651
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Current progress in the utilization of smartphone-based imaging for quality assessment of food products: a review

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdullah, M. Z., S. A. Aziz, and A. M. D. Mohamed. 2000. Quality inspection of bakery products using a color-based machine vision system. Journal of Food Quality 23 (1):39–50. doi: 10.1111/j.1745-4557.2000.tb00194.x.
  • Agrawal, A. K., & Goyal, M. R. (Eds.). 2017. Processing technologies for milk and milk products: methods, applications, and energy usage. United States: CRC Press.
  • Aguirre, M. Á., K. D. Long, A. Canals, and B. T. Cunningham. 2019. Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system. Food Chemistry 272:141–7. doi: 10.1016/j.foodchem.2018.08.002.
  • Amani, H., M. Hassan Kamani, H. Amani, and M. Falah. 2015. A study on the decay rate of vacuum-packaged refrigerated beef using image analysis. Journal of Applied Environmental and Biological Sciences 5 (7):182–91.
  • Aquino, A.,. I. Barrio, M.-P. Diago, B. Millan, and J. Tardaguila. 2018. VitisBerry: An android-smartphone application to early evaluate the number of grapevine berries by means of image analysis. Computers and Electronics in Agriculture 148 (May):19–28. doi: 10.1016/j.compag.2018.02.021.
  • Baiano, A. 2017. Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review. Journal of Food Engineering 214:10–5. Elsevier Ltd. doi: 10.1016/j.jfoodeng.2017.06.012.
  • Blommaert, J., R. Siebenmorgen, A. Coulais, L. Metcalfe, M.-A. Miville-Deschênes, K. Okumura, S. Ott, et al. 2003. The ISO handbook CAM-The ISO Camera. http://magpop.elte.hu/budapestschool/SpaceCD/School_Docs/ISO/iso_cam_hb.pdf.
  • Brosnan, T., and D.-W. Sun. 2004. Improving quality inspection of food products by computer vision––a. Journal of Food Engineering 61 (1):3–16. Elsevier: doi: 10.1016/S0260-8774(03)00183-3.
  • Bueno, D., R. Muñoz, and J. L. Marty. 2016. Fluorescence analyzer based on smartphone camera and wireless for detection of ochratoxin A. Sensors and Actuators B: Chemical 232:462–8. doi: 10.1016/j.snb.2016.03.140.
  • Capitán-Vallvey, L. F., N. López-Ruiz, A. Martínez-Olmos, M. M. Erenas, and A. J. Palma. 2015. Recent developments in computer vision-based analytical chemistry: A tutorial review. Analytica Chimica Acta 899:23–56. Elsevier Ltd. doi: 10.1016/j.aca.2015.10.009.
  • Consolvo, S., R. Libby, I. Smith, J. A. Landay, D. W. McDonald, T. Toscos, M. Y. Chen, et al. 2008. Activity sensing in the wild. In Proceeding of the Twenty-Sixth Annual CHI Conference on Human Factors in Computing Systems - CHI ’08, 1797. New York, New York, USA: ACM Press. doi: 10.1145/1357054.1357335.
  • Contreras-Naranjo, J. C., Q. Wei, and A. Ozcan. 2016. Mobile phone-based microscopy, sensing, and diagnostics. IEEE Journal of Selected Topics in Quantum Electronics 22 (3):1–14. doi: 10.1109/JSTQE.2015.2478657.
  • Cruz-Fernández, M., M. J. Luque-Cobija, M. L. Cervera, A. Morales-Rubio, and M. de la Guardia. 2017. Smartphone determination of fat in cured meat products. Microchemical Journal 132 (May):8–14. doi: 10.1016/j.microc.2016.12.020.
  • Das, A. J., A. Wahi, I. Kothari, and R. Raskar. 2016. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness open. Nature Publishing Group. doi: 10.1038/srep32504.
  • de Oliveira Krambeck Franco, M., W. T. Suarez, M. V. Maia, and V. B. dos Santos. 2017. Smartphone application for methanol determination in sugar cane spirits employing digital image-based method. Food Analytical Methods 10 (6)Food Analytical Methods: :2102–9. doi: 10.1007/s12161-016-0777-y.
  • Ding, Z., R. Zhang, and Z. Kan. 2015. Quality and safety inspection of food and agricultural products by LabVIEW IMAQ vision. Food Analytical Methods 8 (2):290–301. doi: 10.1007/s12161-014-9989-1.
  • Du, C.-J., and D.-W. Sun. 2004. Shape extraction and classification of pizza base using computer vision. Journal of Food Engineering 64 (4):489–96. doi: 10.1016/j.jfoodeng.2003.11.016.
