891
Views
9
CrossRef citations to date
0
Altmetric
Reviews

A comprehensive review on the antidiabetic activity of flavonoids targeting PTP1B and DPP-4: a structure-activity relationship analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abbas, M., F. Saeed, F. M. Anjum, M. Afzaal, T. Tufail, M. S. Bashir, A. Ishtiaq, S. Hussain, and H. A. R. a Suleria. 2017. Natural polyphenols: An overview. International Journal of Food Properties 20 (8):1689–99. doi: 10.1080/10942912.2016.1220393.
  • Abdelsalam, S. S., H. M. Korashy, A. Zeidan, and A. Agouni. 2019. The role of protein tyrosine phosphatase (PTP)-1B in cardiovascular disease and its interplay with insulin resistance. Biomolecules 9 (286):1–23. doi: 10.3390/biom9070286.
  • AdInsight. 2007. JTT 551. https://adisinsight.springer.com/drugs/800024307.
  • Ahrén, B. 2019. DPP-4 inhibition and the path to clinical proof. Frontiers in Endocrinology 10 (376):376– 18. doi: 10.3389/fendo.2019.00376.
  • Al-Ishaq, R. K., M. Abotaleb, P. Kubatka, K. Kajo, and D. Büsselberg. 2019. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 9 (9):430. doi: 10.3390/biom9090430.
  • Alfayez, O. M., A. R. Almutairi, A. Aldosari, and M. S. Al Yami. 2019. Update on cardiovascular safety of incretin-based therapy in adults with type 2 diabetes mellitus: A meta-analysis of cardiovascular outcome trials. Canadian Journal of Diabetes 43 (7):538–45. doi: 10.1016/j.jcjd.2019.04.003.
  • Alkhalidy, H., Y. Wang, and D. Liu. 2018. Dietary flavonoids in the prevention of T2D: An overview. Nutrients 10 (4):438– 3. doi: 10.3390/nu10040438.
  • Annunziata, G., M. Jiménez-García, X. Capó, D. Moranta, A. Arnone, G. C. Tenore, A. Sureda, and S. Tejada. 2020. Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 139:111248 doi: 10.1016/j.fct.2020.111248.
  • Atmani, D., N. Chaher, D. Atmani, M. Berboucha, N. Debbache, and H. Boudaoud. 2009. Flavonoids in human health: From structure to biological activity. Current Nutrition & Food Science 5 (4):225–37. doi: 10.2174/157340109790218049.
  • Babu, P. V. A., D. Liu, and E. R. Gilbert. 2013. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. The Journal of Nutritional Biochemistry 24 (11):1777–89. doi: 10.1016/j.jnutbio.2013.06.003.
  • Bae, E. Y., M. Na, D. Njamen, J. T. Mbafor, Z. T. Fomum, L. Cui, D. H. Choung, B. Y. Kim, W. K. Oh, and J. S. Ahn. 2006. Inhibition of protein tyrosine phosphatase 1B by prenylated isoflavonoids isolated from the stem bark of Erythrina addisoniae. Planta Medica 72 (10):945–8. doi: 10.1055/s-2006-946674.
  • Bakke, J., and F. G. Haj. 2015. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Seminars in Cell & Developmental Biology 37:58–65. doi: 10.1016/j.semcdb.2014.09.020.
  • Balentine, D. A., J. T. Dwyer, J. W. Erdman, Jr., M. G. Ferruzzi, P. C. Gaine, J. M. Harnly, and C. L. Kwik-Uribe. 2015. Recommendations on reporting requirements for flavonoids in research. The American Journal of Clinical Nutrition 101 (6):1113–25. doi: 10.3945/ajcn.113.071274.
  • Bento, J. L., N. D. Palmer, J. C. Mychaleckyj, L. A. Lange, C. D. Langefeld, S. S. Rich, B. I. Freedman, and D. W. Bowden. 2004. Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 53 (11):3007–12. doi: 10.2337/diabetes.53.11.3007.
  • Boucher, J., A. Kleinridders, and C. R. Kahn. 2014. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspectives in Biology 6 (1):a009191– 23. doi: 10.1101/cshperspect.a009191.
  • Bower, A. M., L. M. Real Hernandez, M. A. Berhow, and E. G. de Mejia. 2014. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. Journal of Agricultural and Food Chemistry 62 (26):6147–58. doi: 10.1021/jf500639f.
  • Cahn, A., S. Cernea, and I. Raz. 2016. An update on DPP-4 inhibitors in the management of type 2 diabetes. Expert Opinion on Emerging Drugs 21 (4):409–19. doi: 10.1080/14728214.2016.1257608.
  • Cai, J., L. Zhao, and W. Tao. 2015. Potent protein tyrosine phosphatase 1B (PTP1B) inhibiting constituents from Anoectochilus chapaensis and molecular docking studies. Pharmaceutical Biology 53 (7):1030–4. doi: 10.3109/13880209.2014.957781.
  • Chen, M., K. Wang, Y. Zhang, M. Zhang, Y. Ma, H. Sun, Z. Jin, H. Zheng, H. Jiang, P. Yu, et al. 2019. New insights into the biological activities of Chrysanthemum morifolium: Natural flavonoids alleviate diabetes by targeting α-glucosidase and the PTP-1B signaling pathway . European Journal of Medicinal Chemistry 178:108–15. doi: 10.1016/j.ejmech.2019.05.083.
