611
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Plant compounds for the potential reduction of food waste – a focus on antimicrobial peptides

, ORCID Icon &

References

  • Abdel-Aziz, S. M., M. M. S. Asker, A. A. Keera, and M. G. Mahmoud. 2016. Microbial food spoilage: Control strategies for shelf life extension. In Microbes in food and health, 239–64. Springer International Publishing. doi: 10.1007/978-3-319-25277-3_13.
  • Abeliotis, K., K. Lasaridi, V. Costarelli, and C. Chroni. 2015. The implications of food waste generation on climate change: The case of Greece. Sustainable Production and Consumption 3:8–14. doi: 10.1016/j.spc.2015.06.006.
  • Ackermann, M. R. 2016. Inflammation and Healing. In Pathologic basis of veterinary disease expert consult, 73–131.e2. Elsevier Inc. doi: 10.1016/B978-0-323-35775-3.00003-5.
  • Adelakun, O. E., O. J. Oyelade, and B. F. Olanipekun. 2016. Use of essential oils in food preservation. In Essential oils in food preservation, flavor and safety, 71–84. doi: 10.1016/B978-0-12-416641-7.00007-9.
  • Adrian, M., and P. Jeandet. 2012. Effects of resveratrol on the ultrastructure of botrytis cinerea conidia and biological significance in plant/pathogen interactions. Fitoterapia 83 (8):1345–50. doi: 10.1016/j.fitote.2012.04.004.
  • Albertyn, J., C. H. Pohl, and B. C. Viljoen. 2014. Rhodotorula. In Encyclopedia of food microbiology, 2nd ed., 291–5. Elsevier Inc. doi: 10.1016/B978-0-12-384730-0.00289-5.
  • Allen, A., A. K. Snyder, M. Preuss, E. E. Nielsen, D. M. Shah, and T. J. Smith. 2008. Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227 (2):331–9. doi: 10.1007/s00425-007-0620-1.
  • Almeida, M. S., K. M. S. Cabral, R. B. Zingali, and E. Kurtenbach. 2000. Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Archives of Biochemistry and Biophysics 378 (2):278–86. doi: 10.1006/abbi.2000.1824.
  • Alonso, A., I. Belda, A. Santos, E. Navascués, and D. Marquina. 2015. Advances in the control of the spoilage caused by zygosaccharomyces species on sweet wines and concentrated grape musts. Food Control. 51:129–34. doi: 10.1016/j.foodcont.2014.11.019.
  • AlOtaibi, M., and H. ElDemerdash. 2008. Improvement of the quality and shelf life of concentrated yoghurt (Labneh) by the addition of some essential oils. African Journal of Microbiology Research 2 (7):156–61.
  • Alvarez, M. V., A. G. Ponce, R. Goyeneche, and M. R. Moreira. 2017. Physical treatments and propolis extract to enhance quality attributes of fresh-cut mixed vegetables. Journal of Food Processing and Preservation 41 (5):e13127. doi: 10.1111/jfpp.13127.
  • Amblard, M., J. A. Fehrentz, J. Martinez, and G. Subra. 2006. Methods and protocols of modern solid phase peptide synthesis. Molecular Biotechnology 33 (3):239–54. doi: 10.1385/MB:33:3:239.
  • Anaya-López, J. L., J. E. López-Meza, V. M. Baizabal-Aguirre, H. Cano-Camacho, and A. Ochoa-Zarzosa. 2006. Fungicidal and cytotoxic activity of a capsicum Chinense defensin expressed by endothelial cells. Biotechnology Letters 28 (14):1101–8. doi: 10.1007/s10529-006-9060-4.
  • Ancasi, E. G., L. Carrillo, and M. R. Benítez Ahrendts. 2006. Moulds and yeasts in bottled water and soft drinks. Revista Argentina de Microbiologia 38 (2):93–6.
  • Antolak, H., and D. Kregiel. 2017. Food preservatives from plants. In Food additives. InTech. doi: 10.5772/intechopen.70090.
  • Aslantürk, Ö. S. 2018. In vitro cytotoxicity and cell viability assays: Principles, advantages, and disadvantages. In Genotoxicity - A predictable risk to our actual world. InTech. doi: 10.5772/intechopen.71923.
  • Axel, C., E. Zannini, and E. K. Arendt. 2017. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition 57 (16):3528–42. doi: 10.1080/10408398.2016.1147417.
  • Balaji, V., and C. D. Smart. 2012. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Research 21 (1):23–37. doi: 10.1007/s11248-011-9506-x.
  • Ball, C. O. 1943. Short-time pasteurization of milk. Industrial & Engineering Chemistry 35 (1):71–84. doi: 10.1021/ie50397a017.
  • Barbosa-Pereira, L., G. P. Aurrekoetxea, I. Angulo, P. Paseiro-Losada, and J. M. Cruz. 2014. Development of new active packaging films coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Science 97 (2):249–54. doi: 10.1016/j.meatsci.2014.02.006.
