4,523
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Gut microbiota and aging

ORCID Icon, , , &

References

  • Afolayan, A. O., L. A. Adebusoye, E. O. Cadmus, and F. A. Ayeni. 2020. Insights into the gut microbiota of Nigerian elderly with type 2 diabetes and non-diabetic elderly persons. Heliyon 6 (5):e03971. doi: 10.1016/j.heliyon.2020.e03971.
  • Ahlawat, S., Asha, and K. K. Sharma. 2020. Gut-organ axis: A microbial outreach and networking. Letters in Applied Microbiology. doi: 10.1111/lam.13333.
  • Ahmadi, S., S. Wang, R. Nagpal, B. Wang, S. Jain, A. Razazan, S. P. Mishra, X. Zhu, Z. Wang, K. Kavanagh, et al. 2020. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight 5 (9):e132055. doi: 10.1172/jci.insight.132055.
  • Aho, V. T. E., P. a B. Pereira, S. Voutilainen, L. Paulin, E. Pekkonen, P. Auvinen, and F. Scheperjans. 2019. Gut microbiota in Parkinson's disease: Temporal stability and relations to disease progression. EBioMedicine 44:691–707. doi: 10.1016/j.ebiom.2019.05.064.
  • Al Nabhani, Z., S. Dulauroy, R. Marques, C. Cousu, S. Al Bounny, F. Dejardin, T. Sparwasser, M. Berard, N. Cerf-Bensussan, and G. Eberl. 2019. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50 (5):1276–88.e5. doi: 10.1016/j.immuni.2019.02.014.
  • Alkasir, R., J. Li, X. Li, M. Jin, and B. Zhu. 2017. Human gut microbiota: The links with dementia development. Protein & Cell 8 (2):90–102. doi: 10.1007/s13238-016-0338-6.
  • Alzheimer's Association. 2019. 2019 Alzheimer's disease facts and figures. Alzheimers Dement 15 (3):321–87. doi: 10.1016/j.jalz.2019.01.010.
  • Amsterdam, D., and B. E. Ostrov. 2018. The impact of the microbiome on immunosenescence. Immunological Investigations 47 (8):801–11. doi: 10.1080/08820139.2018.1537570.
  • Arboleya, S., B. Sanchez, G. Solis, N. Fernandez, M. Suarez, A. M. Hernandez-Barranco, C. Milani, A. Margolles, C. G. De Los Reyes-Gavilan, M. Ventura, et al. 2016. Impact of prematurity and perinatal antibiotics on the developing intestinal microbiota: A functional inference study. International Journal of Molecular Sciences 17 (5):649. doi: 10.3390/ijms17050649.
  • Ardissone, A. N., D. M. De La Cruz, A. G. Davis-Richardson, K. T. Rechcigl, N. Li, J. C. Drew, R. Murgas-Torrazza, R. Sharma, M. L. Hudak, E. W. Triplett, et al. 2014. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One 9 (3):e90784. doi: 10.1371/journal.pone.0090784.
  • Arumugam, M., J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J. M. Batto, et al. 2011. Enterotypes of the human gut microbiome. Nature 473 (7346):174–80. doi: 10.1038/nature09944.
  • Asempa, T. E., and D. P. Nicolau. 2017. Clostridium difficile infection in the elderly: An update on management. Clinical Interventions in Aging 12:1799–809. doi: 10.2147/CIA.S149089.
  • Avershina, E., O. Storro, T. Oien, R. Johnsen, P. Pope, and K. Rudi. 2014. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiology Ecology 87 (1):280–90. doi: 10.1111/1574-6941.12223.
  • Azad, M. B., T. Konya, H. Maughan, D. S. Guttman, C. J. Field, R. S. Chari, M. R. Sears, A. B. Becker, J. A. Scott, A. L. Kozyrskyj, et al. 2013. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ: Canadian Medical Association Journal = journal de l'Association medicale canadienne 185 (5):385–94. doi: 10.1503/cmaj.121189.
  • Backhed, F., J. Roswall, Y. Peng, Q. Feng, H. Jia, P. Kovatcheva-Datchary, Y. Li, Y. Xia, H. Xie, H. Zhong, et al. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host & Microbe 17 (5):690–703. doi: 10.1016/j.chom.2015.04.004.
  • Baranowski, B. J., D. M. Marko, R. K. Fenech, A. J. Yang, and R. E. K. Macpherson. 2020. Healthy brain, healthy life: A review of diet and exercise interventions to promote brain health and reduce Alzheimer's disease risk. Applied Physiology, Nutrition, and Metabolism = Physiologie appliquee, nutrition et metabolisme 45 (10):1055–65. doi: 10.1139/apnm-2019-0910.
  • Barcena, C., R. Valdes-Mas, P. Mayoral, C. Garabaya, S. Durand, F. Rodriguez, M. T. Fernandez-Garcia, N. Salazar, A. M. Nogacka, N. Garatachea, et al. 2019. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine 25 (8):1234–42. doi: 10.1038/s41591-019-0504-5.
  • Barnes, M. J., and F. Powrie. 2011. Immunology. The gut's Clostridium cocktail. Science (New York, N.Y.) 331 (6015):289–90. doi: 10.1126/science.1201291.
  • Barrea, L., G. Pugliese, D. Laudisio, A. Colao, S. Savastano, and G. Muscogiuri. 2020. Mediterranean diet as medical prescription in menopausal women with obesity: A practical guide for nutritionists. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2020.1755220.
  • Bastin, M., and F. Andreelli. 2020. The gut microbiota and diabetic cardiomyopathy in humans. Diabetes & Metabolism 46 (3):197–202. doi: 10.1016/j.diabet.2019.10.003.
  • Bauernfeind, F., S. Niepmann, P. A. Knolle, and V. Hornung. 2016. Aging-associated TNF production primes Inflammasome activation and NLRP3-related metabolic disturbances. Journal of Immunology (Baltimore, Md.: 1950) 197 (7):2900–8. doi: 10.4049/jimmunol.1501336.
  • Beausoleil, M., N. Fortier, S. Guenette, A. L'ecuyer, M. Savoie, M. Franco, J. Lachaine, and K. Weiss. 2007. Effect of a fermented milk combining Lactobacillus acidophilus Cl1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: A randomized, double-blind, placebo-controlled trial. Canadian Journal of Gastroenterology = Journal Canadien de Gastroenterologie 21 (11):732–6. doi: 10.1155/2007/720205.
  • Benítez-Páez, A., M. Olivares, H. Szajewska, M. Pieścik-Lech, I. Polanco, G. Castillejo, M. Nuñez, C. Ribes-Koninckx, I. R. Korponay-Szabó, S. Koletzko, et al. 2020. Breast-milk microbiota linked to celiac disease development in children: A pilot study from the prevent CD cohort. Frontiers in Microbiology 11:1335. doi: 10.3389/fmicb.2020.01335.
  • Biagi, E., M. Candela, S. Turroni, P. Garagnani, C. Franceschi, and P. Brigidi. 2013. Ageing and gut microbes: Perspectives for health maintenance and longevity. Pharmacological Research 69 (1):11–20. doi: 10.1016/j.phrs.2012.10.005.
  • Biagi, E., C. Franceschi, S. Rampelli, M. Severgnini, R. Ostan, S. Turroni, C. Consolandi, S. Quercia, M. Scurti, D. Monti, et al. 2016. Gut microbiota and extreme longevity. Current Biology: CB 26 (11):1480–5. doi: 10.1016/j.cub.2016.04.016.
  • Biagi, E., L. Nylund, M. Candela, R. Ostan, L. Bucci, E. Pini, J. Nikkila, D. Monti, R. Satokari, C. Franceschi, et al. 2010. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5 (5):e10667. doi: 10.1371/journal.pone.0010667.
  • Bode, L. 2012. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22 (9):1147–62. doi: 10.1093/glycob/cws074.
  • Bokulich, N. A., J. Chung, T. Battaglia, N. Henderson, M. Jay, H. Li, A. D. Lieber, F. Wu, G. I. Perez-Perez, Y. Chen, et al. 2016. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8 (343):343ra382. doi: 10.1126/scitranslmed.aad7121.
  • Bonciani, D., A. Verdelli, V. Bonciolini, A. D'errico, E. Antiga, P. Fabbri, and M. Caproni. 2012. Dermatitis herpetiformis: From the genetics to the development of skin lesions. Clinical & Developmental Immunology 2012:239691. doi: 10.1155/2012/239691.
  • Bonte, F., D. Girard, J. C. Archambault, and A. Desmouliere. 2019. Skin changes during ageing. Sub-cellular Biochemistry 91:249–80. doi: 10.1007/978-981-13-3681-2_10.
  • Boursier, J., O. Mueller, M. Barret, M. Machado, L. Fizanne, F. Araujo-Perez, C. D. Guy, P. C. Seed, J. F. Rawls, L. A. David, et al. 2016. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology (Baltimore, Md.) 63 (3):764–75. doi: 10.1002/hep.28356.
  • Britton, R. A., R. Irwin, D. Quach, L. Schaefer, J. Zhang, T. Lee, N. Parameswaran, and L. R. Mccabe. 2014. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. Journal of Cellular Physiology 229 (11):1822–30. doi: 10.1002/jcp.24636.
  • Brook, I. 1996. Veillonella infections in children. Journal of Clinical Microbiology 34 (5):1283–5. doi: 10.1128/JCM.34.5.1283-1285.1996.
  • Brooks-Wilson, A. R. 2013. Genetics of healthy aging and longevity. Human Genetics 132 (12):1323–38. doi: 10.1007/s00439-013-1342-z.
  • Cantley, M. D., D. P. Fairlie, P. M. Bartold, K. D. Rainsford, G. T. Le, A. J. Lucke, C. A. Holding, and D. R. Haynes. 2011. Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro. Journal of Cellular Physiology 226 (12):3233–41. doi: 10.1002/jcp.22684.
  • Caporaso, J. G., C. L. Lauber, E. K. Costello, D. Berg-Lyons, A. Gonzalez, J. Stombaugh, D. Knights, P. Gajer, J. Ravel, N. Fierer, et al. 2011. Moving pictures of the human microbiome. Genome Biology 12 (5):R50. doi: 10.1186/gb-2011-12-5-r50.
