1,412
Views
17
CrossRef citations to date
0
Altmetric
Reviews

A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship

, ORCID Icon, , , , & show all

References

  • Ahn, S. M., H. S. Rho, H. S. Baek, Y. H. Joo, Y. D. Hong, S. S. Shin, Y.-H. Park, and S. N. Park. 2011. Inhibitory activity of novel kojic acid derivative containing trolox moiety on melanogenesis. Bioorganic & Medicinal Chemistry Letters 21 (24):7466–9. doi: 10.1016/j.bmcl.2011.09.122.
  • Akin, S., E. A. Demir, A. Colak, Y. Kolcuoglu, N. Yildirim, and O. Bekircan. 2019. Synthesis, biological activities and molecular docking studies of some novel 2,4,5-trisubstituted-1,2,4-triazole-3-one derivatives as potent tyrosinase inhibitors. Journal of Molecular Structure 1175:280–6. doi: 10.1016/j.molstruc.2018.07.065.
  • Akinwumi, B. C., K. A. M. Bordun, and H. D. Anderson. 2018. Biological Activities of Stilbenoids. International Journal of Molecular Sciences 19 (3):25. doi: 10.3390/ijms19030:792.
  • Artes, F., M. Castaner, and M. I. Gil. 1998. Review: Enzymatic browning in minimally processed fruit and vegetables. Food Science and Technology International 4 (6):377–89. doi: 10.1177/108201329800400602.
  • Ashooriha, M., M. Khoshneviszadeh, M. Khoshneviszadeh, S. E. Moradi, A. Rafiei, M. Kardan, and S. Emami. 2019. 1,2,3-Triazole-based kojic acid analogs as potent tyrosinase inhibitors: Design, synthesis and biological evaluation. Bioorganic Chemistry 82:414–22. doi: 10.1016/j.bioorg.2018.10.069.
  • Ashraf, Z., M. Rafiq, S. Y. Seo, M. M. Babar, and N. Zaidi. 2015. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorganic & Medicinal Chemistry 23 (17):5870–80. doi: 10.1016/j.bmc.2015.06.068.
  • Bae, S. J., Y. M. Ha, Y. J. Park, J. Y. Park, Y. M. Song, T. K. Ha, P. Chun, H. R. Moon, and H. Y. Chung. 2012. Design, synthesis, and evaluation of (E)-N-substituted benzylidene-aniline derivatives as tyrosinase inhibitors. European Journal of Medicinal Chemistry 57:383–90. doi: 10.1016/j.ejmech.2012.09.026.
  • Baek, H. S., H. S. Rho, J. W. Yoo, S. M. Aln, J. Y. Lee, J. Lee, M. K. Kim, D. H. Kim, and I. S. Chang. 2008. The inhibitory effect of new hydroxamic acid derivatives on melanogenesis. Bulletin of the Korean Chemical Society 29 (1):43–6. doi: 10.5012/bkcs.2008.29.1.043.
  • Bai, P., E. Chen, G. Shen, D. Wei, D. Wei, and J. Wang. 2014. Inhibition of phenoloxidase activity delays development in Bactrocera dorsalis (Diptera: Tephritidae). Florida Entomologist 97 (2):477–85. doi: 10.1653/024.097.0218.
  • Bandgar, B. P., L. K. Adsul, H. V. Chavan, S. N. Shringare, B. L. Korbad, S. S. Jalde, S. V. Lonikar, S. H. Nile, and A. L. Shirfule. 2012. Synthesis, biological evaluation, and molecular docking of N-{3-[3-(9-methyl-9H-carbazol-3-yl)-acryloyl]-phenyl}-benzamide/amide derivatives as xanthine oxidase and tyrosinase inhibitors . Bioorganic & Medicinal Chemistry 20 (18):5649–57. doi: 10.1016/j.bmc.2012.07.001.
  • Bentley, R. 2006. From miso, saké and shoyu to cosmetics: A century of science for kojic acid. Natural Product Reports 23 (6):1046–62. doi: 10.1039/b603758p.
  • Bernard, P., and J. Y. Berthon. 2000. Resveratrol: An original mechanism on tyrosinase inhibition. International Journal of Cosmetic Science 22 (3):219–26. doi: 10.1046/j.1467-2494.2000.00019.x.
  • Burdock, F. A., M. G. Soni, and I. G. Carabin. 2001. Evaluation of health aspects of kojic acid in food. Regulatory Toxicology and Pharmacology: RTP 33 (1):80–101. doi: 10.1006/rtph.2000.1442.
  • Burnett, C. L., W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. C. Liebler, J. G. Marks, Jr., R. C. Shank, T. J. Slaga, P. W. Snyder, et al. 2010. Final report of the safety assessment of kojic acid as used in cosmetics. International Journal of Toxicology 29 (6 Suppl):244S–73. doi: 10.1177/1091581810385956.
  • Carballo-Carbajal, I., A. Laguna, J. Romero-Gimenez, T. Cuadros, J. Bove, M. Martinez-Vicente, A. Parent, M. Gonzalez-Sepulveda, N. Penuelas, A. Torra, et al. 2019. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nature Communications 10 (1):19. doi: 10.1038/s41467-019-08858-y.
  • Channar, P. A., A. Saeed, F. A. Larik, B. Batool, S. Kalsoom, M. M. Hasan, M. F. Erben, H. R. El-Seedi, M. Ali, and Z. Ashraf. 2018. Synthesis of aryl pyrazole via Suzuki coupling reaction, in vitro mushroom tyrosinase enzyme inhibition assay and in silico comparative molecular docking analysis with Kojic acid. Bioorganic Chemistry 79:293–300. doi: 10.1016/j.bioorg.2018.04.026.
  • Channar, P. A., A. Saeed, F. A. Larik, M. Rafiq, Z. Ashraf, F. Jabeen, and T. A. Fattah. 2017. Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors . Bioorganic & Medicinal Chemistry 25 (21):5929–38. doi: 10.1016/j.bmc.2017.09.009.
  • Chekir, S., M. Debbabi, A. Regazzetti, D. Dargere, O. Laprevote, H. B. Jannet, and R. Gharbi. 2018. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorganic Chemistry 80:189–94. doi: 10.1016/j.bioorg.2018.06.005.
  • Chen, J., Q. Li, Y. Ye, Z. Huang, Z. Ruan, and N. Jin. 2020. Phloretin as both a substrate and inhibitor of tyrosinase: Inhibitory activity and mechanism. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 226: 117642. doi: 10.1016/j.saa.2019.117642.
  • Chen, L., Y. Hu, W. Song, K. Song, X. Liu, Y. Jia, J. Zhuang, and Q. Chen. 2012. Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: Novel tyrosinase inhibitors. Journal of Agricultural and Food Chemistry 60 (6):1542–7. doi: 10.1021/jf204420x.