  • Chen, P. J., S. P. Cai, C. Huang, X. M. Meng, and J. Li. 2015. Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology 337:10–20. doi: 10.1016/j.tox.2015.08.006.
  • Chen, R. M., L. H. Hu, T. Y. An, J. Li, and Q. Shen. 2002. Natural PTP1B Inhibitors from broussonetia papyrifera. Bioorganic & Medicinal Chemistry Letters 12 (23):3387–90. doi: 10.1016/S0960-894X(02)00757-6.
  • Choi, J. S., M. N. Islam, M. Y. Ali, E. J. Kim, Y. M. Kim, and H. A. Jung. 2014. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 64:27–33. doi: 10.1016/j.fct.2013.11.020.
  • Choi, J. S., M. N. Islam, M. Y. Ali, Y. M. Kim, H. J. Park, H. S. Sohn, and H. A. Jung. 2014. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities. Archives of Pharmacal Research 37 (10):1354–63. doi: 10.1007/s12272-014-0351-3.
  • Cui, L., H. S. Lee, D. T. Ndinteh, J. T. Mbafor, Y. H. Kim, T. V. Le, P. H. Nguyen, and W. K. Oh. 2010. New prenylated flavanones from Erythrina abyssinica with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Planta Medica 76 (7):713–8. doi: 10.1055/s-0029-1240682.
  • Cui, L., M. Na, H. Oh, E. Y. Bae, D. G. Jeong, S. E. Ryu, S. Kim, B. Y. Kim, W. K. Oh, and J. S. Ahn. 2006. Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorganic & Medicinal Chemistry Letters 16 (5):1426–9. doi: 10.1016/j.bmcl.2005.11.071.
  • Cui, L., D. T. Ndinteh, M. Na, P. T. Thuong, J. Silike-Muruumu, D. Njamen, J. T. Mbafor, Z. T. Fomum, J. S. Ahn, and W. K. Oh. 2007. Isoprenylated flavonoids from the stem bark of Erythrina abyssinica. Journal of Natural Products 70 (6):1039–42. doi: 10.1021/np060477+.
  • Cui, L., P. T. Thuong, H. S. Lee, D. T. Ndinteh, J. T. Mbafor, Z. T. Fomum, and W. K. Oh. 2008. Flavanones from the stem bark of Erythrina abyssinica. Bioorganic & Medicinal Chemistry 16 (24):10356–62. doi: 10.1016/j.bmc.2008.10.012.
  • De Felice, S. L. 1992. Nutraceuticals – opportunities in an emerging market. In Scrip Magazine.
  • De, S., S. Banerjee, S. K. A. Kumar, and P. Paira. 2019. Critical role of dipeptidyl peptidase IV: A therapeutic target for diabetes and cancer. Mini Reviews in Medicinal Chemistry 19 (2):88–97. doi: 10.2174/1389557518666180423112154.
  • Deacon, C. F. 2018. Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides 100:150–7. doi: 10.1016/j.peptides.2017.10.011.
  • Deacon, C. F. 2019. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Frontiers in Endocrinology 10 (80):1–14. doi: 10.3389/fendo.2019.00080.
  • Digenio, A., N. C. Pham, L. M. Watts, E. S. Morgan, S. W. Jung, B. F. Baker, R. S. Geary, and S. Bhanot. 2018. Antisense inhibition of protein tyrosine phosphatase 1B With IONIS-PTP-1BRx improves insulin sensitivity and reduces weight in overweight patients with Type 2 Diabetes . Diabetes Care 41 (4):807–14. doi: 10.2337/dc17-2132.
  • Drucker, D. J. 2006. The biology of incretin hormones. Cell Metabolism 3 (3):153–65. doi: 10.1016/j.cmet.2006.01.004.
  • Eidenberger, T., M. Selg, and K. Krennhuber. 2013. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): A key to the beneficial effects of guava in type II diabetes mellitus. Fitoterapia 89:74–9. doi: 10.1016/j.fitote.2013.05.015.
  • Elchebly, M., P. Payette, E. Michaliszyn, W. Cromlish, S. Collins, A. L. Loy, D. Normandin, A. Cheng, J. Himms-Hagen, C. C. Chan, et al. 1999. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science (New York, N.Y.) 283 (5407):1544–8. doi: 10.1126/science.283.5407.1544.
  • Elgendy, I. Y., A. N. Mahmoud, A. F. Barakat, A. Y. Elgendy, M. Saad, A. Abuzaid, S. A. Wayangankar, and A. A. Bavry. 2017. Cardiovascular safety of dipeptidyl-peptidase IV inhibitors: A meta-analysis of placebo-controlled randomized trials. American Journal of Cardiovascular Drugs: drugs, Devices, and Other Interventions 17 (2):143–55. doi: 10.1007/s40256-016-0208-x.
  • Fan, J., M. H. Johnson, M. A. Lila, G. Yousef, and E. G. de Mejia. 2013. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: Implications in diabetes management. Evidence-Based Complementary and Alternative Medicine 2013:1–13. doi: 10.1155/2013/479505.
  • Farhang-Fallah, J., V. K. Randhawa, A. Nimnual, A. Klip, D. Bar-Sagi, and M. Rozakis-Adcock. 2002. The pleckstrin homology (PH) domain-interacting protein couples the insulin receptor substrate 1 PH domain to insulin signaling pathways leading to mitogenesis and GLUT4 translocation. Molecular and Cellular Biology 22 (20):7325–36. doi: 10.1128/mcb.22.20.7325-7336.2002.