  • Cariello, M., A. Contursi, R. M. Gadaleta, E. Piccinin, S. De Santis, M. Piglionica, A. F. Spaziante, C. Sabba, G. Villani, and A. Moschetta. 2020. Extra-virgin olive oil from apulian cultivars and intestinal inflammation. Nutrients 12 (4):1084. doi: 10.3390/nu12041084.
  • Castaneda-Delgado, J. E., I. Frausto-Lujan, I. Gonzalez-Curiel, A. Montoya-Rosales, C. J. Serrano, F. Torres-Juarez, J. A. Enciso-Moreno, and B. Rivas-Santiago. 2017. Differences in cytokine production during aging and its relationship with antimicrobial peptides production. Immunological Investigations 46 (1):48–58. doi: 10.1080/08820139.2016.1212873.
  • Cattaneo, A., N. Cattane, S. Galluzzi, S. Provasi, N. Lopizzo, C. Festari, C. Ferrari, U. P. Guerra, B. Paghera, C. Muscio, et al. 2017. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging 49:60–8. doi: 10.1016/j.neurobiolaging.2016.08.019.
  • Celaj, S., M. W. Gleeson, J. Deng, G. A. O'toole, T. H. Hampton, M. F. Toft, H. G. Morrison, M. L. Sogin, J. Putra, A. A. Suriawinata, et al. 2014. The microbiota regulates susceptibility to Fas-mediated acute hepatic injury. Laboratory Investigation; a Journal of Technical Methods and Pathology 94 (9):938–49. doi: 10.1038/labinvest.2014.93.
  • Chaari, A. 2020. Inhibition of human islet amyloid polypeptide aggregation and cellular toxicity by oleuropein and derivatives from olive oil. International Journal of Biological Macromolecules 162:284–300. doi: 10.1016/j.ijbiomac.2020.06.170.
  • Chen, C. N., Y. H. Liao, S. C. Tsai, and L. V. Thompson. 2019. Age-dependent effects of caloric restriction on mTOR and ubiquitin-proteasome pathways in skeletal muscles. Geroscience 41 (6):871–80. doi: 10.1007/s11357-019-00109-8.
  • Chen, M. L., K. Takeda, and M. S. Sundrud. 2019. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunology 12 (4):851–61. doi: 10.1038/s41385-019-0162-4.
  • Chen, W., F. Liu, Z. Ling, X. Tong, and C. Xiang. 2012. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7 (6):e39743. doi: 10.1371/journal.pone.0039743.
  • Chen, W., S. Zhang, J. Wu, T. Ye, S. Wang, P. Wang, and D. Xing. 2020. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clinica Chimica Acta 507:236–41. doi: 10.1016/j.cca.2020.04.037.
  • Chen, Y., S. Zhang, B. Zeng, J. Zhao, M. Yang, M. Zhang, Y. Li, Q. Ni, D. Wu, and Y. Li. 2020. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging 12 (6):4778–93. doi: 10.18632/aging.102872.
  • Cho, S. Y., J. Kim, J. H. Lee, J. H. Sim, D. H. Cho, I. H. Bae, H. Lee, M. A. Seol, H. M. Shin, T. J. Kim, et al. 2016. Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice. Scientific Reports 6:39026. doi: 10.1038/srep39026.
  • Claesson, M. J., S. Cusack, O. O'sullivan, R. Greene-Diniz, H. De Weerd, E. Flannery, J. R. Marchesi, D. Falush, T. Dinan, G. Fitzgerald, et al. 2011. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America 108 (Supplement_1):4586–91. doi: 10.1073/pnas.1000097107.
  • Claesson, M. J., I. B. Jeffery, S. Conde, S. E. Power, E. M. O'connor, S. Cusack, H. M. Harris, M. Coakley, B. Lakshminarayanan, O. O'sullivan, et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488 (7410):178–84. doi: 10.1038/nature11319.
  • Clark, R. I., A. Salazar, R. Yamada, S. Fitz-Gibbon, M. Morselli, J. Alcaraz, A. Rana, M. Rera, M. Pellegrini, W. W. Ja, et al. 2015. Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality. Cell Reports 12 (10):1656–67. doi: 10.1016/j.celrep.2015.08.004.
  • Clements, S. J., and S. R. Carding. 2018. Diet, the intestinal microbiota, and immune health in aging. Critical Reviews in Food Science and Nutrition 58 (4):651–61. doi: 10.1080/10408398.2016.1211086.
  • Collado, M. C., S. Rautava, J. Aakko, E. Isolauri, and S. Salminen. 2016. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Reports 6:23129. doi: 10.1038/srep23129.
  • Collino, S., I. Montoliu, F. P. Martin, M. Scherer, D. Mari, S. Salvioli, L. Bucci, R. Ostan, D. Monti, E. Biagi, et al. 2013. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8 (3):e56564. doi: 10.1371/journal.pone.0056564.
  • Cong, X., W. Xu, S. Janton, W. A. Henderson, A. Matson, J. M. Mcgrath, K. Maas, and J. Graf. 2016. Gut microbiome developmental patterns in early life of preterm infants: Impacts of feeding and gender. PLoS One 11 (4):e0152751. doi: 10.1371/journal.pone.0152751.
  • Corina, A., M. B. Abrudan, D. Nikolic, A. F. Cӑtoi, R. Chianetta, G. Castellino, R. Citarrella, A. P. Stoian, P. Pérez-Martínez, and M. Rizzo. 2019. Effects of aging and diet on cardioprotection and cardiometabolic risk markers. Current Pharmaceutical Design 25 (35):3704–14. doi: 10.2174/1381612825666191105111232.
  • Costea, P. I., F. Hildebrand, M. Arumugam, F. Backhed, M. J. Blaser, F. D. Bushman, W. M. De Vos, S. D. Ehrlich, C. M. Fraser, M. Hattori, et al. 2018. Enterotypes in the landscape of gut microbial community composition. Nature Microbiology 3 (1):8–16. doi: 10.1038/s41564-017-0072-8.
  • Craven, L., A. Rahman, S. Nair Parvathy, M. Beaton, J. Silverman, K. Qumosani, I. Hramiak, R. Hegele, T. Joy, J. Meddings, et al. 2020. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: A randomized control trial. The American Journal of Gastroenterology 115 (7):1055–65. doi: 10.14309/ajg.0000000000000661.
  • Cryan, J. F., K. J. O'riordan, C. S. M. Cowan, K. V. Sandhu, T. F. S. Bastiaanssen, M. Boehme, M. G. Codagnone, S. Cussotto, C. Fulling, A. V. Golubeva, et al. 2019. The microbiota-gut-brain axis. Physiological Reviews 99 (4):1877–2013. doi: 10.1152/physrev.00018.2018.
  • Dato, S., G. Rose, P. Crocco, D. Monti, P. Garagnani, C. Franceschi, and G. Passarino. 2017. The genetics of human longevity: An intricacy of genes, environment, culture and microbiome. Mechanisms of Ageing and Development 165 (Pt B):147–55. doi: 10.1016/j.mad.2017.03.011.
  • De Sire, R., G. Rizzatti, F. Ingravalle, M. Pizzoferrato, V. Petito, L. Lopetuso, C. Graziani, A. De Sire, M. C. Mentella, M. C. Mele, et al. 2018. Skeletal muscle-gut axis: Emerging mechanisms of sarcopenia for intestinal and extra intestinal diseases. Minerva Gastroenterologica e Dietologica 64 (4):351–62. doi: 10.23736/S1121-421x.18.02511-4.
  • Dehoux, P., J. C. Marvaud, A. Abouelleil, A. M. Earl, T. Lambert, and C. Dauga. 2016. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BMC Genomics 17 (1):819. doi: 10.1186/s12864-016-3152-x.
  • Dejong, E. N., M. G. Surette, and D. M. E. Bowdish. 2020. The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence. Cell Host & Microbe 28 (2):180–9. doi: 10.1016/j.chom.2020.07.013.
  • Derrien, M., A. S. Alvarez, and W. M. De Vos. 2019. The gut microbiota in the first decade of life. Trends in Microbiology 27 (12):997–1010. doi: 10.1016/j.tim.2019.08.001.
  • Dhouafli, Z., K. Cuanalo-Contreras, E. A. Hayouni, C. E. Mays, C. Soto, and I. Moreno-Gonzalez. 2018. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cellular and Molecular Life Sciences: CMLS 75 (19):3521–38. doi: 10.1007/s00018-018-2872-2.
  • Di Serio, M. G., L. Di Giacinto, G. Di Loreto, L. Giansante, M. Pellegrino, R. Vito, and E. Perri. 2016. Chemical and sensory characteristics of Italian virgin olive oils from Grossa di Gerace cv. European Journal of Lipid Science and Technology 118 (2):288–98. doi: 10.1002/ejlt.201400622.
  • Differding, M. K., S. E. Benjamin-Neelon, C. Hoyo, T. Ostbye, and N. T. Mueller. 2020. Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life. BMC Microbiology 20 (1):56. doi: 10.1186/s12866-020-01723-9.
  • Dinan, T. G., C. Stanton, and J. F. Cryan. 2013. Psychobiotics: A novel class of psychotropic. Biological Psychiatry 74 (10):720–6. doi: 10.1016/j.biopsych.2013.05.001.
  • Dominguez-Bello, M. G., E. K. Costello, M. Contreras, M. Magris, G. Hidalgo, N. Fierer, and R. Knight. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America 107 (26):11971–5. doi: 10.1073/pnas.1002601107.
  • Dominguez-Bello, M. G., K. M. De Jesus-Laboy, N. Shen, L. M. Cox, A. Amir, A. Gonzalez, N. A. Bokulich, S. J. Song, M. Hoashi, J. I. Rivera-Vinas, et al. 2016. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature Medicine 22 (3):250–3. doi: 10.1038/nm.4039.
  • Eisenberg, T., M. Abdellatif, S. Schroeder, U. Primessnig, S. Stekovic, T. Pendl, A. Harger, J. Schipke, A. Zimmermann, A. Schmidt, et al. 2016. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nature Medicine 22 (12):1428–38. doi: 10.1038/nm.4222.
  • Emoto, T., T. Yamashita, T. Kobayashi, N. Sasaki, Y. Hirota, T. Hayashi, A. So, K. Kasahara, K. Yodoi, T. Matsumoto, et al. 2017. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: Gut microbiota could be a diagnostic marker of coronary artery disease. Heart and Vessels 32 (1):39–46. doi: 10.1007/s00380-016-0841-y.