  • Chen, Z., D. Cai, D. Mou, Q. Yan, Y. Sun, W. Pan, Y. Wan, H. Song, and W. Yi. 2014. Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted 5-benzylidene(thio) barbiturates as novel tyrosinase inhibitors . Bioorganic & Medicinal Chemistry 22 (13):3279–84. doi: 10.1016/j.bmc.2014.04.060.
  • Chhabria, M. T., S. Patel, P. Modi, and P. S. Brahmkshatriya. 2016. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Current Topics in Medicinal Chemistry 16 (26):2841–62. doi: 10.2174/1568026616666160506130731.
  • Choi, S. W., S. K. Lee, E. O. Kim, J. H. Oh, K. S. Yoon, N. Parris, K. B. Hicks, and R. A. Moreau. 2007. Antioxidant and antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids. Journal of Agricultural and Food Chemistry 55 (10):3920–5. doi: 10.1021/jf0635154.
  • Chou, T., H. Ding, W. Hung, and C. Liang. 2010. Antioxidative characteristics and inhibition of alpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Experimental Dermatology 19 (8):742–50. doi: 10.1111/j.1600-0625.2010.01091.x.
  • Criton, M., and V. Le Mellay-Hamon. 2008. Analogues of N-hydroxy-N'-phenylthiourea and N-hydroxy-N'-phenylurea as inhibitors of tyrosinase and melanin formation. Bioorganic & Medicinal Chemistry Letters 18 (12):3607–10. doi: 10.1016/j.bmcl.2008.04.079.
  • Criton, M., and V. Le Mellay-Hamon. 2011. Dimeric cinnamoylamide derivatives as inhibitors of melanogenesis. Biological & Pharmaceutical Bulletin 34 (3):420–5. doi: 10.1248/bpb.34.420.
  • Delogu, G., G. Podda, M. Corda, M. B. Fadda, A. Fais, and B. Era. 2010. Synthesis and biological evaluation of a novel series of bis-salicylaldehydes as mushroom tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 20 (20):6138–40. doi: 10.1016/j.bmcl.2010.08.018.
  • Dilworth, J. R., and R. Hueting. 2012. Metal complexes of thiosemicarbazones for imaging and therapy. Inorganica Chimica Acta 389:3–15. doi: 10.1016/j.ica.2012.02.019.
  • Dong, H., J. Liu, X. Liu, Y. Yu, and S. Cao. 2017. Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorganic Chemistry 75:106–17. doi: 10.1016/j.bioorg.2017.07.002.
  • Dong, H., J. Liu, X. Liu, Y. Yu, and S. Cao. 2018. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues. Journal of Molecular Structure 1151:353–65. doi: 10.1016/j.molstruc.2017.08.034.
  • Dong, X., Y. Zeng, Y. Liu, L. You, X. Yin, J. Fu, and J. Ni. 2020. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytotherapy Research 34 (2):270–81. doi: 10.1002/ptr.6532.
  • Emami, S., S. J. Hosseinimehr, K. Shahrbandi, A. A. Enayati, and Z. Esmaeeli. 2012. Synthesis and evaluation of 2(3H)-thiazole thiones as tyrosinase inhibitors. Archiv der Pharmazie 345 (8):629–37. doi: 10.1002/ardp.201200028.
  • Fan, Q., H. Jiang, E. Yuan, J. Zhang, Z. Ning, S. J. Qi, and Q. Wei. 2012. Tyrosinase inhibitory effects and antioxidative activities of novel cinnamoyl amides with amino acid ester moiety. Food Chemistry 134 (2):1081–7. doi: 10.1016/j.foodchem.2012.03.021.
  • Gaeta, A., F. Molina-Holgado, X. L. Kong, S. Salvage, S. Fakih, P. T. Francis, R. J. Williams, and R. C. Hider. 2011. Synthesis, physical-chemical characterisation and biological evaluation of novel 2-amido-3-hydroxypyridin-4(1H)-ones: Iron chelators with the potential for treating Alzheimer's disease. Bioorganic & Medicinal Chemistry 19 (3):1285–97. doi: 10.1016/j.bmc.2010.12.007.
  • Gaikwad, N., S. Nanduri, and Y. V. Madhavi. 2019. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. European Journal of Medicinal Chemistry 181:111561. doi: 10.1016/j.ejmech.2019.07.064.
  • Garcia-Rivera, J., and A. Casadevall. 2001. Melanization of Cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Medical Mycology 39 (4):353–7. doi:10.1080/714031043.
  • Gawande, S. S., S. C. Warangkar, B. P. Bandgar, and C. N. Khobragade. 2013. Synthesis of new heterocyclic hybrids based on pyrazole and thiazolidinone scaffolds as potent inhibitors of tyrosinase. Bioorganic & Medicinal Chemistry 21 (10):2772–7. doi: 10.1016/j.bmc.2012.12.053.
  • Genç, H., M. Zengin, E. Yavuz, N. Gencer, and O. Arslan. 2014. Synthesis and tyrosinase inhibitory properties of novel isoquinoline urea/thiourea derivatives. Artificial Cells, Nanomedicine, and Biotechnology 42 (3):178–85. doi: 10.3109/10731199.2013.785953.
  • Geng, J., S. B. Yu, X. Wan, X. J. Wang, P. Shen, P. Zhou, and X. D. Chen. 2008. Protective action of bacterial melanin against DNA damage in full UV spectrums by a sensitive plasmid-based noncellular system . Journal of Biochemical and Biophysical Methods 70 (6):1151–5. doi: 10.1016/j.jprot.2007.12.013.
  • Gerdemann, C., C. Eicken, and B. Krebs. 2002. The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Accounts of Chemical Research 35 (3):183–91. doi: 10.1021/ar990019a.
  • Ghafary, S., S. Ranjbar, B. Larijani, M. Amini, M. Biglar, M. Mahdavi, M. Bakhshaei, M. Khoshneviszadeh, A. Sakhteman, and M. Khoshneviszadeh. 2019. Novel morpholine containing cinnamoyl amides as potent tyrosinase inhibitors. International Journal of Biological Macromolecules 135:978–85. doi: 10.1016/j.ijbiomac.2019.05.201.
  • Ghani, U. 2019. Carbazole and hydrazone derivatives as new competitive inhibitors of tyrosinase: Experimental clues to binuclear copper active site binding. Bioorganic Chemistry 83:235–41. doi: 10.1016/j.bioorg.2018.10.026.
  • Ghani, U., and N. Ullah. 2010. New potent inhibitors of tyrosinase: Novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site. Bioorganic & Medicinal Chemistry 18 (11):4042–8. doi: 10.1016/j.bmc.2010.04.021.