  • Dutta, S., G. Prasad Saikia, D. J. Sarma, K. Gupta, P. Das, and P. Nath. 2017. Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique. Journal of Biophotonics 10 (5):623–33. doi: 10.1002/jbio.201500329.
  • Dutta, S., D. Sarma, and P. Nath. 2015. Ground and river water quality monitoring using a smartphone-based PH sensor. AIP Advances 5 (5):057151. doi: 10.1063/1.4921835.
  • Fang, J., X. Qiu, Z. Wan, Q. Zou, K. Su, N. Hu, and P. Wang. 2016. Analytical methods for on-site rapid biochemical detection of marine. Analytical Methods 8 (38):6895–902. doi: 10.1039/C6AY01384H.
  • Grillo, O., V. Rizzo, R. Saccone, B. Fallico, A. Mazzaglia, G. Venora, and G. Muratore. 2014. Use of image analysis to evaluate the shelf life of bakery products. Food Research International 62:514–22. Elsevier Ltd: doi: 10.1016/j.foodres.2014.03.034.
  • Hosseininia, S. A. R., M. H. Kamani, and S. Rani. 2017. Quantitative determination of sunset yellow concentration in soft drinks via digital image processing. Journal of Food Measurement and Characterization 11 (3):1065–70. Springer US: doi: 10.1007/s11694-017-9483-8.
  • Hosseinpour, S., A. H. Ilkhchi, and M. Aghbashlo. 2019. An intelligent machine vision-based smartphone app for beef quality evaluation. Journal of Food Engineering 248:9–22. (August 2018). Elsevier: doi: 10.1016/j.jfoodeng.2018.12.009.
  • Hosu, O., M. Lettieri, N. Papara, A. Ravalli, R. Sandulescu, C. Cristea, G. Marrazza, and C. Ugo. 2019. Talanta colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta 204:525–32. Elsevier B.V.:doi: 10.1016/j.talanta.2019.06.041.
  • Hu, X., J. Shi, Y. Shi, X. Zou, M. Arslan, W. Zhang, X. Huang, Z. Li, and Y. Xu. 2019. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chemistry 272:58–65. Elsevier:doi: 10.1016/j.foodchem.2018.08.021.
  • Hussain, I., K. U. Ahamad, and P. Nath. 2017. Low-cost, robust, and field portable smartphone platform photometric sensor for fluoride level detection in drinking water. Analytical Chemistry 89 (1):767–75. doi: 10.1021/acs.analchem.6b03424.
  • Hussain, I., M. Das, K. U. Ahamad, and P. Nath. 2017a. Water salinity detection using a smartphone. Sensors and Actuators, B: Chemical 239:1042–50. doi: 10.1016/j.snb.2016.08.102.
  • Hussain, I., M. Das, K. U. Ahamad, and P. Nath. 2017b. Water salinity detection using a smartphone. Sensors and Actuators B: Chemical 239:1042–50. doi: 10.1016/j.snb.2016.08.102.
  • Intaravanne, Y., S. Sumriddetchkajorn, and J. Nukeaw. 2012. Cell phone-based two-dimensional spectral analysis for banana ripeness estimation. Sensors and Actuators B: Chemical 168:390–4. doi: 10.1016/j.snb.2012.04.042.
  • Jackman, P., and D. W. Sun. 2012. Computer vision in the fresh and processed meat industries. Computer vision technology in the food and beverage industries. UK: Woodhead Publishing Limited. doi: 10.1533/9780857095770.3.255.
  • Jeanmonod, D. J., Keisuke, and R. Suzuki. 2018. We are IntechOpen, the world ’ s leading publisher of open access books built by scientists, for scientists TOP 1% control of a proportional hydraulic system. Intech Open 2 (64):73–92. doi: 10.5772/32009.
  • Kamani, M. H., O. Safari, S. A. Mortazavi, M. Mehraban Sang Atash, and N. M. Azghadi. 2017. Using an image processing based technique and predictive models for assessing lipid oxidation in rainbow trout fillet. Food Bioscience 19:42–8. (August 2016). Elsevier Ltd: doi: 10.1016/j.fbio.2017.05.005.
  • Kandpal, L., J. Lee, J. Bae, S. Lohumi, and B.-K. Cho. 2019. Development of a low-cost multi-waveband LED illumination imaging technique for rapid evaluation of fresh meat quality. Applied Sciences 9 (5):912. doi: 10.3390/app9050912.
  • Kartakoullis, A., J. Comaposada, A. Cruz-Carrión, X. Serra, and P. Gou. 2019. Feasibility study of smartphone-based near infrared spectroscopy (NIRS) for salted minced meat composition diagnostics at different temperatures. Food Chemistry 278:314–21. Elsevier Ltd. doi: 10.1016/j.foodchem.2018.11.054.