  • Emoto, T., T. Yamashita, N. Sasaki, Y. Hirota, T. Hayashi, A. So, K. Kasahara, K. Yodoi, T. Matsumoto, T. Mizoguchi, et al. 2016. Analysis of gut microbiota in coronary artery disease patients: A possible link between gut microbiota and coronary artery disease. Journal of Atherosclerosis and Thrombosis 23 (8):908–21. doi: 10.5551/jat.32672.
  • Erny, D., A. L. Hrabě de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience 18 (7):965–77. doi: 10.1038/nn.4030.
  • Escobar, M. F., M. A. Hincapie, and J. S. Barona. 2020. Immunological role of the maternal uterine microbiota in postpartum hemorrhage. Frontiers in Immunology 11:504. doi: 10.3389/fimmu.2020.00504.
  • Fabbiano, S., N. Suarez-Zamorano, C. Chevalier, V. Lazarevic, S. Kieser, D. Rigo, S. Leo, C. Veyrat-Durebex, N. Gaia, M. Maresca, et al. 2018. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metabolism 28 (6):907–21.e7. doi: 10.1016/j.cmet.2018.08.005.
  • Fabersani, E., M. Russo, A. Marquez, C. Abeijon-Mukdsi, R. Medina, and P. Gauffin-Cano. 2019. Modulation of intestinal microbiota and immunometabolic parameters by caloric restriction and lactic acid bacteria. Food Research International (Ottawa, Ont.) 124:188–99. doi: 10.1016/j.foodres.2018.06.014.
  • Fahlstrom, A., Q. Yu, and B. Ulfhake. 2011. Behavioral changes in aging female C57BL/6 mice. Neurobiology of Aging 32 (10):1868–80. doi: 10.1016/j.neurobiolaging.2009.11.003.
  • Fallani, M., S. Amarri, A. Uusijarvi, R. Adam, S. Khanna, M. Aguilera, A. Gil, J. M. Vieites, E. Norin, D. Young, et al. 2011. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157 (Pt 5):1385–92. doi: 10.1099/mic.0.042143-0.
  • Fang, E. F., M. Scheibye-Knudsen, H. J. Jahn, J. Li, L. Ling, H. W. Guo, X. Q. Zhu, V. Preedy, H. M. Lu, V. A. Bohr, et al. 2015. A research agenda for aging in China in the 21st century. Ageing Research Reviews 24 (Pt B):197–205. doi: 10.1016/j.arr.2015.08.003.
  • Ferri, C. P., M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, et al. 2005. Global prevalence of dementia: A Delphi consensus study. Lancet (London, England) 366 (9503):2112–7. doi: 10.1016/S0140-6736(05)67889-0.
  • Fluitman, K. S., M. Wijdeveld, M. Nieuwdorp, and R. G. IJzerman. 2018. Potential of butyrate to influence food intake in mice and men. Gut 67 (7):1203–4. doi: 10.1136/gutjnl-2017-315543.
  • Forsgren, M., E. Isolauri, S. Salminen, and S. Rautava. 2017. Late preterm birth has direct and indirect effects on infant gut microbiota development during the first six months of life. Acta Paediatrica (Oslo, Norway: 1992) 106 (7):1103–9. doi: 10.1111/apa.13837.
  • Foscolou, A., N. M. D’Cunha, N. Naumovski, S. Tyrovolas, C. Chrysohoou, L. Rallidis, E. Polychronopoulos, A.-L. Matalas, L. S. Sidossis, and D. Panagiotakos. 2020. The association between the level of adherence to the Mediterranean diet and successful aging: An analysis of the ATTICA and MEDIS (MEDiterranean Islands Study) epidemiological studies. Archives of Gerontology and Geriatrics 89:104044. doi: 10.1016/j.archger.2020.104044.
  • Franceschi, C., M. Bonafe, S. Valensin, F. Olivieri, M. De Luca, E. Ottaviani, and G. De Benedictis. 2000. Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences 908:244–54. doi: 10.1111/j.1749-6632.2000.tb06651.x.
  • Franceschi, C., M. Capri, D. Monti, S. Giunta, F. Olivieri, F. Sevini, M. P. Panourgia, L. Invidia, L. Celani, M. Scurti, et al. 2007. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of Ageing and Development 128 (1):92–105. doi: 10.1016/j.mad.2006.11.016.
  • Franceschi, C., P. Garagnani, P. Parini, C. Giuliani, and A. Santoro. 2018. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nature Reviews. Endocrinology 14 (10):576–90. doi: 10.1038/s41574-018-0059-4.
  • Franceschi, C., P. Garagnani, G. Vitale, M. Capri, and S. Salvioli. 2017. Inflammaging and ‘Garb-aging’. Trends in Endocrinology and Metabolism: TEM 28 (3):199–212. doi: 10.1016/j.tem.2016.09.005.
  • Fransen, F., A. A. Van Beek, T. Borghuis, S. E. Aidy, F. Hugenholtz, C. Van Der Gaast-De Jongh, H. F. J. Savelkoul, M. I. De Jonge, M. V. Boekschoten, H. Smidt, et al. 2017. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Frontiers in Immunology 8:1385. doi: 10.3389/fimmu.2017.01385.
  • Fries, J. F. 1980. Aging, natural death, and the compression of morbidity. The New England Journal of Medicine 303 (3):130–5. doi: 10.1056/NEJM198007173030304.
  • Fulop, T., A. Larbi, G. Dupuis, A. Le Page, E. H. Frost, A. A. Cohen, J. M. Witkowski, and C. Franceschi. 2018. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Frontiers in Immunology 8:1960. doi: 10.3389/Fimmu.2017.01960.
  • Galkin, F., P. Mamoshina, A. Aliper, E. Putin, V. Moskalev, V. N. Gladyshev, and A. Zhavoronkov. 2020. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience 23 (6):101199. doi: 10.1016/j.isci.2020.101199.
  • Ganal-Vonarburg, S. C., M. W. Hornef, and A. J. Macpherson. 2020. Microbial-host molecular exchange and its functional consequences in early mammalian life. Science (New York, N.Y.) 368 (6491):604–7. doi: 10.1126/science.aba0478.
  • Gao, H. M., F. Zhang, H. Zhou, W. Kam, B. Wilson, and J. S. Hong. 2011. Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson's disease. Environmental Health Perspectives 119 (6):807–14. doi: 10.1289/ehp.1003013.
  • Gensollen, T., S. S. Iyer, D. L. Kasper, and R. S. Blumberg. 2016. How colonization by microbiota in early life shapes the immune system. Science (New York, N.Y.) 352 (6285):539–44. doi: 10.1126/science.aad9378.
  • Ghosh, T. S., S. Rampelli, I. B. Jeffery, A. Santoro, M. Neto, M. Capri, E. Giampieri, A. Jennings, M. Candela, S. Turroni, et al. 2020. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 69 (7):1218–28. doi: 10.1136/gutjnl-2019-319654.
  • Gibson, M. K., T. S. Crofts, and G. Dantas. 2015. Antibiotics and the developing infant gut microbiota and resistome. Current Opinion in Microbiology 27:51–6. doi: 10.1016/j.mib.2015.07.007.
  • Gibson, M. K., B. Wang, S. Ahmadi, C. A. Burnham, P. I. Tarr, B. B. Warner, and G. Dantas. 2016. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nature Microbiology 1:16024. doi: 10.1038/nmicrobiol.2016.24.
  • Gollwitzer, E. S., and B. J. Marsland. 2015. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends in Immunology 36 (11):684–96. doi: 10.1016/j.it.2015.09.009.
  • Govindaraju, D., G. Atzmon, and N. Barzilai. 2015. Genetics, lifestyle and longevity: Lessons from centenarians. Applied & Translational Genomics 4:23–32. doi: 10.1016/j.atg.2015.01.001.
  • Goyal, A., V. Dubinkina, and S. Maslov. 2018. Multiple stable states in microbial communities explained by the stable marriage problem. The ISME Journal 12 (12):2823–34. doi: 10.1038/s41396-018-0222-x.
  • Granic, A., A. A. Sayer, and S. M. Robinson. 2019. Dietary patterns, skeletal muscle health, and sarcopenia in older adults. Nutrients 11 (4):745. doi: 10.3390/nu11040745.
  • Grosicki, G. J., R. A. Fielding, and M. S. Lustgarten. 2018. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: Biological basis for a gut-muscle axis. Calcified Tissue International 102 (4):433–42. doi: 10.1007/s00223-017-0345-5.
  • Gu, S. L., Y. B. Chen, X. W. Zhang, H. F. Lu, T. Lv, P. Shen, L. X. Lv, B. W. Zheng, X. W. Jiang, and L. J. Li. 2016. Identification of key taxa that favor intestinal colonization of Clostridium difficile in an adult Chinese population. Microbes and Infection 18 (1):30–8. doi: 10.1016/j.micinf.2015.09.008.
  • Guedj, A., Y. Volman, A. Geiger-Maor, J. Bolik, N. Schumacher, S. Kunzel, J. F. Baines, Y. Nevo, S. Elgavish, E. Galun, et al. 2020. Gut microbiota shape ‘inflamm-ageing’ cytokines and account for age-dependent decline in DNA damage repair. Gut 69 (6):1064–75. doi: 10.1136/gutjnl-2019-318491.
  • Gueniche, A., D. Philippe, P. Bastien, G. Reuteler, S. Blum, I. Castiel-Higounenc, L. Breton, and J. Benyacoub. 2014. Randomised double-blind placebo-controlled study of the effect of Lactobacillus paracasei NCC 2461 on skin reactivity. Beneficial Microbes 5 (2):137–45. doi: 10.3920/BM2013.0001.
  • Guillemard, E., F. Tondu, F. Lacoin, and J. Schrezenmeir. 2010. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. British Journal of Nutrition 103 (1):58–68. doi: 10.1017/S0007114509991395.
  • Hamady, M., J. J. Walker, J. K. Harris, N. J. Gold, and R. Knight. 2008. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods 5 (3):235–7. doi: 10.1038/nmeth.1184.