  • Gluszynska, A. 2015. Biological potential of carbazole derivatives. European Journal of Medicinal Chemistry 94:405–26. doi: 10.1016/j.ejmech.2015.02.059.
  • Gomtsyan, A. 2012. Heterocycles in drugs and drug discovery. Chemistry of Heterocyclic Compounds 48 (1):7–10. doi: 10.1007/s10593-012-0960-z.
  • Gür, Z. T., F. S. Şenol, S. Shekfeh, İ. E. Orhan, E. Banoğlu, andB. Çalişkan. 2019. Novel Piperazine Amides of Cinnamic Acid Derivatives as Tyrosinase Inhibitors. Letters in Drug Design & Discovery 16 (1):36–44. doi:10.2174/1570180815666180420105652.
  • Ha, J. H., and S. N. Park. 2018. Dimeric cinnamoylamide analogues for regulation of tyrosinase activity in melanoma cells: A role of diamide-link chain length. Bioorganic & Medicinal Chemistry 26 (23-24):6015–22. doi: 10.1016/j.bmc.2018.10.036.
  • Ha, Y. M., J. Y. Park, Y. J. Park, D. Park, Y. J. Choi, J. M. Kim, E. K. Lee, Y. K. Han, J.-A. Kim, J. Y. Lee, et al. 2011. Synthesis and biological activity of hydroxy substituted phenyl-benzo[d]thiazole analogues for antityrosinase activity in B16 cells . Bioorganic & Medicinal Chemistry Letters 21 (8):2445–9. doi: 10.1016/j.bmcl.2011.02.064.
  • Ha, Y. M., Y. J. Park, J. A. Kim, D. Park, J. Y. Park, H. J. Lee, J. Y. Lee, H. R. Moon, and H. Y. Chung. 2012. Design and synthesis of 5-(substituted benzylidene)thiazolidine-2,4-dione derivatives as novel tyrosinase inhibitors. European Journal of Medicinal Chemistry 49:245–52. doi: 10.1016/j.ejmech.2012.01.019.
  • Hałdys, K., and R. Latajka. 2019. Thiosemicarbazones with tyrosinase inhibitory activity. MedChemComm 10 (3):378–89. doi: 10.1039/c9md00005d.
  • Hamidian, H., and S. Azizi. 2015. Synthesis of novel compounds containing morpholine and 5(4H)-oxazolone rings as potent tyrosinase inhibitors. Bioorganic & Medicinal Chemistry 23 (21):7089–94. doi: 10.1016/j.bmc.2015.09.015.
  • Hamidian, H.,. R. Tagizadeh, S. Fozooni, V. Abbasalipour, A. Taheri, and M. Namjou. 2013. Synthesis of novel azo compounds containing 5(4H)-oxazolone ring as potent tyrosinase inhibitors. Bioorganic & Medicinal Chemistry 21 (7):2088–92. doi: 10.1016/j.bmc.2013.01.014.
  • Hashemi, S. M., and S. Emami. 2015. Kojic acid-derived tyrosinase inhibitors: Synthesis and bioactivity. Pharmaceutical and Biomedical Research 1 (1):1–17. doi: 10.18869/acadpub.pbr.1.1.1.
  • Hu, W., W. Du, S. Bai, S. Lv, and G. Chen. 2018. Phenoloxidase, an effective bioactivity target for botanical insecticide screening from green walnut husks. Natural Product Research 32 (23):2848–51. doi: 10.1080/14786419.2017.1380015.
  • Hu, Y., C. Li, X. Wang, Y. Yang, and H. Zhu. 2014. 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chemical Reviews 114 (10):5572–610. doi: 10.1021/cr400131u.
  • Ismail, T., S. Shafi, J. Srinivas, D. Sarkar, Y. Qurishi, J. Khazir, M. S. Alam, and H. M. S. Kumar. 2016. Synthesis and tyrosinase inhibition activity of trans-stilbene derivatives. Bioorganic Chemistry 64:97–102. doi: 10.1016/j.bioorg.2016.01.001.
  • Ismaya, W. T., H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti, H. J. Wichers, and B. W. Dijkstra. 2011. Crystal structure of agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 50 (24):5477–86. doi: 10.1021/bi200395t.
  • Ito, S., K. Wakamatsu, and H. Ozeki. 2000. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Research 13:103–9. doi: 10.1034/j.1600-0749.13.s8.19.x.
  • Jain, A. K., S. Sharma, A. Vaidya, V. Ravichandran, and R. K. Agrawal. 2013. 1,3,4-Thiadiazole and its derivatives: A review on recent progress in biological activities. Chemical Biology & Drug Design 81 (5):557–76. doi: 10.1111/cbdd.12125.
  • Jimenez, M., S. Chazarra, J. Escribano, J. Cabanes, and F. Garcia-Carmona. 2001. Competitive inhibition of mushroom tyrosinase by 4-substituted benzaldehydes. Journal of Agricultural and Food Chemistry 49 (8):4060–3. doi: 10.1021/jf010194h.
  • Kang, K. H., B. Lee, S. Son, H. Y. Yun, K. M. Moon, H. O. Jeong, D. H. Kim, E. K. Lee, Y. J. Choi, D. H. Kim, et al. 2015. (Z)-2-(Benzo[d]thiazol-2-ylamino)-5-(substituted benzylidene)thiazol-4(5H)-one derivatives as novel tyrosinase inhibitors . Biological & Pharmaceutical Bulletin 38 (8):1227–33. doi: 10.1248/bpb.b15-00300.
  • Karakaya, G., A. Ture, A. Ercan, S. Oncul, and M. D. Aytemir. 2019. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorganic Chemistry 88:102950 doi: 10.1016/j.bioorg.2019.102950.
  • Kaur Manjal, S., R. Kaur, R. Bhatia, K. Kumar, V. Singh, R. Shankar, R. Kaur, and R. K. Rawal. 2017. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorganic Chemistry 75:406–23. doi: 10.1016/j.bioorg.2017.10.014.
  • Khan, K. M., U. R. Mughal, M. T. H. Khan, U. Zia, S. Perveen, and M. I. Choudhary. 2006. Oxazolones: New tyrosinase inhibitors; synthesis and their structure-activity relationships. Bioorganic & Medicinal Chemistry 14 (17):6027–33. doi: 10.1016/j.bmc.2006.05.014.
  • Khan, M. T. H., M. I. Choudhary, K. M. Khan, M. Rani, and R. Atta Ur. 2005. Structure-activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorganic & Medicinal Chemistry 13 (10):3385–95. doi: 10.1016/j.bmc.2005.03.012.
  • Kim, H., J. Choi, J. K. Cho, S. Y. Kim, and Y.-S. Lee. 2004. Solid-phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability, and toxicity. Bioorganic & Medicinal Chemistry Letters 14 (11):2843–6. doi: 10.1016/j.bmcl.2004.03.046.