  • Feldhammer, M., N. Uetani, D. Miranda-Saavedra, and M. L. Tremblay. 2013. PTP1B: A simple enzyme for a complex world. Critical Reviews in Biochemistry and Molecular Biology 48 (5):430–45. doi: 10.3109/10409238.2013.819830.
  • Ferreyra, M. L. F., S. Rius, and P. Casati. 2012. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3 (222):222– 15. doi: 10.3389/fpls.2012.00222.
  • Fiorentino, T. V., and G. Sesti. 2016. Lessons learned from cardiovascular outcome clinical trials with dipeptidyl peptidase 4 (DPP-4) inhibitors. Endocrine 53 (2):373–80. doi: 10.1007/s12020-015-0811-7.
  • Fueller, J., M. V. Egorov, K. A. Walther, O. Sabet, J. Mallah, M. Grabenbauer, and A. Kinkhabwala. 2015. Subcellular partitioning of protein tyrosine phosphatase 1B to the endoplasmic reticulum and mitochondria depends sensitively on the composition of its tail anchor. PloS One 10 (10):e0139429. doi: 10.1371/journal.pone.0139429.
  • Gall, M. G., and M. D. Gorrell. 2017. The multifunctional post-proline dipeptidyl peptidase, DPP9, in mice, cell biology and immunity. In Pathophysiological aspects of proteases, eds. S. Chakraborti and N. S. Dhalla, 23–45. Singapore: Springer Singapore.
  • Gallwitz, B. 2019. Clinical use of DPP-4 inhibitors. Frontiers in Endocrinology 10 (389):389– 10. doi: 10.3389/fendo.2019.00389.
  • Ghorbani, A., R. Rashidi, and R. Shafiee-Nick. 2019. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 111:947–57. doi: 10.1016/j.biopha.2018.12.127.
  • Gontijo, V. S., M. H. Dos Santos, and C. Viegas. Jr. 2017. Biological and chemical aspects of natural biflavonoids from plants: A brief review. Mini Reviews in Medicinal Chemistry 17 (10):834–62. doi: 10.2174/1389557517666161104130026.
  • Govers, R. 2014. Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes & Metabolism 40 (6):400–10. doi: 10.1016/j.diabet.2014.01.005.
  • Guo, Z., X. Niu, T. Xiao, J. Lu, W. Li, and Y. Zhao. 2015. Chemical profile and inhibition of α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by flavonoids from licorice (Glycyrrhiza uralensis Fisch). Journal of Functional Foods 14:324–36. doi: 10.1016/j.jff.2014.12.003.
  • Gupta, A., G. A. Jacobson, J. R. Burgess, H. F. Jelinek, D. S. Nichols, C. K. Narkowicz, and H. A. Al-Aubaidy. 2018. Citrus bioflavonoids dipeptidyl peptidase-4 inhibition compared with gliptin antidiabetic medications. Biochemical and Biophysical Research Communications 503 (1):21–5. doi: 10.1016/j.bbrc.2018.04.156.
  • Haj, F. G., J. M. Zabolotny, Y. B. Kim, B. B. Kahn, and B. G. Neel. 2005. Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. The Journal of Biological Chemistry 280 (15):15038–46. doi: 10.1074/jbc.M413240200.
  • He, R-j, L.-F. Zeng, Y. He, and Z.-Y. Zhang. 2012. New therapeutic strategies for type 2 diabetes: Small molecule approaches, Recent advances in PTP1B inhibitor development for the treatment of type 2 diabetes and obesity. Cambridge, UK: Royal Society of Chemistry
  • He, R-j, and Z. Y. Zhang. 2016. Protein tyrosine phosphatases in cancer, Current status of PTP-based therapeutics. New York, USA: Springer Nature.
  • Huang, Q. H., C. Lei, P. P. Wang, J. Y. Li, J. Li, and A. J. Hou. 2017. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba. Fitoterapia 122:138–43. doi: 10.1016/j.fitote.2017.09.006.
  • Hussain, T., B. Tan, G. Murtaza, G. Liu, N. Rahu, M. Saleem Kalhoro, D. Hussain Kalhoro, T. O. Adebowale, M. Usman Mazhar, Z. U. Rehman, et al. 2020. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacological Research 152:104629. doi: 10.1016/j.phrs.2020.104629.
  • Islam, M. N., H. A. Jung, H. S. Sohn, H. M. Kim, and J. S. Choi. 2013. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Archives of Pharmacal Research 36 (5):542–52. doi: 10.1007/s12272-013-0069-7.
  • Ito, M., S. Fukuda, S. Sakata, H. Morinaga, and T. Ohta. 2014. Pharmacological effects of JTT-551, a novel protein tyrosine phosphatase 1B inhibitor, in diet-induced obesity mice. Journal of Diabetes Research 2014:1–7. doi: 10.1155/2014/680348.
  • Jaldin-Fincati, J. R., M. Pavarotti, S. Frendo-Cumbo, P. J. Bilan, and A. Klip. 2017. Update on GLUT4 vesicle traffic: A cornerstone of insulin action. Trends in Endocrinology and Metabolism: TEM 28 (8):597–611. doi: 10.1016/j.tem.2017.05.002.