  • Haran, J. P., S. K. Bhattarai, S. E. Foley, P. Dutta, D. V. Ward, V. Bucci, and B. A. Mccormick. 2019. Alzheimer's disease microbiome is associated with dysregulation of the anti-inflammatory p-glycoprotein pathway. mBio 10 (3):e00632-19. doi: 10.1128/mBio.00632-19.
  • Hermansson, H., H. Kumar, M. C. Collado, S. Salminen, E. Isolauri, and S. Rautava. 2019. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Frontiers in Nutrition 6:4. doi: 10.3389/Fnut.2019.00004.
  • Hesla, H. M., F. Stenius, L. Jaderlund, R. Nelson, L. Engstrand, J. Alm, and J. Dicksved. 2014. Impact of lifestyle on the gut microbiota of healthy infants and their mothers—The ALADDIN birth cohort. FEMS Microbiology Ecology 90 (3):791–801. doi: 10.1111/1574-6941.12434.
  • Hill, C. J., D. B. Lynch, K. Murphy, M. Ulaszewska, I. B. Jeffery, C. A. O'shea, C. Watkins, E. Dempsey, F. Mattivi, K. Tuohy, et al. 2017. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5 (1):21. doi: 10.1186/s40168-016-0213-y.
  • Hill-Burns, E. M., J. W. Debelius, J. T. Morton, W. T. Wissemann, M. R. Lewis, Z. D. Wallen, S. D. Peddada, S. A. Factor, E. Molho, C. P. Zabetian, et al. 2017. Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement Disorders 32 (5):739–49. doi: 10.1002/mds.26942.
  • Ho, N. T., F. Li, K. A. Lee-Sarwar, H. M. Tun, B. P. Brown, P. S. Pannaraj, J. M. Bender, M. B. Azad, A. L. Thompson, S. T. Weiss, et al. 2018. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nature Communications 9 (1):4169. doi: 10.1038/s41467-018-06473-x.
  • Jackson, M. A., M. Jackson, I. B. Jeffery, M. Beaumont, J. T. Bell, A. G. Clark, R. E. Ley, P. W. O'Toole, T. D. Spector, and C. J. Steves. 2016. Signatures of early frailty in the gut microbiota. Genome Medicine 8 (1):8. doi: 10.1186/s13073-016-0262-7.
  • Jenner, P. 2008. Molecular mechanisms of L-DOPA-induced dyskinesia. Nature Reviews. Neuroscience 9 (9):665–77. doi: 10.1038/nrn2471.
  • Jennings, A., S. C. Cunnane, and A. M. Minihane. 2020. Can nutrition support healthy cognitive ageing and reduce dementia risk? BMJ (Clinical Research ed.) 369:M2269. doi: 10.1136/Bmj.M2269.
  • Jeong, J. J., K. A. Kim, Y. J. Hwang, M. J. Han, and D. H. Kim. 2016. Anti-inflammaging effects of Lactobacillus brevis OW38 in aged mice. Beneficial Microbes 7 (5):707–18. doi: 10.3920/BM2016.0016.
  • Jie, Z., H. Xia, S. L. Zhong, Q. Feng, S. Li, S. Liang, H. Zhong, Z. Liu, Y. Gao, H. Zhao, et al. 2017. The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications 8 (1):845. doi: 10.1038/s41467-017-00900-1.
  • Karlsson, F. H., V. Tremaroli, I. Nookaew, G. Bergstrom, C. J. Behre, B. Fagerberg, J. Nielsen, and F. Backhed. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498 (7452):99–103. doi: 10.1038/nature12198.
  • Kato, M., Y. Hamazaki, S. Sun, Y. Nishikawa, and E. Kage-Nakadai. 2018. Clostridium butyricum MIYAIRI 588 increases the lifespan and multiple-stress resistance of Caenorhabditis elegans. Nutrients 10 (12):1921. doi: 10.3390/nu10121921.
  • Ke, K., M. Arra, and Y. Abu-Amer. 2019. Mechanisms underlying bone loss associated with gut inflammation. International Journal of Molecular Sciences 20 (24):6323. doi: 10.3390/ijms20246323.
  • Khine, W. W. T., E. S. Rahayu, T. Y. See, S. Kuah, S. Salminen, J. Nakayama, and Y. K. Lee. 2020. Indonesian children fecal microbiome from birth until weaning was different from microbiomes of their mothers. Gut Microbes 12 (1):1761240–19. doi: 10.1080/19490976.2020.1761240.
  • Kim, H. B., K. Borewicz, B. A. White, R. S. Singer, S. Sreevatsan, Z. J. Tu, and R. E. Isaacson. 2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Veterinary Microbiology 153 (1-2):124–33. doi: 10.1016/j.vetmic.2011.05.021.
  • Kim, K. A., J. J. Jeong, S. Y. Yoo, and D. H. Kim. 2016. Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiology 16:9. doi: 10.1186/s12866-016-0625-7.
  • Kim, S., and S. M. Jazwinski. 2018. The gut microbiota and healthy aging: A mini-review. Gerontology 64 (6):513–20. doi: 10.1159/000490615.
  • Koenig, J. E., A. Spor, N. Scalfone, A. D. Fricker, J. Stombaugh, R. Knight, L. T. Angenent, and R. E. Ley. 2011. Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 1 (Suppl 1):4578–85. doi: 10.1073/pnas.1000081107.
  • Kootte, R. S., E. Levin, J. Salojarvi, L. P. Smits, A. V. Hartstra, S. D. Udayappan, G. Hermes, K. E. Bouter, A. M. Koopen, J. J. Holst, et al. 2017. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism 26 (4):611–9.e6. doi: 10.1016/j.cmet.2017.09.008.
  • Koren, O., A. Spor, J. Felin, F. Fak, J. Stombaugh, V. Tremaroli, C. J. Behre, R. Knight, B. Fagerberg, R. E. Ley, et al. 2011. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 108 (Suppl 1):4592–8. doi: 10.1073/pnas.1011383107.
  • Korpela, K., E. W. Blakstad, S. J. Moltu, K. Strømmen, B. Nakstad, A. E. Rønnestad, K. Braekke, P. O. Iversen, C. A. Drevon, and W. de Vos. 2018. Intestinal microbiota development and gestational age in preterm neonates. Scientific Reports 8 (1):2453. doi: 10.1038/s41598-018-20827-x.
  • Kovatcheva-Datchary, P., A. Nilsson, R. Akrami, Y. S. Lee, F. De Vadder, T. Arora, A. Hallen, E. Martens, I. Björck, and F. Bäckhed. 2015. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metabolism 22 (6):971–82. doi: 10.1016/j.cmet.2015.10.001.
  • Ku, H. J., Y. T. Kim, and J. H. Lee. 2020. Microbiome study of initial gut microbiota from newborn infants to children reveals that diet determines its compositional development. Journal of Microbiology and Biotechnology 30 (7):1067–71. doi: 10.4014/jmb.2002.02042.
  • Kurilshikov, A., I. C. L. Van Den Munckhof, L. Chen, M. J. Bonder, K. Schraa, J. H. W. Rutten, N. P. Riksen, J. De Graaf, M. Oosting, S. Sanna, et al. 2019. Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk. Circulation Research 124 (12):1808–20. doi: 10.1161/CIRCRESAHA.118.314642.
  • La Rosa, P. S., B. B. Warner, Y. Zhou, G. M. Weinstock, E. Sodergren, C. M. Hall-Moore, H. J. Stevens, W. E. Bennett, Jr., N. Shaikh, L. A. Linneman, et al. 2014. Patterned progression of bacterial populations in the premature infant gut. Proceedings of the National Academy of Sciences of the United States of America 111 (34):12522–7. doi: 10.1073/pnas.1409497111.
  • Lach, G., H. Schellekens, T. G. Dinan, and J. F. Cryan. 2018. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics 15 (1):36–59. doi: 10.1007/s13311-017-0585-0.
  • Lagier, J. C., M. Million, P. Hugon, F. Armougom, and D. Raoult. 2012. Human gut microbiota: Repertoire and variations. Frontiers in Cellular and Infection Microbiology 2:136. doi: 10.3389/fcimb.2012.00136.
  • Lahtinen, S. J., L. Tammela, J. Korpela, R. Parhiala, H. Ahokoski, H. Mykkanen, and S. J. Salminen. 2009. Probiotics modulate the Bifidobacterium microbiota of elderly nursing home residents. Age (Dordrecht, Netherlands) 31 (1):59–66. doi: 10.1007/s11357-008-9081-0.
  • Lalles, J. P., P. Bosi, H. Smidt, and C. R. Stokes. 2007. Weaning - A challenge to gut physiologists. Livestock Science 108 (1–3):82–93. doi: 10.1016/j.livsci.2007.01.091.
  • Langille, M. G., C. J. Meehan, J. E. Koenig, A. S. Dhanani, R. A. Rose, S. E. Howlett, and R. G. Beiko. 2014. Microbial shifts in the aging mouse gut. Microbiome 2 (1):50. doi: 10.1186/s40168-014-0050-9.
  • Laursen, M. F., L. B. B. Andersen, K. F. Michaelsen, C. Molgaard, E. Trolle, M. I. Bahl, and T. R. Licht. 2016. Infant Gut microbiota development is driven by transition to family foods independent of maternal obesity. Msphere 1 (1):e00069-15. doi: 10.1128/mSphere.00069-15.
  • Levkovich, T., T. Poutahidis, C. Smillie, B. J. Varian, Y. M. Ibrahim, J. R. Lakritz, E. J. Alm, and S. E. Erdman. 2013. Probiotic bacteria induce a ‘glow of health’. PLoS One 8 (1):e53867. doi: 10.1371/journal.pone.0053867.
  • Li, G. L., C. Xie, S. Y. Lu, R. G. Nichols, Y. Tian, L. C. Li, D. Patel, Y. Y. Ma, C. N. Brocker, T. T. Yan, et al. 2017. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metabolism 26 (4):672–85.e4. doi: 10.1016/j.cmet.2017.08.019.
  • Li, J. Y., B. Chassaing, A. M. Tyagi, C. Vaccaro, T. Luo, J. Adams, T. M. Darby, M. N. Weitzmann, J. G. Mulle, A. T. Gewirtz, et al. 2016. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. The Journal of Clinical Investigation 126 (6):2049–63. doi: 10.1172/JCI86062.