  • Kim, M., H. Youk, J. Yoo, S. Ahn, H. Rho, J. Ha, J. Hwang, and S. Park. 2014. Synthesis of dimeric cinnamoylamide derivatives and evaluation of their depigmenting activities. Bulletin of the Korean Chemical Society 35 (10):3085–8. doi: 10.5012/bkcs.2014.35.10.3085.
  • Kim, Y. M., J. Yun, C. K. Lee, H. Lee, K. R. Min, and Y. Kim. 2002. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. The Journal of Biological Chemistry 277 (18):16340–4. doi: 10.1074/jbc.M200678200.
  • Klabunde, T., C. Eicken, J. C. Sacchettini, and B. Krebs. 1998. Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Structural Biology 5 (12):1084–90. doi: 10.1038/4193.
  • Kong, Y. H., Y. O. Jo, C. W. Cho, D. Son, S. Park, J. Rho, and S. Y. Choi. 2008. Inhibitory effects of cinnamic acid on melanin biosynthesis in skin. Biological & Pharmaceutical Bulletin 31 (5):946–54. doi: 10.1248/bpb.31.946.
  • Körner, A., and J. Pawelek. 1982. Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science (New York, N.Y.) 217 (4565):1163–5. doi: 10.1126/science.6810464.
  • Korner, A. M., and J. Pawelek. 1980. Dopachrome conversion: A possible control point in melanin biosynthesis. The Journal of Investigative Dermatology 75 (2):192–5. doi: 10.1111/1523-1747.ep12522650.
  • Kubo, I., and I. Kinst-Hori. 1998. Tyrosinase inhibitors from cumin. Journal of Agricultural and Food Chemistry 46 (12):5338–41. doi: 10.1021/jf980226+.
  • Kubo, I., and I. Kinst-Hori. 1999a. 2-hydroxy-4-methoxybenzaldehyde: A potent tyrosinase inhibitor from African medicinal plants. Planta Medica 65 (1):19–22. doi: 10.1055/s-1999-13955.
  • Kubo, I., and I. Kinst-Hori. 1999b. Tyrosinase inhibitory activity of the olive oil flavor compounds. Journal of Agricultural and Food Chemistry 47 (11):4574–8. doi: 10.1021/jf990165v.
  • Kwak, S. Y., S. Lee, H. R. Choi, K. C. Park, and Y. S. Lee. 2011. Dual effects of caffeoyl-amino acidyl-hydroxamic acid as an antioxidant and depigmenting agent. Bioorganic & Medicinal Chemistry Letters 21 (18):5155–8. doi: 10.1016/j.bmcl.2011.07.064.
  • Kwak, S. Y., J. K. Yang, H. R. Choi, K. C. Park, Y. B. Kim, and Y. S. Lee. 2013. Synthesis and dual biological effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant. Bioorganic & Medicinal Chemistry Letters 23 (4):1136–42. doi: 10.1016/j.bmcl.2012.10.107.
  • Lam, K. W., A. Syahida, Z. Ul-Haq, M. B. A. Rahman, and N. H. Lajis. 2010. Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 20 (12):3755–9. doi: 10.1016/j.bmcl.2010.04.067.
  • Lambert, D. R., R. J. Siegle, and C. Camisa. 1989. Griseofulvin and ketoconazole in the treatment of dermatophyte infections. International Journal of Dermatology 28 (5):300–4. doi: 10.1111/j.1365-4362.1989.tb01348.x.
  • Larik, F. A., A. Saeed, P. A. Channar, U. Muqadar, Q. Abbas, M. Hassan, S. Y. Seo, and M. Bolte. 2017. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers. European Journal of Medicinal Chemistry 141:273–81. doi: 10.1016/j.ejmech.2017.09.059.
  • Lee, K. C., P. Thanigaimalai, V. K. Sharma, M. S. Kim, E. Roh, B. Y. Hwang, Y. Kim, and S. H. Jung. 2010. Structural characteristics of thiosemicarbazones as inhibitors of melanogenesis. Bioorganic & Medicinal Chemistry Letters 20 (22):6794–6. doi: 10.1016/j.bmcl.2010.08.114.
  • Lee, S., S. Ullah, C. Park, H. W. Lee, D. Kang, J. Yang, J. Akter, Y. Park, P. Chun, and H. R. Moon. 2019. Inhibitory effects of N-(acryloyl)benzamide derivatives on tyrosinase and melanogenesis. Bioorganic & Medicinal Chemistry 27 (17):3929–37. doi: 10.1016/j.bmc.2019.07.034.
  • Lei, D., Y. Feng, and D. Jiang. 2004. Characterization of polyphenol oxidase from plants. Progress in Natural Science 14 (7):553–61. doi: 10.1080/10020070412331343941.
  • Ley, J. P., and H. J. Bertram. 2001. Hydroxy- or methoxy-substituted benzaldoximes and benzaldehyde-O-alkyloximes as tyrosinase inhibitors. Bioorganic & Medicinal Chemistry 9 (7):1879–85. doi: 10.1016/S0968-0896(01)00084-0.
  • Li, D., P. Hu, M. Liu, X. Kong, J. Zhang, R. C. Hider, and T. Zhou. 2013. Design and synthesis of hydroxypyridinone-L-phenylalanine conjugates as potential tyrosinase inhibitors. Journal of Agricultural and Food Chemistry 61 (27):6597–603. doi: 10.1021/jf401585f.
  • Li, Z., L. Chen, X. Yu, Y. Hu, K. Song, X. Zhou, and Q. Chen. 2010. Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on mushroom tyrosinase. Journal of Agricultural and Food Chemistry 58 (23):12537–40. doi: 10.1021/jf1033625.
  • Liu, J., R. Cao, W. Yi, C. Ma, Y. Wan, B. Zhou, L. Ma, and H. Song. 2009. A class of potent tyrosinase inhibitors: Alkylidenethiosemicarbazide compounds. European Journal of Medicinal Chemistry 44 (4):1773–8. doi: 10.1016/j.ejmech.2008.04.002.
  • Liu, J., C. Chen, F. Wu, and L. Zhao. 2013. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives. Chemical Biology & Drug Design 82 (1):39–47. doi: 10.1111/cbdd.12126.
  • Liu, J., M. Li, Y. Yu, and S. Cao. 2017. Novel inhibitors of tyrosinase produced by the 4-substitution of TCT (П). International Journal of Biological Macromolecules 103:1096–106. doi: 10.1016/j.ijbiomac.2017.05.036.
  • Liu, J., F. Wu, and C. Chen. 2015. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters 25 (22):5142–6. doi: 10.1016/j.bmcl.2015.10.004.
