phrs.2019.104586.
  • Szkudelska, K., L. Nogowski, and T. Szkudelski. 2009. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. The Journal of Steroid Biochemistry and Molecular Biology 113 (1–2):17–24. doi: 10.1016/j.jsbmb.2008.11.001.
  • Tang, W., and Y. Y. Fan. 2019. SIRT6 as a potential target for treating insulin resistance. Life Sciences 231:116558. doi: 10.1016/j.lfs.2019.116558.
  • Timmers, S., E. Konings, L. Bilet, R. H. Houtkooper, T. van de Weijer, G. H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, et al. 2011. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metabolism 14 (5):612–22. doi: 10.1016/j.cmet.2011.10.002.
  • Torres-Villarreal, D., A. Camacho, H. Castro, R. Ortiz-Lopez, and A. L. de la Garza. 2019. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. Journal of Physiology and Biochemistry 75 (1):83–8. doi: 10.1007/s13105-018-0659-4.
  • Unno, T., M. Sakuma, and S. Mitsuhashi. 2014. Effect of dietary supplementation of (-)-epigallocatechin gallate on gut microbiota and biomarkers of colonic fermentation in rats. Journal of Nutritional Science and Vitaminology 60 (3):213–9. doi: 10.3177/jnsv.60.213.
  • Varshney, R., R. Varshney, R. Mishra, S. Gupta, D. Sircar, and P. Roy. 2018. Kaempferol alleviates palmitic acid-induced lipid stores, endoplasmic reticulum stress and pancreatic β-cell dysfunction through AMPK/mTOR-mediated lipophagy. The Journal of Nutritional Biochemistry 57:212–27. doi: 10.1016/j.jnutbio.2018.02.017.
  • Wang, B., Q. Yang, C. L. Harris, M. L. Nelson, J. R. Busboom, M. J. Zhu, and M. Du. 2016. Nutrigenomic regulation of adipose tissue development - role of retinoic acid: A review. Meat Science 120:100–6. doi: 10.1016/j.meatsci.2016.04.003.
  • Wang, H., X. Mao, and M. Du. 2019. Phytanic acid activates PPARα to promote beige adipogenic differentiation of preadipocytes. The Journal of Nutritional Biochemistry 67:201–11. doi: 10.1016/j.jnutbio.2019.02.013.
  • Wang, J., S. Liu, H. Wang, S. Xiao, C. Li, Y. Li, and B. Liu. 2019. Xanthophyllomyces dendrorhous-derived astaxanthin regulates lipid metabolism and gut microbiota in obese mice induced by a high-fat diet. Marine Drugs 17 (6):337. doi: 10.3390/md17060337.
  • Wang, L., B. Zhang, F. Huang, B. Liu, and Y. Xie. 2016. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance. Journal of Lipid Research 57 (7):1243–55. doi: 10.1194/jlr.M067397.
  • Wang, L. J., X. Ye, Y. Y. Hua, and Y. X. Song. 2018. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 105:121–9. doi: 10.1016/j.biopha.2018.05.110.
  • Wang, S., X. Liang, Q. Yang, X. Fu, C. J. Rogers, M. Zhu, B. Rodgers, Q. Jiang, M. V. Dodson, and M. Du. 2015. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International Journal of Obesity (2005) 39 (6):967–76. doi: 10.1038/ijo.2015.23.
  • Wang, S. B., X. W. Liang, Q. Y. Yang, X. Fu, M. J. Zhu, B. D. Rodgers, Q. Y. Jiang, M. V. Dodson, and M. Du. 2017. Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) alpha 1 in mice fed high-fat diet. Molecular Nutrition & Food Research 61 (4). doi: 10.1002/mnfr.201600746.
  • Wang, T. Q., Q. M. Wu, and T. Q. Zhao. 2020. Preventive effects of kaempferol on high-fat diet-induced obesity complications in C57BL/6 mice. Biomed Research International. doi: 10.1155/2020/4532482.
  • Wang, Y. W., C. Tang, Y. Tang, H. Y. Yin, and X. Liu. 2020. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food & Nutrition Research 64. doi: 10.29219/fnr.v64.3525.
  • Wolfram, S., Y. Wang, and F. Thielecke. 2006. Anti-obesity effects of green tea: From bedside to bench. Molecular Nutrition & Food Research 50 (2):176–87. doi: 10.1002/mnfr.200500102.