  • Li, K., L. Zhang, J. Xue, X. Yang, X. Dong, L. Sha, H. Lei, X. Zhang, L. Zhu, Z. Wang, et al. 2019. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food & Function 10 (4):1915–27. doi: 10.1039/c8fo02265h.
  • Liang, Q. Y., J. Chiu, Y. X. Chen, Y. Q. Huang, A. Higashimori, J. Y. Fang, H. Brim, H. Ashktorab, S. C. Ng, S. S. M. Ng, et al. 2017. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clinical Cancer Research 23 (8):2061–70. doi: 10.1158/1078-0432.CCR-16-1599.
  • Lin, A., W. Zheng, Y. He, W. Tang, X. Wei, R. He, W. Huang, Y. Su, Y. Huang, H. Zhou, et al. 2018. Gut microbiota in patients with Parkinson's disease in southern China. Parkinsonism & Related Disorders 53:82–8. doi: 10.1016/j.parkreldis.2018.05.007.
  • Linden, D. R. 2014. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxidants & Redox Signaling 20 (5):818–30. doi: 10.1089/ars.2013.5312.
  • Liu, H., X. Chen, X. Hu, H. Niu, R. Tian, H. Wang, H. Pang, L. Jiang, B. Qiu, Y. Zhang, et al. 2019. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7 (1):68. doi: 10.1186/s40168-019-0683-9.
  • Liu, J., F. Wang, S. Liu, J. Du, X. Hu, J. Xiong, R. Fang, W. Chen, and J. Sun. 2017. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1. Journal of the Neurological Sciences 381:176–81. doi: 10.1016/j.jns.2017.08.3235.
  • Liu, Y., S. Qin, Y. Song, Y. Feng, N. Lv, Y. Xue, F. Liu, S. Wang, B. Zhu, J. Ma, et al. 2019. The perturbation of infant gut microbiota caused by cesarean delivery is partially restored by exclusive breastfeeding. Frontiers in Microbiology 10:598. doi: 10.3389/fmicb.2019.00598.
  • Liu, Z., X. Dai, H. Zhang, R. Shi, Y. Hui, X. Jin, W. Zhang, L. Wang, Q. Wang, D. Wang, et al. 2020. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nature Communications 11 (1):855. doi: 10.1038/s41467-020-14676-4.
  • Long, X., C. C. Wong, L. Tong, E. S. H. Chu, C. Ho Szeto, M. Y. Y. Go, O. O. Coker, A. W. H. Chan, F. K. L. Chan, J. J. Y. Sung, et al. 2019. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nature Microbiology 4 (12):2319–30. doi: 10.1038/s41564-019-0541-3.
  • Luan, Z., G. Sun, Y. Huang, Y. Yang, R. Yang, C. Li, T. Wang, D. Tan, S. Qi, C. Jun, et al. 2020. Metagenomics study reveals changes in gut microbiota in centenarians: A cohort study of Hainan centenarians. Frontiers in Microbiology 11:1474. doi: 10.3389/fmicb.2020.01474.
  • Luo, Y., E. N. Tixier, and A. M. Grinspan. 2020. Fecal microbiota transplantation for clostridioides difficile in high-risk older adults is associated with early recurrence. Digestive Diseases and Sciences 65 (12):3647–51. doi: 10.1007/s10620-020-06147-z.
  • Magne, F., W. Hachelaf, A. Suau, G. Boudraa, I. Mangin, M. Touhami, K. Bouziane-Nedjadi, and P. Pochart. 2006. A longitudinal study of infant faecal microbiota during weaning. FEMS Microbiology Ecology 58 (3):563–71. doi: 10.1111/j.1574-6941.2006.00182.x.
  • Magne, F., A. Puchi Silva, B. Carvajal, and M. Gotteland. 2017. The elevated rate of cesarean section and its contribution to non-communicable chronic diseases in Latin America: The growing involvement of the microbiota. Frontiers in Pediatrics 5:192. doi: 10.3389/fped.2017.00192.
  • Mahmoudiandehkordi, S., M. Arnold, K. Nho, S. Ahmad, W. Jia, G. Xie, G. Louie, A. Kueider-Paisley, M. A. Moseley, J. W. Thompson, et al. 2019. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome. Alzheimer's & Dementia15 (1):76–92. doi: 10.1016/j.jalz.2018.07.217.
  • Maini Rekdal, V., E. N. Bess, J. E. Bisanz, P. J. Turnbaugh, and E. P. Balskus. 2019. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364 (6445):eaau6323. doi: 10.1126/science.aau6323.
  • Mantzorou, M., K. Vadikolias, E. Pavlidou, C. Tryfonos, G. Vasios, A. Serdari, and C. Giaginis. 2020. Mediterranean diet adherence is associated with better cognitive status and less depressive symptoms in a Greek elderly population. Aging Clinical and Experimental Research. doi: 10.1007/s40520-020-01608-x.
  • Mariat, D., O. Firmesse, F. Levenez, V. Guimarăes, H. Sokol, J. Doré, G. Corthier, and J.-P. Furet. 2009. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology 9:123. doi: 10.1186/1471-2180-9-123.
  • Mateos, I., S. Combes, G. Pascal, L. Cauquil, C. Barilly, A. M. Cossalter, J. Laffitte, S. Botti, P. Pinton, and I. P. Oswald. 2018. Fumonisin-exposure impairs age-related ecological succession of bacterial species in weaned pig gut microbiota. Toxins (Basel) 10 (6):230. doi: 10.3390/toxins10060230.
  • Mima, K., R. Nishihara, Z. R. Qian, Y. Cao, Y. Sukawa, J. A. Nowak, J. Yang, R. Dou, Y. Masugi, M. Song, et al. 2016. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65 (12):1973–80. doi: 10.1136/gutjnl-2015-310101.
  • Miyazaki, K., N. Masuoka, M. Kano, and R. Iizuka. 2014. Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Beneficial Microbes 5 (2):121–8. doi: 10.3920/Bm2012.0066.
  • Moreno, I., I. Garcia-Grau, D. Bau, D. Perez-Villaroya, M. Gonzalez-Monfort, F. Vilella, R. Romero, and C. Simon. 2020. The first glimpse of the endometrial microbiota in early pregnancy. American Journal of Obstetrics and Gynecology 222 (4):296–305. doi: 10.1016/j.ajog.2020.01.031.
  • Morrison, K. E., E. Jasarevic, C. D. Howard, and T. L. Bale. 2020. It's the fiber, not the fat: Significant effects of dietary challenge on the gut microbiome. Microbiome 8 (1):15. doi: 10.1186/s40168-020-0791-6.
  • Mulders, R. J., K. C. G. De Git, E. Schele, S. L. Dickson, Y. Sanz, and R. a H. Adan. 2018. Microbiota in obesity: Interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews19 (4):435–51. doi: 10.1111/obr.12661.
  • Nam, B., S. A. Kim, S. D. Park, H. J. Kim, J. S. Kim, C. H. Bae, J. Y. Kim, W. Nam, J. L. Lee, and J. H. Sim. 2020. Regulatory effects of Lactobacillus plantarum HY7714 on skin health by improving intestinal condition. PLoS One 15 (4):e0231268. doi: 10.1371/journal.pone.0231268.
  • Nay, K., M. Jollet, B. Goustard, N. Baati, B. Vernus, M. Pontones, L. Lefeuvre-Orfila, C. Bendavid, O. Rue, M. Mariadassou, et al. 2019. Gut bacteria are critical for optimal muscle function: A potential link with glucose homeostasis. American Journal of Physiology. Endocrinology and Metabolism 317 (1):E158–E171. doi: 10.1152/ajpendo.00521.2018.
  • Newgard, C. B. 2012. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism 15 (5):606–14. doi: 10.1016/j.cmet.2012.01.024.
  • Neyrinck, A. M., B. Taminiau, H. Walgrave, G. Daube, P. D. Cani, L. B. Bindels, and N. M. Delzenne. 2017. Spirulina protects against hepatic inflammation in aging: An effect related to the modulation of the gut microbiota? Nutrients 9 (6):633. doi: 10.3390/nu9060633.
  • Ni Lochlainn, M., R. C. E. Bowyer, and C. J. Steves. 2018. Dietary protein and muscle in aging people: The potential role of the gut microbiome. Nutrients 10 (7):929. doi: 10.3390/nu10070929.
  • Ni, Y. H., X. Yang, L. J. Zheng, Z. Wang, L. X. Wu, J. L. Jiang, T. Q. Yang, L. Y. Ma, and Z. W. Fu. 2019. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Molecular Nutrition & Food Research 63 (22):1900603. doi: 10.1002/mnfr.201900603.
  • Novince, C. M., C. R. Whittow, J. D. Aartun, J. D. Hathaway, N. Poulides, M. B. Chavez, H. M. Steinkamp, K. A. Kirkwood, E. Huang, C. Westwater, et al. 2017. Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health. Scientific Reports 7 (1):5747. doi: 10.1038/S41598-017-06126-X.
  • Nuli, R., J. Azhati, J. Cai, A. Kadeer, B. Zhang, and P. Mohemaiti. 2019. Metagenomics and faecal metabolomics integrative analysis towards the impaired glucose regulation and type 2 diabetes in uyghur-related omics. Journal of Diabetes Research 2019:2893041. doi: 10.1155/2019/2893041.
  • O'hara, A. M., and F. Shanahan. 2006. The gut flora as a forgotten organ. EMBO Reports 7 (7):688–93. doi: 10.1038/sj.embor.7400731.
  • O'neill, C. A., G. Monteleone, J. T. Mclaughlin, and R. Paus. 2016. The gut-skin axis in health and disease: A paradigm with therapeutic implications. BioEssays 38 (11):1167–76. doi: 10.1002/bies.201600008.
  • O'toole, P. W., and I. B. Jeffery. 2015. Gut microbiota and aging. Science (New York, N.Y.) 350 (6265):1214–5. doi: 10.1126/science.aac8469.
  • Ogawa, M., A. Saiki, Y. Matsui, N. Tsuchimoto, Y. Nakakita, Y. Takata, and T. Nakamura. 2016. Effects of oral intake of heat-killed Lactobacillus brevis SBC8803 (SBL88) on dry skin conditions: A randomized, double-blind, placebo-controlled study. Experimental and Therapeutic Medicine 12 (6):3863–72. doi: 10.3892/etm.2016.3862.