  • Liu, J., F. Wu, L. Chen, J. Hu, L. Zhao, C. Chen, and L. Peng. 2011. Evaluation of dihydropyrimidin-(2H)-one analogues and rhodanine derivatives as tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 21 (8):2376–9. doi: 10.1016/j.bmcl.2011.02.076.
  • Liu, J., F. Wu, L. Chen, L. Zhao, Z. Zhao, M. Wang, and S. Lei. 2012. Biological evaluation of coumarin derivatives as mushroom tyrosinase inhibitors. Food Chemistry 135 (4):2872–8. doi: 10.1016/j.foodchem.2012.07.055.
  • Liu, J., W. Yi, Y. Wan, L. Ma, and H. Song. 2008. 1-(1-Arylethylidene)thiosemicarbazide derivatives: A new class of tyrosinase inhibitors. Bioorganic & Medicinal Chemistry 16 (3):1096–102. doi: 10.1016/j.bmc.2007.10.102.
  • Liu, P., C. Shu, L. Liu, Q. Huang, and Y. Peng. 2016. Design and synthesis of thiourea derivatives with sulfur-containing heterocyclic scaffolds as potential tyrosinase inhibitors. Bioorganic & Medicinal Chemistry 24 (8):1866–71. doi: 10.1016/j.bmc.2016.03.013.
  • Lo, Y. H., R. D. Lin, Y. P. Lin, Y. L. Liu, and M. H. Lee. 2009. Active constituents from Sophora japonica exhibiting cellular tyrosinase inhibition in human epidermal melanocytes. Journal of Ethnopharmacology 124 (3):625–9. doi: 10.1016/j.jep.2009.04.053.
  • Loizzo, M. R., R. Tundis, and F. Menichini. 2012. Natural and synthetic tyrosinase inhibitors as antibrowning agents: An update. Comprehensive Reviews in Food Science and Food Safety 11 (4):378–98. doi: 10.1111/j.1541-4337.2012.00191.x.
  • Maddila, S., R. Pagadala, and S. B. Jonnalagadda. 2013. 1,2,4-Triazoles: A review of synthetic approaches and the biological activity. Letters in Organic Chemistry 10 (10):693–714. doi: 10.2174/157017861010131126115448.
  • Mariadoss, A. V. A., R. Vinyagam, V. Rajamanickam, V. Sankaran, S. Venkatesan, and E. David. 2019. Pharmacological aspects and potential use of phloretin: A systemic review. Mini Reviews in Medicinal Chemistry 19 (13):1060–7. doi: 10.2174/1389557519666190311154425.
  • Marmion, C. J., D. Griffith, and K. B. Nolan. 2004. Hydroxamic acids - An intriguing family of enzyme inhibitors and biomedical ligands. European Journal of Inorganic Chemistry 2004 (15):3003–16. doi: 10.1002/ejic.200400221.
  • Matoba, Y., T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama. 2006. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. The Journal of Biological Chemistry 281 (13):8981–90. doi: 10.1074/jbc.M509785200.
  • Mattio, L. M., G. Catinella, A. Pinto, and S. Dallavalle. 2020. Natural and nature-inspired stilbenoids as antiviral agents. European Journal of Medicinal Chemistry 202. doi: 10.1016/j.ejmech.2020:112541.
  • Matysiak, J. 2015. Biological and pharmacological activities of 1,3,4-thiadiazole based compounds. Mini Reviews in Medicinal Chemistry 15 (9):762–75. doi: 10.2174/1389557515666150519104057.
  • McEvily, A. J., R. Iyengar, and W. S. Otwell. 1992. Inhibition of enzymatic browning in foods and beverages. Critical Reviews in Food Science and Nutrition 32 (3):253–73. doi: 10.1080/10408399209527599.
  • Miliovsky, M., I. Svinyarov, Y. Mitrev, Y. Evstatieva, D. Nikolova, M. Chochkova, and M. G. Bogdanov. 2013. A novel one-pot synthesis and preliminary biological activity evaluation of cis-restricted polyhydroxy stilbenes incorporating protocatechuic acid and cinnamic acid fragments. European Journal of Medicinal Chemistry 66:185–92. doi: 10.1016/j.ejmech.2013.05.040.
  • Mishra, R., P. K. Sharma, P. K. Verma, I. Tomer, G. Mathur, and P. K. Dhakad. 2017. Biological potential of thiazole derivatives of synthetic origin. Journal of Heterocyclic Chemistry 54 (4):2103–16. doi: 10.1002/jhet.2827.
  • Mojzych, M., A. Dolashki, and W. Voelter. 2014. Synthesis of pyrazolo[4,3-e][1,2,4]triazine sulfonamides, novel Sildenafil analogs with tyrosinase inhibitory activity . Bioorganic & Medicinal Chemistry 22 (23):6616–24. doi: 10.1016/j.bmc.2014.10.009.
  • Mojzych, M., P. Tarasiuk, K. Kotwica-Mojzych, M. Rafiq, S. Y. Seo, M. Nicewicz, and E. Fornal. 2017. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity . Journal of Enzyme Inhibition and Medicinal Chemistry 32 (1):99–105. doi: 10.1080/14756366.2016.1238362.
  • Mok, N., S. Y. Chan, S. Y. Liu, and S. L. Chua. 2020. Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa. Food & Function 11 (7):6496–508. doi: 10.1039/d0fo00046a.
  • Mukherjee, P. K., R. Biswas, A. Sharma, S. Banerjee, S. Biswas, and C. K. Katiyar. 2018. Validation of medicinal herbs for anti-tyrosinase potential. Journal of Herbal Medicine 14:1–16. doi: 10.1016/j.hermed.2018.09.002.
  • Muri, E. M. F., M. J. Nieto, R. D. Sindelar, and J. S. Williamson. 2002. Hydroxamic acids as pharmacological agents. Current Medicinal Chemistry 9 (17):1631–53. doi: 10.2174/0929867023369402.
  • Mustafa, M. N., A. Saeed, P. A. Channar, F. A. Larik, M. Zain-Ul Abideen, G. Shabir, Q. Abbas, M. Hassan, H. Raza, and S. Y. Seo. 2019. Synthesis, molecular docking and kinetic studies of novel quinolinyl based acyl thioureas as mushroom tyrosinase inhibitors and free radical scavengers. Bioorganic Chemistry 90:9103063. doi: 10.1016/j.bioorg.2019.:.
  • Mutahir, S., M. A. Khan, I. U. Khan, M. Yar, M. Ashraf, S. Tariq, R. L. Ye, and B. J. Zhou. 2017. Organocatalyzed and mechanochemical solvent-free synthesis of novel and functionalized bis-biphenyl substituted thiazolidinones as potent tyrosinase inhibitors: SAR and molecular modeling studies. European Journal of Medicinal Chemistry 134:406–14. doi: 10.1016/j.ejmech.2017.04.021.