  • Jang, J.,. M. Na, P. T. Thuong, D. Njamen, J. T. Mbafor, Z. T. Fomum, E. R. Woo, and W. K. Oh. 2008. Prenylated flavonoids with PTP1B inhibitory activity from the root bark of Erythrina mildbraedii. Chemical & Pharmaceutical Bulletin 56 (1):85–8. doi: 10.1248/cpb.56.85.
  • Jeong, S. Y., P. H. Nguyen, B. T. Zhao, M. Y. Ali, J. S. Choi, B. S. Min, and M. H. Woo. 2015. Chemical constituents of Euonymus alatus (Thunb.) Sieb. and their PTP1B and α-glucosidase inhibitory activities. Phytotherapy Research : PTR 29 (10):1540–8. doi: 10.1002/ptr.5411.
  • Jiang, L., S. Numonov, K. Bobakulov, M. N. Qureshi, H. Zhao, and H. A. Aisa. 2015. Phytochemical profiling and evaluation of pharmacological activities of Hypericum scabrum L. Molecules (Basel, Switzerland) 20 (6):11257–71. doi: 10.3390/molecules200611257.
  • Jung, H. A., P. Paudel, S. H. Seong, B. S. Min, and J. S. Choi. 2017. Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives. Bioorganic & Medicinal Chemistry Letters 27 (11):2274–80. doi: 10.1016/j.bmcl.2017.04.054.
  • Kawser, H. M., D. A. Abdal, J. Han, Y. Yin, K. Kim, S. S. Kumar, G. Yang, H. Y. Choi, and S. G. Cho. 2016. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International Journal of Molecular Sciences 17 (4):569–32. doi: 10.3390/ijms17040569.
  • Kennedy, B. P., and C. Ramachandran. 2000. Protein tyrosine phosphatase-1B in diabetes. Biochemical Pharmacology 60 (7):877–83. doi: 10.1016/S0006-2952(00)00305-1.
  • Kim, B. R., H. Y. Kim, I. Choi, J. B. Kim, C. H. Jin, and A. R. Han. 2018. DPP-IV inhibitory potentials of flavonol glycosides isolated from the seeds of Lens culinaris: In vitro and molecular docking analyses. Molecules 23 (8):1998–10. doi: 10.3390/molecules23081998.
  • Kim, D. H., H. A. Jung, H. S. Sohn, J. W. Kim, and J. S. Choi. 2017. Potential of icariin metabolites from Epimedium koreanum Nakai as antidiabetic therapeutic agents. Molecules 22 (6):986–14. doi: 10.3390/molecules22060986.
  • Klip, A., Y. Sun, T. T. Chiu, and K. P. Foley. 2014. Signal transduction meets vesicle traffic: The software and hardware of GLUT4 translocation. American Journal of Physiology. Cell Physiology 306 (10):C879–C86. doi: 10.1152/ajpcell.00069.2014.
  • Krishnan, N., C. A. Bonham, I. A. Rus, O. K. Shrestha, C. M. Gauss, A. Haque, A. Tocilj, L. Joshua-Tor, and N. K. Tonks. 2018. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Nature Communications 9 (1):283. doi: 10.1038/s41467-017-02252-2.
  • Kumar, A., S. K. Bharti, and A. Kumar. 2017. Therapeutic molecules against type 2 diabetes: What we have and what are we expecting? Pharmacological Reports : PR 69 (5):959–70. doi: 10.1016/j.pharep.2017.04.003.
  • Kumar, G. S., R. Page, and W. Peti. 2020. The mode of action of the Protein tyrosine phosphatase 1B inhibitor Ertiprotafib. PloS One 15 (10):e0240044. doi: 10.1371/journal.pone.0240044.
  • Kumar, S., and A. K. Pandey. 2013. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal 2013:1–16. doi: 10.1155/2013/162750.
  • Kundu, A., P. Sardar, S. Ghosh, P. Patel, S. Chatterjee, and T. E. Meyer. 2016. Risk of heart failure with dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. International Journal of Cardiology 212:203–5. doi: 10.1016/j.ijcard.2016.03.016.
  • Li, J. L., L. X. Gao, F. W. Meng, C. L. Tang, R. J. Zhang, J. Y. Li, C. Luo, J. Li, and W. M. Zhao. 2015. PTP1B inhibitors from stems of Angelica keiskei (Ashitaba). Bioorganic & Medicinal Chemistry Letters 25 (10):2028–32. doi: 10.1016/j.bmcl.2015.04.003.
  • Li, L., S. Li, K. Deng, J. Liu, P. O. Vandvik, P. Zhao, L. Zhang, J. Shen, M. M. Bala, Z. N. Sohani, et al. 2016. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: Systematic review and meta-analysis of randomised and observational studies. BMJ (Clinical Research ed.) 352 (i610):i610– 17. doi: 10.1136/bmj.i610.
  • Li, S., W. Li, Y. Wang, Y. Asada, and K. Koike. 2010. Prenylflavonoids from Glycyrrhiza uralensis and their protein tyrosine phosphatase-1B inhibitory activities. Bioorganic & Medicinal Chemistry Letters 20 (18):5398–401. doi: 10.1016/j.bmcl.2010.07.110.