  • Ohlsson, C., C. Engdahl, F. Fak, A. Andersson, S. H. Windahl, H. H. Farman, S. Moverare-Skrtic, U. Islander, and K. Sjogren. 2014. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 9 (3):e92368. doi: 10.1371/journal.pone.0092368.
  • Oishi, Y., and I. Manabe. 2016. Macrophages in age-related chronic inflammatory diseases. NPJ Aging and Mechanisms of Disease 2:16018. doi: 10.1038/npjamd.2016.18.
  • Olszak, T., D. D. An, S. Zeissig, M. P. Vera, J. Richter, A. Franke, J. N. Glickman, R. Siebert, R. M. Baron, D. L. Kasper, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science (New York, N.Y.) 336 (6080):489–93. doi: 10.1126/science.1219328.
  • Olveira, G., and I. Gonzalez-Molero. 2016. An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinologia y Nutricion63 (9):482–94. doi: 10.1016/j.endonu.2016.07.006.
  • Pan, F., L. Zhang, M. Li, Y. Hu, B. Zeng, H. Yuan, L. Zhao, and C. Zhang. 2018. Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome 6 (1):54. doi: 10.1186/s40168-018-0440-5.
  • Park, M. R., S. Ryu, B. E. Maburutse, N. S. Oh, S. H. Kim, S. Oh, S.-Y. Jeong, D.-Y. Jeong, S. Oh, and Y. Kim. 2018. Probiotic Lactobacillus fermentum strain JDFM216 stimulates the longevity and immune response of Caenorhabditis elegans through a nuclear hormone receptor. Scientific Reports 8 (1):7441. doi: 10.1038/s41598-018-25333-8.
  • Passarino, G., F. De Rango, and A. Montesanto. 2016. Human longevity: Genetics or lifestyle? It takes two to tango. Immunity & Ageing: I & A 13:12. doi: 10.1186/s12979-016-0066-z.
  • Petersen, N., F. Reimann, S. Bartfeld, H. F. Farin, F. C. Ringnalda, R. G. Vries, S. Van Den Brink, H. Clevers, F. M. Gribble, and E. J. De Koning. 2014. Generation of L cells in mouse and human small intestine organoids. Diabetes 63 (2):410–20. doi: 10.2337/db13-0991.
  • Petrov, V. A., I. V. Saltykova, I. A. Zhukova, V. M. Alifirova, N. G. Zhukova, Y. B. Dorofeeva, A. V. Tyakht, B. A. Kovarsky, D. G. Alekseev, E. S. Kostryukova, et al. 2017. Analysis of gut microbiota in patients with Parkinson's disease. Bulletin of Experimental Biology and Medicine 162 (6):734–7. doi: 10.1007/s10517-017-3700-7.
  • Pham, L., B. Kaiser, A. Romsa, T. Schwarz, R. Gopalakrishnan, E. D. Jensen, and K. C. Mansky. 2011. HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. The Journal of Biological Chemistry 286 (14):12056–65. doi: 10.1074/jbc.M110.216853.
  • Picca, A., F. Fanelli, R. Calvani, G. Mule, V. Pesce, A. Sisto, C. Pantanelli, R. Bernabei, F. Landi, and E. Marzetti. 2018. Gut dysbiosis and muscle aging: Searching for novel targets against Sarcopenia. Mediators of Inflammation 2018:7026198. doi: 10.1155/2018/7026198.
  • Pipan, M. Z., L. Kajdic, A. Kalin, T. Plavec, and I. Zdovc. 2020. Do newborn puppies have their own microbiota at birth? Influence of type of birth on newborn puppy microbiota. Theriogenology 152:18–28. doi: 10.1016/j.theriogenology.2020.04.014.
  • Prioult, G., and C. Nagler-Anderson. 2005. Mucosal immunity and allergic responses: Lack of regulation and/or lack of microbial stimulation? Immunological Reviews 206:204–18. doi: 10.1111/j.0105-2896.2005.00277.x.
  • Puertollano, E., S. Kolida, and P. Yaqoob. 2014. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Current Opinion in Clinical Nutrition and Metabolic Care 17 (2):139–44. doi: 10.1097/Mco.0000000000000025.
  • Qian, Y. W., X. D. Yang, S. Q. Xu, C. Y. Wu, Y. Y. Song, N. Qin, S. D. Chen, and Q. Xiao. 2018. Alteration of the fecal microbiota in Chinese patients with Parkinson's disease. Brain, Behavior, and Immunity 70:194–202. doi: 10.1016/j.bbi.2018.02.016.
  • Qin, J., Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 (7418):55–60. doi: 10.1038/nature11450.
  • Rajilic-Stojanovic, M., H. G. Heilig, D. Molenaar, K. Kajander, A. Surakka, H. Smidt, and W. M. De Vos. 2009. Development and application of the human intestinal tract chip, a phylogenetic microarray: Analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environmental Microbiology 11 (7):1736–51. doi: 10.1111/j.1462-2920.2009.01900.x.
  • Rampelli, S., M. Candela, S. Turroni, E. Biagi, S. Collino, C. Franceschi, P. W. O'toole, and P. Brigidi. 2013. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 5 (12):902–12. doi: 10.18632/aging.100623.
  • Rampelli, S., M. Soverini, F. D’Amico, M. Barone, T. Tavella, D. Monti, M. Capri, A. Astolfi, P. Brigidi, E. Biagi, et al. 2020. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems 5 (2):00124-20. doi: 10.1128/mSystems.00124-20.
  • Reddel, S., F. Del Chierico, A. Quagliariello, S. Giancristoforo, P. Vernocchi, A. Russo, A. Fiocchi, P. Rossi, L. Putignani, and M. El Hachem. 2019. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Scientific Reports 9 (1):4996. doi: 10.1038/s41598-019-41149-6.
  • Reigadas, E., L. Alcala, M. Marin, A. Martin, and E. Bouza. 2017. Clinical, immunological and microbiological predictors of poor outcome in Clostridium difficile infection. Diagnostic Microbiology and Infectious Disease 88 (4):330–4. doi: 10.1016/j.diagmicrobio.2017.05.005.
  • Rogier, E. W., A. L. Frantz, M. E. Bruno, L. Wedlund, D. A. Cohen, A. J. Stromberg, and C. S. Kaetzel. 2014. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proceedings of the National Academy of Sciences of the United States of America 111 (8):3074–9. doi: 10.1073/pnas.1315792111.
  • Rosier, B. T., P. D. Marsh, and A. Mira. 2018. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. Journal of Dental Research 97 (4):371–80. doi: 10.1177/0022034517742139.
  • Rutayisire, E., K. Huang, Y. Liu, and F. Tao. 2016. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: A systematic review. BMC Gastroenterology 16 (1):86. doi: 10.1186/s12876-016-0498-0.
  • Safari, Z., and P. Gerard. 2019. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences: CMLS 76 (8):1541–58. doi: 10.1007/s00018-019-03011-w.
  • Saint-Georges-Chaumet, Y., and M. Edeas. 2016. Microbiota-mitochondria inter-talk: Consequence for microbiota-host interaction. Pathogens and Disease 74 (1):ftv096. doi: 10.1093/femspd/ftv096.
  • Salem, I., A. Ramser, N. Isham, and M. A. Ghannoum. 2018. The gut microbiome as a major regulator of the gut-skin axis. Frontiers in Microbiology 9:1459. doi: 10.3389/Fmicb.2018.01459.
  • Sampson, T. R., J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri, Z. E. Ilhan, C. Challis, C. E. Schretter, S. Rocha, V. Gradinaru, et al. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167 (6):1469–80.e12. doi: 10.1016/j.cell.2016.11.018.
  • Savignac, H. M., M. Tramullas, B. Kiely, T. G. Dinan, and J. F. Cryan. 2015. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behavioural Brain Research 287(:59–72. doi: 10.1016/j.bbr.2015.02.044.
  • Schwarz, A., A. Bruhs, and T. Schwarz. 2017. The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. The Journal of Investigative Dermatology 137 (4):855–64. doi: 10.1016/j.jid.2016.11.014.
  • Schwiertz, A., G. Le Blay, and M. Blaut. 2000. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology 66 (1):375–82. doi: 10.1128/aem.66.1.375-382.2000.
  • Selma-Royo, M., I. Garcia-Mantrana, M. Calatayud, A. Parra-Llorca, C. Martinez-Costa, and M. C. Collado. 2020. Maternal diet during pregnancy and intestinal markers are associated with early gut microbiota. European Journal of Nutrition. doi: 10.1007/s00394-020-02337-7.
  • Serreli, G., and M. Deiana. 2020. Extra virgin olive oil polyphenols: Modulation of cellular pathways related to oxidant species and inflammation in aging. Cells 9 (2):478. doi: 10.3390/cells9020478.
  • Shannon, O. M., B. C. M. Stephan, A. Granic, M. Lentjes, S. Hayat, A. Mulligan, C. Brayne, K. T. Khaw, R. Bundy, S. Aldred, et al. 2019. Mediterranean diet adherence and cognitive function in older UK adults: The European Prospective Investigation into Cancer and Nutrition-Norfolk (EPIC-Norfolk) Study. The American Journal of Clinical Nutrition 110 (4):938–48. doi: 10.1093/ajcn/nqz114.
  • Shapiro, H., C. A. Thaiss, M. Levy, and E. Elinav. 2014. The cross talk between microbiota and the immune system: Metabolites take center stage. Current Opinion in Immunology 30:54–62. doi: 10.1016/j.coi.2014.07.003.
  • Sharma, K., M. Pooranachithra, K. Balamurugan, and G. Goel. 2019. Multivariate analysis of increase in life span of caenorhabditis elegans through intestinal colonization by indigenous probiotic strains. Probiotics and Antimicrobial Proteins 11 (3):865–73. doi: 10.1007/s12602-018-9420-0.
  • Sharma, M., and G. Shukla. 2020. Administration of metabiotics extracted from probiotic Lactobacillus rhamnosus MD 14 inhibit experimental colorectal carcinogenesis by targeting Wnt/β-catenin pathway. Frontiers in Oncology 10:746. doi: 10.3389/fonc.2020.00746.