  • Nihei, K., Y. Yamagiwa, T. Kamikawa, and I. Kubo. 2004. 2-Hydroxy-4-isopropylbenzaldehyde, a potent partial tyrosinase inhibitor. Bioorganic & Medicinal Chemistry Letters 14 (3):681–3. doi: 10.1016/j.bmcl.2003.11.033.
  • Nirwan, S., V. Chahal, and R. Kakkar. 2019. Thiazolidinones: Synthesis, reactivity, and their biological applications. Journal of Heterocyclic Chemistry 56 (4):1239–53. doi: 10.1002/jhet.3514.
  • Noh, J., S. Kwak, H. Seo, J. Seo, B. Kim, and Y. Lee. 2009. Kojic acid-amino acid conjugates as tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 19 (19):5586–9. doi: 10.1016/j.bmcl.2009.08.041.
  • Nosanchuk, J. D., and A. Casadevall. 2003. The contribution of melanin to microbial pathogenesis. Cellular Microbiology 5 (4):203–23. doi: 10.1046/j.1462-5814.2003.00268.x.
  • Okombi, S., D. Rival, S. Bonnet, A. M. Mariotte, E. Perrier, and A. Boumendjel. 2006. Discovery of benzylidenebenzofuran-3(2H)-one (aurones) as inhibitors of tyrosinase derived from human melanocytes. Journal of Medicinal Chemistry 49 (1):329–33. doi: 10.1021/jm050715i.
  • Pan, Z., Y. Zhu, X. Yu, Q. Lin, R. Xiao, J. Tang, Q. Chen, and B. Liu. 2012. Synthesis of 4'-thiosemicarbazonegriseofulvin and its effects on the control of enzymatic browning and postharvest disease of fruits. Journal of Agricultural and Food Chemistry 60 (43):10784–8. doi: 10.1021/jf302356x.
  • Park, J. W., Y. M. Ha, K-m Moon, S-r Kim, H. O. Jeong, Y. J. Park, H. J. Lee, J. Y. Park, Y. M. Song, P. Chun, et al. 2013. De novo tyrosinase inhibitor: 4-(6,7-Dihydro-5H-indeno[5,6-d]thiazol-2-yl)benzene-1,3-diol (MHY1556). Bioorganic & Medicinal Chemistry Letters 23 (14):4172–6. doi: 10.1016/j.bmcl.2013.05.029.
  • Peng, L., S. Liu, S. Xu, L. Chen, Y. Shan, W. Wei, W. Liang, and J. Gao. 2013. Inhibitory effects of salidroside and paeonol on tyrosinase activity and melanin synthesis in mouse B16F10 melanoma cells and ultraviolet B-induced pigmentation in guinea pig skin. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 20 (12):1082–7. doi: 10.1016/j.phymed.2013.04.015.
  • Rafiq, M., M. Saleem, M. Hanif, S. K. Kang, S. Y. Seo, and K. H. Lee. 2016. Synthesis, structural elucidation and bioevaluation of 4-amino-1,2,4-triazole-3-thione's Schiff base derivatives. Archives of Pharmacal Research 39 (2):161–71. doi: 10.1007/s12272-015-0688-2.
  • Rezaei, M., H. T. Mohammadi, A. Mahdavi, M. Shourian, and H. Ghafouri. 2018. Evaluation of thiazolidinone derivatives as a new class of mushroom tyrosinase inhibitors. International Journal of Biological Macromolecules 108:205–13. doi: 10.1016/j.ijbiomac.2017.11.147.
  • Rho, H. S., C. S. Lee, S. M. Ahn, Y. D. Hong, S. S. Shin, Y.-H. Park, and S. N. Park. 2011. Studies on tyrosinase inhibitory and antioxidant activities of benzoic acid derivatives containing kojic acid moiety. Bulletin of the Korean Chemical Society 32 (12):4411–4. doi: 10.5012/bkcs.2011.32.12.4411.
  • Rubina, B., P. P. Dharam, K. Garima, K. Ravi, and D. Manni. 2019. Recent developments on pharmacological potential of 1,3,4-oxadiazole scaffold. Indian Journal of Pharmaceutical Education and Research 53 (2s):S1–S16. doi: 10.5530/ijper.53.2s.44.
  • Saeed, A., P. A. Mahesar, P. A. Channar, Q. Abbas, F. A. Larik, M. Hassan, H. Raza, and S. Y. Seo. 2017. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase. Bioorganic Chemistry 74:187–96. doi: 10.1016/j.bioorg.2017.08.002.
  • Saeedi, M., M. Eslamifar, and K. Khezri. 2019. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 110:582–93. doi: 10.1016/j.biopha.2018.12.006.
  • Sanchezferrer, A., J. N. Rodriguezlopez, F. Garciacanovas, and F. Garciacarmona. 1995. Tyrosinase: A comprehensive review of its mechanism. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 1247 (1):1–11. doi: 10.1016/0167-4838(94)00204-T.
  • Sathyanarayana, R., and B. Poojary. 2020. Exploring recent developments on 1,2,4-triazole: Synthesis and biological applications. Journal of the Chinese Chemical Society 67 (4):459–77. doi: 10.1002/jccs.201900304.
  • Satooka, H., and I. Kubo. 2011. Effects of thymol on mushroom tyrosinase-catalyzed melanin formation. Journal of Agricultural and Food Chemistry 59 (16):8908–14. doi: 10.1021/jf2014149.
  • Seo, S. Y., V. K. Sharma, and N. Sharma. 2003. Mushroom tyrosinase: Recent prospects. Journal of Agricultural and Food Chemistry 51 (10):2837–53. doi: 10.1021/jf020826f.
  • Shafiq, N., U. Arshad, G. Zarren, S. Parveen, I. Javed, and A. Ashraf. 2020. A comprehensive review: Bio-potential of barbituric acid and its analogues. Current Organic Chemistry 24 (2):129–61. doi: 10.2174/1385272824666200110094457.
  • Shao, L., X. Wang, K. Chen, X. Dong, L. Kong, D. Zhao, R. C. Hider, and T. Zhou. 2018. Novel hydroxypyridinone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chemistry 242:174–81. doi: 10.1016/j.foodchem.2017.09.054.
  • Sheng, Z., S. Ge, X. Xu, Y. Zhang, P. Wu, K. Zhang, X. Xu, C. Li, D. Zhao, and X. Tang. 2018. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MedChemComm 9 (5):853–61. doi: 10.1039/C8MD00099A.
  • Singh, P. K., and O. Silakari. 2018. The current status of O-heterocycles: A synthetic and medicinal overview. Chemmedchem. 13 (11):1071–87. doi: 10.1002/cmdc.201800119.