  • Li, X., L. Wang, and D. Shi. 2016. The design strategy of selective PTP1B inhibitors over TCPTP. Bioorganic & Medicinal Chemistry 24 (16):3343–52. doi: 10.1016/j.bmc.2016.06.035.
  • Li, Y. F., L. H. Hu, F. C. Lou, J. Li, and Q. Shen. 2005. PTP1B inhibitors from Ardisia japonica. Journal of Asian Natural Products Research 7 (1):13–8. doi: 10.1080/10286020310001596033.
  • Libianto, R., and E. I. Ekinci. 2019. New agents for the treatment of type 2 diabetes. Critical Care Clinics 35 (2):315–28. doi: 10.1016/j.ccc.2018.11.007.
  • Liu, Y.-J., J. Zhan, X.-L. Liu, Y. Wang, J. Ji, and Q.-Q. He. 2014. Dietary flavonoids intake and risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Clinical Nutrition (Edinburgh, Scotland) 33 (1):59–63. doi: 10.1016/j.clnu.2013.03.011.
  • Luo, J., Q. Xu, B. Jiang, R. Zhang, X. Jia, X. Li, L. Wang, C. Guo, N. Wu, and D. Shi. 2018. Selectivity, cell permeability and oral availability studies of novel bromophenol derivative HPN as protein tyrosine phosphatase 1B inhibitor. British Journal of Pharmacology 175 (1):140–53. doi: 10.1111/bph.14080.
  • Mîinea, C. P., H. Sano, S. Kane, E. Sano, M. Fukuda, J. Peränen, W. S. Lane, and G. E. Lienhard. 2005. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. The Biochemical Journal 391 (Pt 1):87–93. doi: 10.1042/BJ20050887.
  • Molina-Vega, M., A. Munoz-Garach, J. C. Fernandez-Garcia, and F. J. Tinahones. 2018. The safety of DPP-4 inhibitor and SGLT2 inhibitor combination therapies. Expert Opinion on Drug Safety 17 (8):815–24. doi: 10.1080/14740338.2018.1497158.
  • Monami, M., I. Dicembrini, and E. Mannucci. 2014. Dipeptidyl peptidase-4 inhibitors and heart failure: A meta-analysis of randomized clinical trials. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 24 (7):689–97. doi: 10.1016/j.numecd.2014.01.017.
  • Moradi-Marjaneh, R., M. Paseban, and A. Sahebkar. 2019. Natural products with SGLT2 inhibitory activity: Possibilities of application for the treatment of diabetes. Phytotherapy Research: PTR 33 (10):2518–30. doi: 10.1002/ptr.6421.
  • Morikawa, T., K. Ninomiya, J. Akaki, N. Kakihara, H. Kuramoto, Y. Matsumoto, T. Hayakawa, O. Muraoka, L.-B. Wang, L.-J. Wu, et al. 2015. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium. Journal of Natural Medicines 69 (4):494–506. doi: 10.1007/s11418-015-0914-8.
  • Mulvihill, E. E., and D. J. Drucker. 2014. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocrine Reviews 35 (6):992–1019. doi: 10.1210/er.2014-1035.
  • Na, B., P. H. Nguyen, B. T. Zhao, Q. H. Vo, B. S. Min, and M. H. Woo. 2016. Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Pharmaceutical Biology 54 (3):474–80. doi: 10.3109/13880209.2015.1048372.
  • Na, M., J. Jang, D. Njamen, J. T. Mbafor, Z. T. Fomum, B. Y. Kim, W. K. Oh, and J. S. Ahn. 2006. Protein tyrosine phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildbraedii. Journal of Natural Products 69 (11):1572–6. doi: 10.1021/np0601861.
  • Nauck, M. A., and J. J. Meier. 2018. Incretin hormones: Their role in health and disease. Diabetes, Obesity & Metabolism 20 (Suppl 1):5–21. doi: 10.1111/dom.13129.
  • Nguyen, D. H., U. M. Seo, B. T. Zhao, D. D. Le, S. H. Seong, J. S. Choi, B. S. Min, and M. H. Woo. 2017. Ellagitannin and flavonoid constituents from Agrimonia pilosa Ledeb. with their protein tyrosine phosphatase and acetylcholinesterase inhibitory activities. Bioorganic Chemistry 72:293–300. doi: 10.1016/j.bioorg.2017.04.017.
  • Nguyen, P. H., T. T. Dao, J. Kim, D. T. Phong, D. T. Ndinteh, J. T. Mbafor, and W. K. Oh. 2011. New 5-deoxyflavonoids and their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) activity. Bioorganic & Medicinal Chemistry 19 (11):3378–83. doi: 10.1016/j.bmc.2011.04.037.
  • Nguyen, P. H., D. J. Ji, Y. R. Han, J. S. Choi, D. Y. Rhyu, B. S. Min, and M. H. Woo. 2015. Selaginellin and biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella tamariscina and their glucose uptake stimulatory effects. Bioorganic & Medicinal Chemistry 23 (13):3730–7. doi: 10.1016/j.bmc.2015.04.007.
  • Nguyen, P. H., G. Sharma, T. T. Dao, M. N. Uddin, K. W. Kang, D. T. Ndinteh, J. T. Mbafor, and W. K. Oh. 2012. New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae. Bioorganic & Medicinal Chemistry 20 (21):6459–64. doi: 10.1016/j.bmc.2012.08.024.