  • Sharma, R., R. Kapila, G. Dass, and S. Kapila. 2014. Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. Age (Dordrecht, Netherlands) 36 (4):9686. doi: 10.1007/s11357-014-9686-4.
  • Sharma, S., A. L. Dominguez, and J. Lustgarten. 2006. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. Journal of Immunology (Baltimore, Md.: 1950) 177 (12):8348–55. doi: 10.4049/jimmunol.177.12.8348.
  • Shi, Y. C., H. Guo, J. Chen, G. Sun, R. R. Ren, M. Z. Guo, L. H. Peng, and Y. S. Yang. 2018. Initial meconium microbiome in Chinese neonates delivered naturally or by cesarean section. Scientific Reports 8 (1):3255. doi: 10.1038/s41598-018-21657-7.
  • Shin, J. H., Y. N. Gao, J. H. Moore, D. T. Bolick, G. L. Kolling, M. Wu, and C. A. Warren. 2018. Innate immune response and outcome of clostridium difficile infection are dependent on fecal bacterial composition in the aged host. The Journal of Infectious Diseases 217 (2):188–97. doi: 10.1093/infdis/jix414.
  • Singh, H., M. G. Torralba, K. J. Moncera, L. Dilello, J. Petrini, K. E. Nelson, and R. Pieper. 2019. Gastro-intestinal and oral microbiome signatures associated with healthy aging. Geroscience 41 (6):907–21. doi: 10.1007/s11357-019-00098-8.
  • Smith, B. J., R. A. Miller, A. C. Ericsson, D. C. Harrison, R. Strong, and T. M. Schmidt. 2019. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiology 19 (1):130. doi: 10.1186/s12866-019-1494-7.
  • Smith, P., D. Willemsen, M. Popkes, F. Metge, E. Gandiwa, M. Reichard, and D. R. Valenzano. 2017. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 6:e27014. doi: 10.7554/eLife.27014.
  • Sommer, F., J. M. Anderson, R. Bharti, J. Raes, and P. Rosenstiel. 2017. The resilience of the intestinal microbiota influences health and disease. Nature Reviews. Microbiology 15 (10):630–8. doi: 10.1038/nrmicro.2017.58.
  • Sorgdrager, F. J. H., P. J. W. Naude, I. P. Kema, E. A. Nollen, and P. P. Deyn. 2019. Tryptophan metabolism in inflammaging: From biomarker to therapeutic target. Frontiers in Immunology 10:2565. doi: 10.3389/fimmu.2019.02565.
  • Soto, M., C. Herzog, J. A. Pacheco, S. Fujisaka, K. Bullock, C. B. Clish, and C. R. Kahn. 2018. Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Molecular Psychiatry 23 (12):2287–301. doi: 10.1038/s41380-018-0086-5.
  • Soysal, P., A. T. Isik, A. F. Carvalho, B. S. Fernandes, M. Solmi, P. Schofield, N. Veronese, and B. Stubbs. 2017. Oxidative stress and frailty: A systematic review and synthesis of the best evidence. Maturitas 99:66–72. doi: 10.1016/j.maturitas.2017.01.006.
  • Stinson, L. F., M. C. Boyce, M. S. Payne, and J. A. Keelan. 2019. The not-so-sterile womb: Evidence that the human fetus is exposed to bacteria prior to birth. Frontiers in Microbiology 10:1124. doi: 10.3389/Fmicb.2019.01124.
  • Subramanian, S., S. Huq, T. Yatsunenko, R. Haque, M. Mahfuz, M. A. Alam, A. Benezra, J. Destefano, M. F. Meier, B. D. Muegge, et al. 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510 (7505):417–21. doi: 10.1038/nature13421.
  • Sugawara, T., and K. Sakamoto. 2018. Killed Bifidobacterium longum enhanced stress tolerance and prolonged life span of Caenorhabditis elegans via DAF-16. The British Journal of Nutrition 120 (8):872–80. doi: 10.1017/S0007114518001563.
  • Sun, J., S. Liu, Z. Ling, F. Wang, Y. Ling, T. Gong, N. Fang, S. Ye, J. Si, and J. Liu. 2019. Fructooligosaccharides ameliorating cognitive deficits and neurodegeneration in APP/PS1 transgenic mice through modulating gut microbiota. Journal of Agricultural and Food Chemistry 67 (10):3006–17. doi: 10.1021/acs.jafc.8b07313.
  • Sun, J., J. Xu, Y. Ling, F. Wang, T. Gong, C. Yang, S. Ye, K. Ye, D. Wei, Z. Song, et al. 2019. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Translational Psychiatry 9 (1):189. doi: 10.1038/s41398-019-0525-3.
  • Sun, J., J. Xu, B. Yang, K. Chen, Y. Kong, N. Fang, T. Gong, F. Wang, Z. Ling, and J. Liu. 2020. Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate. Molecular Nutrition & Food Research 64 (2):e1900636. doi: 10.1002/mnfr.201900636.
  • Szanto, M., A. Dozsa, D. Antal, K. Szabo, L. Kemeny, and P. Bai. 2019. Targeting the gut-skin axis-Probiotics as new tools for skin disorder management? Experimental Dermatology 28 (11):1210–8. doi: 10.1111/exd.14016.
  • Tapiainen, T., N. Paalanne, M. V. Tejesvi, P. Koivusaari, K. Korpela, T. Pokka, J. Salo, T. Kaukola, A. M. Pirttila, M. Uhari, et al. 2018. Maternal influence on the fetal microbiome in a population-based study of the first-pass meconium. Pediatric Research 84 (3):371–9. doi: 10.1038/pr.2018.29.
  • Thevaranjan, N., A. Puchta, C. Schulz, A. Naidoo, J. C. Szamosi, C. P. Verschoor, D. Loukov, L. P. Schenck, J. Jury, K. P. Foley, et al. 2017. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe 21 (4):455–66 e454. doi: 10.1016/j.chom.2017.03.002.
  • Thevaranjan, N., A. Puchta, C. Schulz, A. Naidoo, J. C. Szamosi, C. P. Verschoor, D. Loukov, L. P. Schenck, J. Jury, K. P. Foley, et al. 2018. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe 23 (4):570. doi: 10.1016/j.chom.2018.03.006.
  • Ticinesi, A., A. Nouvenne, N. Cerundolo, P. Catania, B. Prati, C. Tana, and T. Meschi. 2019. Gut microbiota, muscle mass and function in aging: A focus on physical frailty and sarcopenia. Nutrients 11 (7):1633. doi: 10.3390/nu11071633.
  • Toya, T., M. T. Corban, E. Marrietta, I. E. Horwath, L. O. Lerman, J. A. Murray, and A. Lerman. 2020. Coronary artery disease is associated with an altered gut microbiome composition. PLoS One 15 (1):e0227147. doi: 10.1371/journal.pone.0227147.
  • Tuomisto, S., H. Huhtala, M. Martiskainen, S. Goebeler, T. Lehtimaki, and P. J. Karhunen. 2019. Age-dependent association of gut bacteria with coronary atherosclerosis: Tampere Sudden Death Study. PLoS One 14 (8):e0221345. doi: 10.1371/journal.pone.0221345.
  • Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (7122):1027–31. doi: 10.1038/nature05414.
  • Tyagi, A. M., M. Yu, T. M. Darby, C. Vaccaro, J. Y. Li, J. A. Owens, E. Hsu, J. Adams, M. N. Weitzmann, R. M. Jones, et al. 2018. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 49 (6):1116–31 e1117. doi: 10.1016/j.immuni.2018.10.013.
  • Unger, M. M., J. Spiegel, K.-U. Dillmann, D. Grundmann, H. Philippeit, J. Bürmann, K. Faßbender, A. Schwiertz, and K.-H. Schäfer. 2016. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism & Related Disorders 32:66–72. doi: 10.1016/j.parkreldis.2016.08.019.
  • Vael, C., S. L. Verhulst, V. Nelen, H. Goossens, and K. N. Desager. 2011. Intestinal microflora and body mass index during the first three years of life: An observational study. Gut Pathogens 3 (1):8. doi: 10.1186/1757-4749-3-8.
  • Valles, Y., A. Artacho, A. Pascual-Garcia, M. L. Ferrus, M. J. Gosalbes, J. J. Abellan, and M. P. Francino. 2014. Microbial succession in the gut: Directional trends of taxonomic and functional change in a birth cohort of Spanish infants. PLoS Genetics 10 (6):e1004406. doi: 10.1371/journal.pgen.1004406.
  • Van Kessel, S. P., A. K. Frye, A. O. El-Gendy, M. Castejon, A. Keshavarzian, G. Van Dijk, and S. El Aidy. 2019. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. Nature Communications 10 (1):310. doi: 10.1038/s41467-019-08294-y.
  • Van Opstal, E., G. L. Kolling, J. H. Moore, II, C. M. Coquery, N. S. Wade, W. M. Loo, D. T. Bolick, J. H. Shin, L. D. Erickson, and C. A. Warren. 2016. Vancomycin treatment alters humoral immunity and intestinal microbiota in an aged mouse model of clostridium difficile infection. The Journal of Infectious Diseases 214 (1):130–9. doi: 10.1093/infdis/jiw071.
  • Van Tongeren, S. P., J. P. Slaets, H. J. Harmsen, and G. W. Welling. 2005. Fecal microbiota composition and frailty. Applied and Environmental Microbiology 71 (10):6438–42. doi: 10.1128/AEM.71.10.6438-6442.2005.
  • Vandenplas, Y., V. P. Carnielli, J. Ksiazyk, M. S. Luna, N. Migacheva, J. M. Mosselmans, J. C. Picaud, M. Possner, A. Singhal, and M. Wabitsch. 2020. Factors affecting early-life intestinal microbiota development. Nutrition (Burbank, Los Angeles County, Calif.) 78:110812. doi: 10.1016/j.nut.2020.110812.
  • Vemuri, R., R. Gundamaraju, M. D. Shastri, S. D. Shukla, K. Kalpurath, M. Ball, S. Tristram, E. M. Shankar, K. Ahuja, and R. Eri. 2018. Gut microbial changes, interactions, and their implications on human lifecycle: An ageing perspective. BioMed Research International 2018:4178607. doi: 10.1155/2018/4178607.