  • Slominski, A., D. J. Tobin, S. Shibahara, and J. Wortsman. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiological Reviews 84 (4):1155–228. doi: 10.1152/physrev.00044.2003.
  • Song, Y., Y. Ha, J. Kim, K. Chung, Y. Uehara, K. Lee, P. Chun, Y. Byun, H. Chung, and H. Moon. 2012. Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 22 (24):7451–5. doi: 10.1016/j.bmcl.2012.10.050.
  • Tajima, R., H. Oozeki, S. Muraoka, S. Tanaka, Y. Motegi, H. Nihei, Y. Yamada, N. Masuoka, and K. Nihei. 2011. Synthesis and evaluation of bibenzyl glycosides as potent tyrosinase inhibitors. European Journal of Medicinal Chemistry 46 (4):1374–81. doi: 10.1016/j.ejmech.2011.01.065.
  • Tan, C., W. Y. Zhu, and Y. Lu. 2002. Aloin, cinnamic acid and sophorcarpidine are potent inhibitors of tyrosinase. Chinese Medical Journal 115 (12):1859–62.
  • Tang, J., J. Liu, and F. Wu. 2016. Molecular docking studies and biological evaluation of 1,3,4-thiadiazole derivatives bearing Schiff base moieties as tyrosinase inhibitors. Bioorganic Chemistry 69:29–36. doi: 10.1016/j.bioorg.2016.09.007.
  • Taylor, A. P., R. P. Robinson, Y. M. Fobian, D. C. Blakemore, L. H. Jones, and O. Fadeyi. 2016. Modern advances in heterocyclic chemistry in drug discovery. Organic & Biomolecular Chemistry 14 (28):6611–37. doi: 10.1039/c6ob00936k.
  • Tenório, R. P., A. J. S. Góes, J. G. De Lima, A. R. De Faria, A. J. Alves, and T. M. De Aquino. 2005. Thiosemicarbazones: Preparation methods, synthetic applications and biological importance. Química Nova 28 (6):1030–7. doi: 10.1590/S0100-40422005000600018.
  • Thanigaimalai, P., K. C. Lee, V. K. Sharma, C. Joo, W. J. Cho, E. Roh, Y. Kim, and S. H. Jung. 2011. Structural requirement of phenylthiourea analogs for their inhibitory activity of melanogenesis and tyrosinase. Bioorganic & Medicinal Chemistry Letters 21 (22):6824–8. doi: 10.1016/j.bmcl.2011.09.024.
  • Thanigaimalai, P., E. V. Rao, K. C. Lee, V. K. Sharma, E. Roh, Y. Kim, and S. H. Jung. 2012. Structure-activity relationship of naphthaldehydethiosemicarbazones in melanogenesis inhibition. Bioorganic & Medicinal Chemistry Letters 22 (2):886–9. doi: 10.1016/j.bmcl.2011.12.035.
  • Tinello, F., and A. Lante. 2018. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innovative Food Science & Emerging Technologies 50:73–83. doi: 10.1016/j.ifset.2018.10.008.
  • Tsutsumi, L. S., D. Gundisch, and D. Q. Sun. 2016. Carbazole scaffold in medicinal chemistry and natural products: A review from 2010-2015. Current Topics in Medicinal Chemistry 16 (11):1290–313. doi: 10.2174/1568026615666150915112647.
  • Ullah, S., D. Kang, S. Lee, M. Ikram, C. Park, Y. Park, S. Yoon, P. Chun, and H. R. Moon. 2019. Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells . European Journal of Medicinal Chemistry 161:78–92. doi: 10.1016/j.ejmech.2018.10.025.
  • Ullah, S., C. Park, M. Ikram, D. Kang, S. Lee, J. Yang, Y. Park, S. Yoon, P. Chun, and H. R. Moon. 2019. Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues. Bioorganic Chemistry 87:43–55. doi: 10.1016/j.bioorg.2019.03.001.
  • Ullah, S., Y. Park, M. Ikram, S. Lee, C. Park, D. Kang, J. Yang, J. Akter, S. Yoon, P. Chun, et al. 2018. Design, synthesis and anti-melanogenic effect of cinnamamide derivatives. Bioorganic & Medicinal Chemistry 26 (21):5672–81. doi: 10.1016/j.bmc.2018.10.014.
  • van Gelder, C. W., W. H. Flurkey, and H. J. Wichers. 1997. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45 (7):1309–23. doi: 10.1016/S0031-9422(97)00186-6.
  • Verma, G., M. F. Khan, W. Akhtar, M. M. Alam, M. Akhter, and M. Shaquiquzzaman. 2019. A review exploring therapeutic worth of 1,3,4-oxadiazole tailored compounds. Mini Reviews in Medicinal Chemistry 19 (6):477–509. doi: 10.2174/1389557518666181015152433.
  • Viegas-Junior, C., A. Danuello, V. d S. Bolzani, E. J. Barreir, and C. A. Manssour Fraga. 2007. Molecular hybridization: A useful tool in the design of new drug prototypes. Current Medicinal Chemistry 14 (17):1829–52. doi: 10.2174/092986707781058805.
  • Vontzalidou, A., G. Zoidis, E. Chaita, M. Makropoulou, N. Aligiannis, G. Lambrinidis, E. Mikros, and A. L. Skaltsounis. 2012. Design, synthesis and molecular simulation studies of dihydrostilbene derivatives as potent tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 22 (17):5523–6. doi: 10.1016/j.bmcl.2012.07.029.
  • Wilcox, D. E., A. G. Porras, Y. T. Hwang, K. Lerch, M. E. Winkler, and E. I. Solomon. 1985. Substrate analog binding to the coupled binuclear copper active site in tyrosinase. Journal of the American Chemical Society 107 (13):4015–27. doi: 10.1021/ja00299a043.
  • Xie, J., H. H. Dong, Y. Y. Yu, and S. W. Cao. 2016. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, (1)H NMR titration and molecular docking studies. Food Chemistry 190:709–16. doi: 10.1016/j.foodchem.2015.05.124.
  • Xie, W., H. Zhang, J. He, J. Zhang, Q. Yu, C. Luo, and S. Li. 2017. Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase. Bioorganic & Medicinal Chemistry Letters 27 (3):530–2. doi: 10.1016/j.bmcl.2016.12.027.
  • Xie, W., J. Zhang, X. Ma, W. Yang, Y. Zhou, X. Tang, Y. Zou, H. Li, J. He, S. Xie, et al. 2015. Synthesis and biological evaluation of kojic acid derivatives containing 1,2,4-triazole as potent tyrosinase inhibitors. Chemical Biology & Drug Design 86 (5):1087–92. doi: 10.1111/cbdd.12577.