  • Nicolle, E., F. Souard, P. Faure, and A. Boumendjel. 2011. Flavonoids as promising lead compounds in type 2 diabetes mellitus: Molecules of interest and structure-activity relationship. Current Medicinal Chemistry 18 (17):2661–72. doi: 10.2174/092986711795933777.
  • Opinto, G., A. Natalicchio, and P. Marchetti. 2013. Physiology of incretins and loss of incretin effect in type 2 diabetes and obesity. Archives of Physiology and Biochemistry 119 (4):170–8. doi: 10.3109/13813455.2013.812664.
  • Panzhinskiy, E., J. Ren, and S. Nair. 2013. Pharmacological inhibition of protein tyrosine phosphatase 1B: A promising strategy for the treatment of obesity and type 2 diabetes mellitus. Current Medicinal Chemistry 20 (21):2609–25. doi: 10.2174/0929867311320210001.
  • Proença, C., M. Freitas, D. Ribeiro, E. F. T. Oliveira, J. L. C. Sousa, S. M. Tome, M. J. Ramos, A. M. S. Silva, P. A. Fernandes, and E. Fernandes. 2017. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry 32 (1):1216–28. doi: 10.1080/14756366.2017.1368503.
  • Proença, C., M. Freitas, D. Ribeiro, J. L. C. Sousa, F. Carvalho, A. M. S. Silva, P. A. Fernandes, and E. Fernandes. 2018. Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure - activity relationship study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 111 (2018):474–81. doi: 10.1016/j.fct.2017.11.039.
  • Proença, C., M. Freitas, D. Ribeiro, S. M. Tomé, E. F. T. Oliveira, M. F. Viegas, A. N. Araújo, M. J. Ramos, A. M. S. Silva, P. A. Fernandes, et al. 2019. Evaluation of a flavonoids library for inhibition of pancreatic α-amylase towards a structure-activity relationship. Journal of Enzyme Inhibition and Medicinal Chemistry 34 (1):577–88. doi: 10.1080/14756366.2018.1558221.
  • Proença, C., M. Freitas, D. Ribeiro, S. M. Tomé, A. N. Araújo, A. M. S. Silva, P. A. Fernandes, and E. Fernandes. 2019. The dipeptidyl peptidase-4 inhibitory effect of flavonoids is hindered in protein rich environments. Food & Function 10 (9):5718–31. doi: 10.1039/C9FO00722A.
  • Proença, C., A. Oliveira, M. Freitas, D. Ribeiro, J. L. C. Sousa, M. J. Ramos, A. M. S. Silva, P. A. Fernandes, and E. Fernandes. 2020. Structural specificity of flavonoids in the inhibition of human fructose 1,6-bisphosphatase. Journal of Natural Products 83 (5):1541–52. doi: 10.1021/acs.jnatprod.0c00014.
  • Qin, N., T. Sasaki, W. Li, J. Wang, X. Zhang, D. Li, Z. Li, M. Cheng, H. Hua, and K. Koike. 2018. Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 33 (1):1283–91. doi: 10.1080/14756366.2018.1497020.
  • Qin, N. B., C. C. Jia, J. Xu, D. H. Li, F. X. Xu, J. Bai, Z. L. Li, and H. M. Hua. 2017. New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities. Fitoterapia 119:83–9. doi: 10.1016/j.fitote.2017.04.008.
  • Quang, T. H., N. T. Ngan, C. S. Yoon, K. H. Cho, D. G. Kang, H. S. Lee, Y. C. Kim, and H. Oh. 2015. Protein tyrosine phosphatase 1B inhibitors from the roots of Cudrania tricuspidata. Molecules (Basel, Switzerland) 20 (6):11173–83. doi: 10.3390/molecules200611173.
  • Rehman, M. B., B. V. Tudrej, J. Soustre, M. Buisson, P. Archambault, D. Pouchain, H. Vaillant-Roussel, F. Gueyffier, J.-L. Faillie, M.-C. Perault-Pochat, et al. 2017. Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: Meta-analysis of placebo-controlled randomized clinical trials. Diabetes & Metabolism 43 (1):48–58. doi: 10.1016/j.diabet.2016.09.005.
  • Ren, L., L. Z. Li, J. Huang, L. Z. Huang, J. H. Li, Y. M. Li, and S. Y. Tang. 2020. New compounds from the seeds of Psoralea corylifolia with their protein tyrosine phosphatase 1B inhibitory activity. Journal of Asian Natural Products Research 22 (8):732–6. doi: 10.1080/10286020.2019.1621852.
  • Röhrborn, D., N. Wronkowitz, and J. Eckel. 2015. DPP4 in diabetes. Frontiers in Immunology 6 (386):386– 20. doi: 10.3389/fimmu.2015.00386.
  • RusznyÁK, S. T., and A. Szent-GyÖRgyi. 1936. Vitamin P: Flavonols as vitamins. Nature 138 (3479):27. doi: 10.1038/138027a0.
  • Salmeen, A., J. N. Andersen, M. P. Myers, N. K. Tonks, and D. Barford. 2000. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Molecular Cell 6 (6):1401–12. doi: 10.1016/S1097-2765(00)00137-4.
  • Sano, M. 2019. Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. Journal of Cardiology 73 (1):28–32. doi: 10.1016/j.jjcc.2018.07.004.