  • Kaur, J. M. S. 2012. Visual inspection of bakery products by texture analysis using image processing techniques IOSR. Journal of Engineering 2 (4):526–8.
  • Kays, S. J. 1991. Postharvest physiology and handling of perishable plant products. Postharvest Physiology and Handling of Perishable Plant Products. Van Nostrand Reinhold Inc. https://www.cabdirect.org/cabdirect/abstract/19920316090?freeview=true.
  • Kucheryavskiy, S., A. Melenteva, and A. Bogomolov. 2014. Determination of Fat and total protein content in milk using conventional digital imaging. Talanta 121:144–52. Elsevier. doi:10.1017/CBO9781139565165.015.
  • Kwon, O., and T. Park. 2017. Applications of smartphone cameras in agriculture, environment, and food : A review. Journal of Biosystems Engineering 42 (4):330–8.
  • Lane, N. D., E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. 2010. Ad hoc and sensor networks. A survey of mobile phone sensing. IEEE Communications Magazine. http://gtubicomp2015grad.pbworks.com/w/file/fetch/94746338/lane-survey-of-mobile-phone-sensing-2010.pdf.
  • León-Roque, N., M. Abderrahim, L. Nuñez-Alejos, S. M. Arribas, and L. Condezo-Hoyos. 2016. Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks. Talanta 161:31–9. Elsevier. doi: 10.1016/j.talanta.2016.08.022.
  • Levin, S., S. Krishnan, S. Rajkumar, N. Halery, and P. Balkunde. 2016. Monitoring of fluoride in water samples using a smartphone. Science of the Total Environment 551–552:101–7. doi: 10.1016/j.scitotenv.2016.01.156.
  • Li, F., Y. Bao, D. Wang, W. Wang, and L. Niu. 2016. Smartphones for sensing. Science Bulletin 61 (3):190–201. Science in China Press. doi: 10.1007/s11434-015-0954-1.
  • Li, X., J. Wang, C. Yi, L. Jiang, J. Wu, X. Chen, X. Shen, Y. Sun, and H. Lei. 2019. A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed. Sensors and Actuators B: Chemical 290:170–9. (February). Elsevier: doi: 10.1016/j.snb.2019.03.108.
  • Liang, P-s, T. S. Park, and J-y Yoon. 2014. Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Scientific Reports 4:5953. doi: 10.1038/srep05953.
  • Lin, Y., and K. Jerabek. 2008. United States patent. Geothermics. doi: 10.1016/0375-6505(85)90011-2..
  • Majdinasab, M.,. K. Mitsubayashi, and J. L. Marty. 2019. Optical and electrochemical sensors and biosensors for the detection of quinolones. Trends in Biotechnology 37 (8):898–915. doi: 10.1016/j.tibtech.2019.01.004.
  • Mao, X., and T. J. Huang. 2012. Microfluidic diagnostics for the developing world. Lab on a Chip 12 (8):1412–6. Royal Society of Chemistry. doi: 10.1039/c2lc90022j.
  • Masawat, P., A. Harfield, and A. Namwong. 2015. An IPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chemistry 184:23–9. Elsevier Ltd:doi: 10.1016/j.foodchem.2015.03.089.
  • McCracken, K. E., T. Tat, V. Paz, and J. Y. Yoon. 2017. Smartphone-based fluorescence detection of bisphenol A from water samples. RSC Advances 7 (15):9237–43. Royal Society of Chemistry: doi: 10.1039/C6RA27726H.
  • McCracken, K. E., and J. Y. Yoon. 2016. Recent approaches for optical smartphone sensing in resource-limited settings: A brief review. Analytical Methods 8 (36):6591–601. doi: 10.1039/C6AY01575A.
  • Miluzzo, E., N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng, 2008. and, and A. T. Campbell. Sensing meets mobile social networks. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems - SenSys ’08, 337. New York, New York, USA: ACM Press. doi: 10.1145/1460412.1460445.
  • Neethirajan, S., C. Karunakaran, S. Symons, and D. S. Jayas. 2006. Classification of vitreousness in durum wheat using soft X-Rays and transmitted light images. Computers and Electronics in Agriculture 53 (1):71–8. doi: 10.1016/j.compag.2006.03.001.
  • Pérez-Bernal, J. L., M. Villar-Navarro, M. L. Morales, C. Ubeda, and R. M. Callejón. 2017. The smartphone as an economical and reliable tool for monitoring the browning process in sparkling wine. Computers and Electronics in Agriculture 141:248–54. doi: 10.1016/j.compag.2017.07.029.