  • Wu, L. Y., C. W. Chen, L. K. Chen, H. Y. Chou, C. L. Chang, and C. C. Juan. 2019. Curcumin attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation. Nutrients 11 (10):2307. doi: 10.3390/nu11102307.
  • Wu, T., Y. Gao, X. Guo, M. Zhang, and L. Gong. 2018. Blackberry and blueberry anthocyanin supplementation counteract high-fat-diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure. Oxidative Medicine and Cellular Longevity 2018:4051232. doi: 10.1155/2018/4051232.
  • Wu, T., Z. Jiang, J. Yin, H. Long, and X. Zheng. 2016. Anti-obesity effects of artificial planting blueberry (Vaccinium ashei) anthocyanin in high-fat diet-treated mice. International Journal of Food Sciences and Nutrition 67 (3):257–64. doi: 10.3109/09637486.2016.1146235.
  • Wu, T., J. Yin, G. Zhang, H. Long, and X. Zheng. 2016. Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice. Molecular Nutrition & Food Research 60 (3):687–94. doi: 10.1002/mnfr.201500734.
  • Xu, J. H., X. Z. Liu, W. Pan, and D. J. Zou. 2017. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels. Molecular Medicine Reports 15 (5):2765–87. doi: 10.3892/mmr.2017.6321.
  • Yang, Y. Q., F. L. Liu, R. S. Lu, and J. L. Jia. 2019. Berberine inhibits adipogenesis in porcine adipocytes via AMP-activated protein kinase-dependent and -independent mechanisms. Lipids 54 (11–12):667–78. doi: 10.1002/lipd.12200.
  • Yang, Y. Q., R. S. Lu, F. F. Gao, J. Zhang, and F. L. Liu. 2020. Berberine induces lipolysis in porcine adipocytes by activating the AMP‑activated protein kinase pathway. Molecular Medicine Reports 21 (6):2603–14. doi: 10.3892/mmr.2020.11070.
  • Yang, Z., M. Z. Zhu, Y. B. Zhang, B. B. Wen, H. M. An, X. C. Ou, Y. F. Xiong, H. Y. Lin, Z. H. Liu, and J. A. Huang. 2019. Coadministration of epigallocatechin-3-gallate (EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats. Phytotherapy Research: PTR 33 (4):1019–26. doi: 10.1002/ptr.6295.
  • Yoshinari, O., H. Sato, and K. Igarashi. 2009. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Bioscience, Biotechnology, and Biochemistry 73 (5):1033–41. doi: 10.1271/bbb.80805.
  • Zang, Y. Q., L. P. Zhang, K. Igarashi, and C. Q. Yu. 2015. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food & Function 6 (3):834–41. doi: 10.1039/c4fo00844h.
  • Zhang, G., Q. Sun, and C. Liu. 2016. Influencing factors of thermogenic adipose tissue activity. Frontiers in Physiology 7:29. doi: 10.3389/fphys.2016.00029.
  • Zhang, X., Y. F. Zhao, J. Xu, Z. S. Xue, M. H. Zhang, X. Y. Pang, X. J. Zhang, and L. P. Zhao. 2015. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Scientific Reports 5:14405. doi: 10.1038/srep14405.
  • Zhang, Z. G., H. Z. Zhang, B. Li, X. J. Meng, J. Q. Wang, Y. F. Zhang, S. S. Yao, Q. Y. Ma, L. N. Jin, J. Yang, et al. 2014. Berberine activates thermogenesis in white and brown adipose tissue. Nature Communications 5 (1):5493. doi: 10.1038/ncomms6493.
  • Zhou, J., L. Mao, P. Xu, and Y. Wang. 2018. Effects of (-)-epigallocatechin gallate (EGCG) on energy expenditure and microglia-mediated hypothalamic inflammation in mice fed a high-fat diet. Nutrients 10 (11):1681. doi: 10.3390/nu10111681.
  • Zhu, X., J. Yang, W. Zhu, X. Yin, B. Yang, Y. Wei, and X. Guo. 2018. Combination of berberine with resveratrol improves the lipid-lowering efficacy. International Journal of Molecular Sciences. 19 (12):3903. doi: 10.3390/ijms19123903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.