  • Xie, Y. D., J. Y. Zhang, C. Wang, Q. L. Fan, and Y. L. Zhang. 2020. Vanillin an active constituent from vanilla bean induces apoptosis and inhibits proliferation in human colorectal adenocarcinoma cell line. Pharmacognosy Magazine 16 (67):197–200. doi: 10.4103/pm.pm_235_19.
  • Xu, B., Y. Yu, P. Wan, C. Wan, and S. Cao. 2014. Synthesis and antityrosinase, antioxidant activities of phloretin thiosemicarbazones. Research on Chemical Intermediates 40 (8):3095–107. doi: 10.1007/s11164-013-1154-8.
  • Xu, J., J. Liu, X. Zhu, Y. Yu, and S. Cao. 2017. Novel inhibitors of tyrosinase produced by the 4-substitution of TCT. Food Chemistry 221:1530–8. doi: 10.1016/j.foodchem.2016.10.140.
  • Xu, Y. M., A. H. Stokes, W. M. Freeman, S. C. Kumer, B. A. Vogt, and K. E. Vrana. 1997. Tyrosinase mRNA is expressed in human substantia nigra. Brain Research. Molecular Brain Research 45 (1):159–62. doi: 10.1016/S0169-328X(96)00308-7.
  • Yan, Q., R. Cao, W. Yi, L. Yu, Z. Chen, L. Ma, and H. Song. 2009. Synthesis and evaluation of 5-benzylidene(thio)barbiturate-beta-D-glycosides as mushroom tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 19 (15):4055–8. doi: 10.1016/j.bmcl.2009.06.018.
  • Yan, Q., R. H. Cao, W. Yi, Z. Y. Chen, H. Wen, L. Ma, and H. C. Song. 2009. Inhibitory effects of 5-benzylidene barbiturate derivatives on mushroom tyrosinase and their antibacterial activities. European Journal of Medicinal Chemistry 44 (10):4235–43. doi: 10.1016/j.ejmech.2009.05.023.
  • Yi, W., R. Cao, Z. Chen, L. Yu, L. Ma, and H. Song. 2009. Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted phenylmethylenethiosemicarbazones as tyrosinase inhibitors. Chemical & Pharmaceutical Bulletin 57 (11):1273–7. doi: 10.1248/cpb.57.1273.
  • Yi, W., R. Cao, Z. Chen, L. Yu, H. Wen, Q. Yan, L. Ma, and H. Song. 2010. Rational design and synthesis of 4-O-substituted phenylmethylenethiosemicarbazones as novel tyrosinase inhibitors. Chemical & Pharmaceutical Bulletin 58 (5):752–4. doi: 10.1248/cpb.58.752.
  • Yi, W., R. Cao, H. Wen, Q. Yan, B. Zhou, Y. Wan, L. Ma, and H. Song. 2008. Synthesis and biological evaluation of helicid analogues as mushroom tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 18 (24):6490–3. doi: 10.1016/j.bmcl.2008.10.056.
  • Yi, W., R. H. Cao, W. L. Peng, H. Wen, Q. Yan, B. H. Zhou, L. Ma, and H. C. Song. 2010. Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors. European Journal of Medicinal Chemistry 45 (2):639–46. doi: 10.1016/j.ejmech.2009.11.007.
  • Yi, W., C. Dubois, S. Yahiaoui, R. Haudecoeur, C. Belle, H. Song, R. Hardre, M. Reglier, and A. Boumendjel. 2011. Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase. European Journal of Medicinal Chemistry 46 (9):4330–5. doi: 10.1016/j.ejmech.2011.07.003.
  • Yoon, J., S. Fujii, and E. I. Solomon. 2009. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Proceedings of the National Academy of Sciences of the United States of America 106 (16):6585–90. doi: 10.1073/pnas.0902127106.
  • You, A., J. Zhou, S. Song, G. Zhu, H. Song, and W. Yi. 2015a. Rational design, synthesis and structure-activity relationships of 4-alkoxy- and 4-acyloxy-phenylethylenethiosemicarbazone analogues as novel tyrosinase inhibitors. Bioorganic & Medicinal Chemistry 23 (5):924–31. doi: 10.1016/j.bmc.2015.01.024.
  • You, A., J. Zhou, S. Song, G. Zhu, H. Song, and W. Yi. 2015b. Structure-based modification of 3-/4-aminoacetophenones giving a profound change of activity on tyrosinase: From potent activators to highly efficient inhibitors. European Journal of Medicinal Chemistry 93:255–62. doi: 10.1016/j.ejmech.2015.02.013.
  • Yu, F., Y. Jia, H. Wang, J. Zheng, Y. Cui, X. Fang, L. Zhang, and Q. Chen. 2015. Synthesis of triazole schiff's base derivatives and their inhibitory kinetics on tyrosinase activity. PloS One 10 (9):e0138578. doi: 10.1371/journal.pone.0138578.
  • Zhang, Y., X. Fu, Y. Yan, and J. Liu. 2020. Microwave-assisted synthesis and biological evaluation of new thiazolylhydrazone derivatives as tyrosinase inhibitors and antioxidants. Journal of Heterocyclic Chemistry 57 (3):991–1002. doi: 10.1002/jhet.3760.
  • Zhao, D., M. Zhang, X. Dong, Y. Hu, X. Dai, X. Wei, R. C. Hider, J. Zhang, and T. Zhou. 2016. Design and synthesis of novel hydroxypyridinone derivatives as potential tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters 26 (13):3103–8. doi: 10.1016/j.bmcl.2016.05.006.
  • Zhao, Z., G. Liu, Y. Meng, J. Tian, X. Chen, M. Shen, Y. Li, B. Li, C. Gao, S. Wu, et al. 2019. Synthesis and anti-tyrosinase mechanism of the substituted vanillyl cinnamate analogues. Bioorganic Chemistry 93:103316. doi: 10.1016/j.bioorg.2019.103316.
  • Zhou, Z.,. J. Zhuo, S. Yan, and L. Ma. 2013. Design and synthesis of 3,5-diaryl-4,5-dihydro-1H-pyrazoles as new tyrosinase inhibitors. Bioorganic & Medicinal Chemistry 21 (7):2156–62. doi: 10.1016/j.bmc.2012.12.054.
  • Zhu, Y., K. Song, Z. Li, Z. Pan, Y. Guo, J. Zhou, Q. Wang, B. Liu, and Q. Chen. 2009. Antityrosinase and antimicrobial activities of trans-cinnamaldehyde thiosemicarbazone. Journal of Agricultural and Food Chemistry 57 (12):5518–23. doi: 10.1021/jf9007554.
  • Zolghadri, S., A. Bahrami, M. T. H. Khan, J. Munoz-Munoz, F. Garcia-Molina, F. Garcia-Canovas, and A. A. Saboury. 2019. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 34 (1):279–309. doi: 10.1080/14756366.2018.1545767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.