  • Sarian, M. N., Q. U. Ahmed, S. Z. Mat So’ad, A. M. Alhassan, S. Murugesu, V. Perumal, S. N. A. Syed Mohamad, A. Khatib, and J. Latip. 2017. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International 2017:1–14. doi: 10.1155/2017/8386065.
  • Sasaki, T., W. Li, K. Higai, T. H. Quang, Y. H. Kim, and K. Koike. 2014. Protein tyrosine phosphatase 1B inhibitory activity of lavandulyl flavonoids from roots of Sophora flavescens. Planta Medica 80 (07):557–60. doi: 10.1055/s-0034-1368400.
  • Scirica, B. M., D. L. Bhatt, E. Braunwald, P. G. Steg, J. Davidson, B. Hirshberg, P. Ohman, R. Frederich, S. D. Wiviott, E. B. Hoffman, et al. 2013. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. New England Journal of Medicine 369 (14):1317–26. doi: 10.1056/NEJMoa1307684.
  • Seino, Y., M. Fukushima, and D. Yabe. 2010. GIP and GLP-1, the two incretin hormones: Similarities and differences. Journal of Diabetes Investigation 1 (1-2):8–23. doi: 10.1111/j.2040-1124.2010.00022.x.
  • Sesti, G., A. Avogaro, S. Belcastro, B. M. Bonora, M. Croci, G. Daniele, M. Dauriz, F. Dotta, C. Formichi, S. Frontoni, et al. 2019. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetologica 56 (6):605–17. doi: 10.1007/s00592-018-1271-3.
  • Soares, J. M. D., A. E. B. Pereira Leal, J. C. Silva, J. R. G. S. Almeida, and H. P. de Oliveira. 2017. Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacognosy Magazine 13 (52):639–46. doi: 10.4103/pm.pm_87_17.
  • Song, Y. H., Z. Uddin, Y. M. Jin, Z. Li, M. J. Curtis-Long, K. D. Kim, J. K. Cho, and K. H. Park. 2017. Inhibition of protein tyrosine phosphatase (PTP1B) and α-glucosidase by geranylated flavonoids from Paulownia tomentosa. Journal of Enzyme Inhibition and Medicinal Chemistry 32 (1):1195–202. doi: 10.1080/14756366.2017.1368502.
  • Sugiyama, M., R. Banno, A. Mizoguchi, T. Tominaga, T. Tsunekawa, T. Onoue, D. Hagiwara, Y. Ito, Y. Morishita, S. Iwama, et al. 2017. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions. Biochemical and Biophysical Research Communications 488 (1):116–21. doi: 10.1016/j.bbrc.2017.05.019.
  • Sun, C., C. Zhao, E. C. Guven, P. Paoli, J. Simal‐Gandara, K. M. Ramkumar, S. Wang, F. Buleu, A. Pah, V. Turi, et al. 2020. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers 1 (1):18–44. doi: 10.1002/fft2.15.
  • Sun, J., C. Qu, Y. Wang, H. Huang, M. Zhang, H. Li, Y. Zhang, Y. Wang, and W. Zou. 2016. PTP1B, a potential target of type 2 diabetes mellitus. Molecular Biology 05 (04):1–6. doi: 10.4172/2168-9547.1000174.
  • Sun, L. P., W. P. Ma, L. X. Gao, L. L. Yang, Y. C. Quan, J. Li, and H. R. Piao. 2013. Synthesis and characterization of 5,7-dihydroxyflavanone derivatives as novel protein tyrosine phosphatase 1B inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 28 (6):1199–204. doi: 10.3109/14756366.2012.723206.
  • Tamrakar, A. K., C. K. Maurya, and A. K. Rai. 2014. PTP1B inhibitors for type 2 diabetes treatment: A patent review (2011 - 2014). Expert Opinion on Therapeutic Patents 24 (10):1101–15. doi: 10.1517/13543776.2014.947268.
  • Tang, Y., X. Zhang, Z. Chen, W. Yin, G. Nan, J. Tian, F. Ye, and Z. Xiao. 2018. Novel benzamido derivatives as PTP1B inhibitors with anti-hyperglycemic and lipid-lowering efficacy. Acta Pharmaceutica Sinica. B 8 (6):919–32. doi: 10.1016/j.apsb.2018.05.001.
  • Teng, H., and L. Chen. 2019. Polyphenols and bioavailability: An update. Critical Reviews in Food Science and Nutrition 59 (13):2040–51. doi: 10.1080/10408398.2018.1437023.
  • Thareja, S., S. Aggarwal, T. R. Bhardwaj, and M. Kumar. 2012. Protein tyrosine phosphatase 1B inhibitors: A molecular level legitimate approach for the management of diabetes mellitus. Medicinal Research Reviews 32 (3):459–517. doi: 10.1002/med.20219.
  • Trinh, B. T. D., A. K. Jager, and D. Staerk. 2017. High-resolution inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of PTP1B inhibitors from Vietnamese plants. Molecules 22 (7):1228– 12. doi: 10.3390/molecules22071228.
  • van Dam, R. M., N. Naidoo, and R. Landberg. 2013. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: Review of recent findings. Current Opinion in Lipidology 24 (1):25–33. doi: 10.1097/MOL.0b013e32835bcdff.