  • Cavallo, D. P., M. Cefola, B. Pace, A. F. Logrieco, and G. Attolico. 2019. Non-destructive and contactless quality evaluation of table grapes by a computer vision system. Computers and Electronics in Agriculture 156:558–64. Elsevier. doi: 10.1016/j.compag.2018.12.019.
  • Rafiq, A., Hilal, A. Makroo, P. Sachdeva, and S. Sharma. 2013. Application of computer vision system in food processing-A review. Journal of Engineering Research and Applications 3 (6):1197–205.
  • Roda, A., E. Michelini, M. Zangheri, M. Di Fusco, D. Calabria, and P. Simoni. 2016. Smartphone-based biosensors: A critical review and perspectives. TrAC Trends in Analytical Chemistry 79:317–25. V.: doi: 10.1016/j.trac.2015.10.019.
  • Majumdar, S., and T. D. S. Jayas. 2000. Classification of cereal grains using machine vision: II. Color models. ASAE 43 (6):1677.
  • Shrivastava, S., W. I. Lee, and N. E. Lee. 2018. Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosensors & Bioelectronics 109 (June):90–7. Elsevier Ltd. doi: 10.1016/j.bios.2018.03.006.
  • Sonka, M., V. Hlavac, R. Boyle. 2014. Image processing, analysis, and machine vision. USA: Cengage Learning. Accessed June 28. https://books.google.hu/books?hl=en&lr=&id=DcETCgAAQBAJ&oi=fnd&pg=PR11&dq=+H+Sonka,+V+Hlavac&ots=ynh1Km6qpG&sig=-gBuWsUbb5WAS3Jp5BatsSPkDX4&redir_esc=y#v=onepage&q=HSonka%2CVHlavac&f=false.
  • Storbeck, F., and B. Daan. 2001. Fish species recognition using computer vision. Fisheries Research 51 (1):11–5. doi: 10.1016/S0165-7836(00)00254-X.
  • Sumriddetchkajorn, S.,. K. Chaitavon, and Y. Intaravanne. 2013. Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water. Sensors and Actuators B: Chemical 182:592–7. doi: 10.1016/j.snb.2013.03.080.
  • Sun, D. W. (Ed.). 2012. Computer vision technology in the food and beverage industries. UK: Woodhead Publishing.
  • Sun, J.-P., C.-Y. Hou, J. I. N. G. Feng, and X. U. Wang. 2008. Determination of the protein content in rice by the. Journal of Food Quality 31 (2):250–63. doi: 10.1111/j.1745-4557.2008.00192.x.
  • Vibhute, A., and S. K. Bodhe. 2012. Applications of image processing in agriculture: A survey. International Journal of Computer Applications 52 (2):34–40. doi: 10.5120/8176-1495.
  • Wei, Q., R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, R. Caire, D. Tseng, and A. Ozcan. 2014. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano 8 (2):1121–9. American Chemical Society: doi: 10.1021/nn406571t.
  • Wu, D., and D.-W. Sun. 2013. Colour measurements by computer vision for food quality control – A review. Trends in Food Science & Technology 29 (1):5–20. Elsevier: doi: 10.1016/j.tifs.2012.08.004.
  • Xiong, Z., D.-W. Sun, H. Pu, W. Gao, and Q. Dai. 2017. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review. Critical Reviews in Food Science and Nutrition 57 (4):755–68. Taylor & Francis:doi: 10.1080/10408398.2014.954282.
  • Yao, X., F. Cai, P. Zhu, H. Fang, J. Li, and S. He. 2019. PT SC. Meat Science. Elsevier Ltd doi: 10.1016/j.meatsci.2019.02.017.
  • Ye, Y.,. H. Guo, and X. Sun. 2019. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosensors & Bioelectronics 126:389–404. doi: 10.1016/j.bios.2018.10.039.
  • Yu, L., Z. Shi, C. Fang, Y. Zhang, Y. Liu, and C. Li. 2015. Author’s accepted manuscript. Biosensors and Bioelectronic. Elsevier. doi: 10.1016/j.bios.2015.02.035.
  • Zeinhom, M. M. A., Y. Wang, L. Sheng, D. Du, L. Li, M. J. Zhu, and Y. Lin. 2018. Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella Enteritidis in milk, cheese and water. Sensors and Actuators B: Chemical 261:75–82.
  • Zeinhom, M. M. A., Y. Wang, Y. Song, M.-J. Zhu, Y. Lin, and D. Du. 2018. A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in yoghurt and egg. Biosensors & Bioelectronics 99:479–85. doi: 10.1016/j.bios.2017.08.002.
  • Zhu, H., I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, and A. Ozcan. 2013. Cost-effective and rapid blood analysis on a cell-phone. Lab on a Chip 13 (7):1282–8. The Royal Society of Chemistry. doi: 10.1039/c3lc41408f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.