  • Vendrik, K. E. W., R. E. Ooijevaar, P. R. C. De Jong, J. D. Laman, B. W. Van Oosten, J. J. Van Hilten, Q. R. Ducarmon, J. J. Keller, E. J. Kuijper, and M. F. Contarino. 2020. Fecal microbiota transplantation in neurological disorders. Frontiers in Cellular and Infection Microbiology 10:98. doi: 10.3389/fcimb.2020.00098.
  • Vetizou, M., J. M. Pitt, R. Daillere, P. Lepage, N. Waldschmitt, C. Flament, S. Rusakiewicz, B. Routy, M. P. Roberti, C. P. Duong, et al. 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (New York, N.Y.) 350 (6264):1079–84. doi: 10.1126/science.aad1329.
  • Vogt, N. M., R. L. Kerby, K. A. Dill-Mcfarland, S. J. Harding, A. P. Merluzzi, S. C. Johnson, C. M. Carlsson, S. Asthana, H. Zetterberg, K. Blennow, et al. 2017. Gut microbiome alterations in Alzheimer's disease. Scientific Reports 7 (1):13537. doi: 10.1038/s41598-017-13601-y.
  • Wang, X., G. Sun, T. Feng, J. Zhang, X. Huang, T. Wang, Z. Xie, X. Chu, J. Yang, H. Wang, et al. 2019. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression. Cell Research 29 (10):787–803. doi: 10.1038/s41422-019-0216-x.
  • Wang, Y., E. K. Mortimer, K. G. H. Katundu, N. Kalanga, L. E. X. Leong, G. L. Gopalsamy, C. T. Christophersen, A. C. Richard, A. Shivasami, G. C. J. Abell, et al. 2019. The capacity of the fecal microbiota from Malawian infants to ferment resistant starch. Frontiers in Microbiology 10:1459. doi: 10.3389/fmicb.2019.01459.
  • Wang, Z., E. Klipfell, B. J. Bennett, R. Koeth, B. S. Levison, B. Dugar, A. E. Feldstein, E. B. Britt, X. Fu, Y. M. Chung, et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 (7341):57–63. doi: 10.1038/nature09922.
  • Wegh, C. A. M., S. Y. Geerlings, J. Knol, G. Roeselers, and C. Belzer. 2019. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci 20 (19):4673. doi: 10.3390/ijms20194673.
  • Willcox, B. J., D. C. Willcox, H. Todoriki, A. Fujiyoshi, K. Yano, Q. He, J. D. Curb, and M. Suzuki. 2007. Caloric restriction, the traditional Okinawan diet, and healthy aging: The diet of the world's longest-lived people and its potential impact on morbidity and life span. Annals of the New York Academy of Sciences 1114:434–55. doi: 10.1196/annals.1396.037.
  • Wilson, D., T. Jackson, E. Sapey, and J. M. Lord. 2017. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Research Reviews 36:1–10. doi: 10.1016/j.arr.2017.01.006.
  • Windey, K., V. De Preter, and K. Verbeke. 2012. Relevance of protein fermentation to gut health. Molecular Nutrition & Food Research 56 (1):184–96. doi: 10.1002/mnfr.201100542.
  • Wong, M. C. S., J. Huang, V. Lok, J. Wang, F. Fung, H. Ding, and Z. J. Zheng. 2020. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clinical Gastroenterology and Hepatology. doi: 10.1016/j.cgh.2020.02.026.
  • Wu, G. D., J. Chen, C. Hoffmann, K. Bittinger, Y. Y. Chen, S. A. Keilbaugh, M. Bewtra, D. Knights, W. A. Walters, R. Knight, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.) 334 (6052):105–8. doi: 10.1126/science.1208344.
  • Wu, H., E. Esteve, V. Tremaroli, M. T. Khan, R. Caesar, L. Manneras-Holm, M. Stahlman, L. M. Olsson, M. Serino, M. Planas-Felix, et al. 2017. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine 23 (7):850–8. doi: 10.1038/nm.4345.
  • Wu, X. R., S. Mukewar, R. P. Kiran, F. H. Remzi, J. Hammel, and B. Shen. 2013. Risk factors for peristomal pyoderma gangrenosum complicating inflammatory bowel disease. Journal of Crohn's & Colitis 7 (5):e171–e177. doi: 10.1016/j.crohns.2012.08.001.
  • Xie, C., and D. Halegoua-Demarzio. 2019. Role of probiotics in non-alcoholic fatty liver disease: Does gut microbiota matter? Nutrients 11 (11):2837. doi: 10.3390/nu11112837.
  • Xu, J., B. Lawley, G. Wong, A. Otal, L. Chen, T. J. Ying, X. Lin, W. W. Pang, F. Yap, Y. S. Chong, et al. 2020. Ethnic diversity in infant gut microbiota is apparent before the introduction of complementary diets. Gut Microbes 11 (5):1362–73. doi: 10.1080/19490976.2020.1756150.
  • Yan, J., J. W. Herzog, K. Tsang, C. A. Brennan, M. A. Bower, W. S. Garrett, B. R. Sartor, A. O. Aliprantis, and J. F. Charles. 2016. Gut microbiota induce IGF-1 and promote bone formation and growth. Proceedings of the National Academy of Sciences of the United States of America 113 (47):E7554–63. doi: 10.1073/pnas.1607235113.
  • Yang, B., S. Yan, Y. Chen, R. P. Ross, C. Stanton, J. Zhao, H. Zhang, and W. Chen. 2020. Diversity of gut microbiota and bifidobacterial community of Chinese subjects of different ages and from different regions. Microorganisms 8 (8):1108. doi: 10.3390/microorganisms8081108.
  • Yang, J., and J. Yu. 2018. The association of diet, gut microbiota and colorectal cancer: What we eat may imply what we get. Protein & Cell 9 (5):474–87. doi: 10.1007/s13238-018-0543-6.
  • Yassour, M., T. Vatanen, H. Siljander, A. M. Hamalainen, T. Harkonen, S. J. Ryhanen, E. A. Franzosa, H. Vlamakis, C. Huttenhower, D. Gevers, et al. 2016. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine 8 (343):343ra381. doi: 10.1126/scitranslmed.aad0917.
  • Yoshida, N., T. Emoto, T. Yamashita, H. Watanabe, T. Hayashi, T. Tabata, N. Hoshi, N. Hatano, G. Ozawa, N. Sasaki, et al. 2018. Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 138 (22):2486–98. doi: 10.1161/CIRCULATIONAHA.118.033714.
  • Yu, E. W., L. Gao, P. Stastka, M. C. Cheney, J. Mahabamunuge, M. Torres Soto, C. B. Ford, J. A. Bryant, M. R. Henn, and E. L. Hohmann. 2020. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Medicine 17 (3):e1003051. doi: 10.1371/journal.pmed.1003051.
  • Yu, F., W. Han, G. Zhan, S. Li, X. Jiang, L. Wang, S. Xiang, B. Zhu, L. Yang, A. Luo, et al. 2019. Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging 11 (22):10454–67. doi: 10.18632/aging.102469.
  • Yu, H., Z. Guo, S. Shen, and W. Shan. 2016. Effects of taurine on gut microbiota and metabolism in mice. Amino Acids 48 (7):1601–17. doi: 10.1007/s00726-016-2219-y.
  • Yu, J., Q. Feng, S. H. Wong, D. Zhang, Q. Y. Liang, Y. W. Qin, L. Q. Tang, H. Zhao, J. Stenvang, Y. L. Li, et al. 2017. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66 (1):70–8. doi: 10.1136/gutjnl-2015-309800.
  • Zaiss, M. M., R. M. Jones, G. Schett, and R. Pacifici. 2019. The gut-bone axis: How bacterial metabolites bridge the distance. The Journal of Clinical Investigation 129 (8):3018–28. doi: 10.1172/Jci128521.
  • Zhai, W., Y. Huang, X. Zhang, W. Fei, Y. Chang, S. Cheng, Y. Zhou, J. Gao, X. Tang, X. Zhang, et al. 2018. Profile of the skin microbiota in a healthy Chinese population. The Journal of Dermatology 45 (11):1289–300. doi: 10.1111/1346-8138.14594.
  • Zhang, C., S. Li, L. Yang, P. Huang, W. Li, S. Wang, G. Zhao, M. Zhang, X. Pang, Z. Yan, et al. 2013. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nature Communications 4:2163. doi: 10.1038/ncomms3163.
  • Zhao, J., F. Tian, S. Yan, Q. Zhai, H. Zhang, and W. Chen. 2018. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in d-galactose-induced aging mice. Food & Function 9 (2):917–24. doi: 10.1039/c7fo01574g.
  • Zhao, L., X. Qiao, J. Zhu, X. Zhang, J. Jiang, Y. Hao, and F. Ren. 2011. Correlations of fecal bacterial communities with age and living region for the elderly living in Bama, Guangxi, China. Journal of Microbiology (Seoul, Korea) 49 (2):186–92. doi: 10.1007/s12275-011-0405-x.
  • Zheng, J., X. Xiao, Q. Zhang, L. Mao, M. Yu, and J. Xu. 2015. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 7 (8):6924–37. doi: 10.3390/nu7085315.
  • Zhong, H., J. Penders, Z. Shi, H. Ren, K. Cai, C. Fang, Q. Ding, C. Thijs, E. E. Blaak, C. D. A. Stehouwer, et al. 2019. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome 7 (1):2. doi: 10.1186/s40168-018-0608-z.
  • Zhou, P., Y. Zhou, B. Liu, Z. Jin, X. Zhuang, W. Dai, Z. Yang, X. Feng, Q. Zhou, Y. Liu, et al. 2020. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. Msphere 5 (1):00984-19. doi: 10.1128/mSphere.00984-19.
  • Zhu, L., S. S. Baker, C. Gill, W. Liu, R. Alkhouri, R. D. Baker, and S. R. Gill. 2013. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology (Baltimore, Md.) 57 (2):601–9. doi: 10.1002/hep.26093.
  • Zhuang, Z. Q., L. L. Shen, W. W. Li, X. Fu, F. Zeng, L. Gui, Y. Lu, M. Cai, C. Zhu, Y. L. Tan, et al. 2018. Gut microbiota is altered in patients with Alzheimer's disease. Journal of Alzheimer's Disease: JAD 63 (4):1337–46. doi: 10.3233/Jad-180176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.