  • Verma, S., R. M. Goldenberg, D. L. Bhatt, M. E. Farkouh, A. Quan, H. Teoh, K. A. Connelly, L. A. Leiter, and J. O. Friedrich. 2017. Dipeptidyl peptidase-4 inhibitors and the risk of heart failure: A systematic review and meta-analysis. CMAJ Open 5 (1):E152–E77. doi: 10.9778/cmajo.20160058.
  • Wang, M., B. W. Yu, M. H. Yu, L. X. Gao, J. Y. Li, H. Y. Wang, J. Li, and A. J. Hou. 2015. New isoprenylated phenolic compounds from Morus laevigata. Chemistry & Biodiversity 12 (6):937–45. doi: 10.1002/cbdv.201400210.
  • Wang, Y., H. J. Yuk, J. Y. Kim, D. W. Kim, Y. H. Song, X. F. Tan, M. J. Curtis-Long, and K. H. Park. 2016. Novel chromenedione derivatives displaying inhibition of protein tyrosine phosphatase 1B (PTP1B) from Flemingia philippinensis. Bioorganic & Medicinal Chemistry Letters 26 (2):318–21. doi: 10.1016/j.bmcl.2015.12.021.
  • Wu, L. Q., C. Lei, L. X. Gao, H. B. Liao, J. Y. Li, J. Li, and A. J. Hou. 2015. Isoprenylated flavonoids with PTP1B inhibition from Ficus tikoua. Natural Product Communications 10 (12):2105–7. doi: 10.1177/1934578X1501001223.
  • Xu, J., X. Wang, J. Yue, Y. Sun, X. Zhang, and Y. Zhao. 2018. Polyphenols from acorn leaves (Quercus liaotungensis) protect pancreatic beta cells and their inhibitory activity against α-glucosidase and protein tyrosine phosphatase 1B. Molecules 23 (9):2167– 12. doi: 10.3390/molecules23092167.
  • Xu, J., L. Yang, R. Wang, K. Zeng, B. Fan, and Z. Zhao. 2019. The biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella uncinata and their antihyperglycemic action. Fitoterapia 137 (104255):104255– 8. doi: 10.1016/j.fitote.2019.104255.
  • Xue, J. J., C. Lei, P. P. Wang, K. Y. Kim, J. Y. Li, J. Li, and A. J. Hou. 2018. Flavans and diphenylpropanes with PTP1B inhibition from Broussonetia kazinoki. Fitoterapia 130:37–42. doi: 10.1016/j.fitote.2018.08.001.
  • Yang, B., Y. Dong, F. Wang, and Y. Zhang. 2020. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 25 (20):4613. doi: 10.3390/molecules25204613.
  • Yang, X., Y. Zhao, Q. Sun, Y. Yang, Y. Gao, W. Ge, J. Liu, X. Xu, D. Weng, S. Wang, et al. 2019. Adenine nucleotide-mediated regulation of hepatic PTP1B activity in mouse models of type 2 diabetes. Diabetologia 62 (11):2106–17. doi: 10.1007/s00125-019-04971-1.
  • Yip, S. C., S. Saha, and J. Chernoff. 2010. PTP1B: A double agent in metabolism and oncogenesis. Trends in Biochemical Sciences 35 (8):442–9. doi: 10.1016/j.tibs.2010.03.004.
  • Zabolotny, J. M., F. G. Haj, Y. B. Kim, H. J. Kim, G. I. Shulman, J. K. Kim, B. G. Neel, and B. B. Kahn. 2004. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. The Journal of Biological Chemistry 279 (23):24844–51. doi: 10.1074/jbc.M310688200.
  • Zhang, L., Y. Ge, H. M. Song, Q. M. Wang, and C. H. Zhou. 2018. Design, synthesis of novel azolyl flavonoids and their protein tyrosine phosphatase-1B inhibitory activities. Bioorganic Chemistry 80:195–203. doi: 10.1016/j.bioorg.2018.06.008.
  • Zhang, L. B., C. Lei, L. X. Gao, J. Y. Li, J. Li, and A. J. Hou. 2016. Isoprenylated flavonoids with PTP1B inhibition from Macaranga denticulata. Natural Products and Bioprospecting 6 (1):25–30. doi: 10.1007/s13659-015-0082-2.
  • Zhao, B. T., D. D. Le, P. H. Nguyen, M. Y. Ali, J.-S. Choi, B. S. Min, H. M. Shin, H. I. Rhee, and M. H. Woo. 2016. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L. Chemico-Biological Interactions 253:27–37. doi: 10.1016/j.cbi.2016.04.012.
  • Zhao, Y., L. Kjaerulff, K. T. Kongstad, A. M. Heskes, B. L. Møller, and D. Staerk. 2019. 2(5H)-Furanone sesquiterpenes from Eremophila bignoniiflora: High-resolution inhibition profiling and PTP1B inhibitory activity. Phytochemistry 166 (112054):112054. doi: 10.1016/j.phytochem.2019.112054.
  • Zhao, Y., K. T. Kongstad, A. K. Jager, J. Nielsen, and D. Staerk. 2018. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L. Journal of Chromatography. A 1556:55–63. doi: 10.1016/j.chroma.2018.04.041.
  • Zhu, J., C. Chen, B. Zhang, and Q. Huang. 2020. The inhibitory effects of flavonoids on alpha-amylase and alpha-glucosidase. Critical Reviews in Food Science and Nutrition 60 (4):695–14. doi: 10.1080/10408398.2018.1548428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.