  • Barnett, J. A. (James Arthur), R. W. Payne, and D. Yarrow. 2000. Yeasts: Characteristics and identification. Published in 2000 in Cambridge UK by Cambridge University Press. Cambridge, UK; New York, NY: Cambridge University Press.
  • Barth, M., T. R. Hankinson, H. Zhuang, and F. Breidt. 2009. Microbiological spoilage of fruits and vegetables. In Compendium of the microbiological spoilage of foods and beverages, 135–83. New York: Springer. doi: 10.1007/978-1-4419-0826-1_6.
  • Bártová, V., J. Bárta, and M. Jarošová. 2019. Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Applied Microbiology and Biotechnology 103 (14):5533–47. doi: 10.1007/s00253-019-09887-9.
  • Bartowsky, E. J. 2009. Bacterial spoilage of wine and approaches to minimize it. Letters in Applied Microbiology 48 (2):149–56. doi: 10.1111/j.1472-765X.2008.02505.x.
  • Batt, C. A., and M. L. Tortorello. 2014. Encyclopedia of food microbiology. 2nd ed.
  • Bayer, E., and M. Mutter. 1972. Liquid phase synthesis of peptides. Nature 237 (5357):512–3. doi: 10.1038/237512a0.
  • Becker-Ritt, A. B., A. H. S. Martinelli, S. Mitidieri, V. Feder, G. E. Wassermann, L. Santi, M. H. Vainstein, J. T. A. Oliveira, L. M. Fiuza, G. Pasquali, et al. 2007. Antifungal activity of plant and bacterial ureases. Toxicon: Official Journal of the International Society on Toxinology 50 (7):971–83. doi: 10.1016/j.toxicon.2007.07.008.
  • Behera, S. S., A. F. El Sheikha, R. Hammami, and A. Kumar. 2020. Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? Journal of Functional Foods 70:103971. doi: 10.1016/j.jff.2020.
  • Bellù, L. G. 2018. Food and agriculture organization of the United Nations Rome. www.fao.org/publications.
  • Ben Rejeb, I., V. Pastor, and B. Mauch-Mani. 2014. Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants 3:458–75. doi: 10.3390/plants3040458.
  • Berrocal-Lobo, M., A. Segura, M. Moreno, G. López, F. García-Olmedo, and A. Molina. 2002. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology 128 (3):951–61. doi: 10.1104/pp.010685.
  • Berry, D. R., and J. C. Slaughter. 2003. Alcoholic beverage fermentations. In Fermented beverage production, 25–39. Springer US. doi: 10.1007/978-1-4615-0187-9_2.
  • Berthiller, F., C. Crews, C. Dall’Asta, S. D. Saeger, G. Haesaert, P. Karlovsky, I. P. Oswald, W. Seefelder, G. Speijers, and J. Stroka. 2013. Masked mycotoxins: A review. In Molecular nutrition and food research. Wiley. doi: 10.1002/mnfr.201100764.
  • Bhat, R., R. V. Rai, and A. A. Karim. 2010. Mycotoxins in food and feed: Present status and future concerns. Comprehensive Reviews in Food Science and Food Safety 9 (1):57–81. doi: 10.1111/j.1541-4337.2009.00094.x.
  • Bisson, L. F. 2004. The biotechnology of wine yeast. Food Biotechnology 18 (1):63–96. doi: 10.1081/FBT-120030385.
  • Blackburn, C. D. W. 2010. Food spoilage microorganisms. doi: 10.1533/9781845691417.
  • Bohlmann, H., and W. Broekaert. 1994. The role of thionins in plant protection. Critical Reviews in Plant Sciences 13 (1):1–16. doi: 10.1080/07352689409701905.
  • Bohlmann, H., S. Clausen, S. Behnke, H. Giese, C. Hiller, U. Reimann-Philipp, G. Schrader, V. Barkholt, and K. Apel. 1988. Leaf-specific thionins of barley-a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants. The EMBO Journal 7 (6):1559–65. doi: 10.1002/j.1460-2075.1988.tb02980.x.
  • Bond, M., T. Meacham, R. Bhunnoo, and T. G. Benton. 2013. Food waste within global food systems, 1–43. Global Food Security Programme.
  • Borch, E., M. L. Kant-Muermans, and Y. Blixt. 1996. Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology 33 (1):103–20. doi: 10.1016/0168-1605(96)01135-X.
  • Boulton, C. C M., and D. Quain. 2001. Brewing yeast and fermentation. Blackwell Science.
  • Broekaert, W. F., B. P. A. Cammue, M. F. C. De Bolle, K. Thevissen, G. W. De Samblanx, R. W. Osborn, and K. Nielson. 1997. Antimicrobial peptides from plants. Critical Reviews in Plant Sciences 16 (3):297–323. doi: 10.1080/07352689709701952.
  • Broekaert, W. F., W. Mariën, F. R. Terras, M. F. De Bolle, P. Proost, J. Van Damme, L. Dillen, M. Claeys, S. B. Rees, and J. Vanderleyden. 1992. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31 (17):4308–14. doi: 10.1021/bi00132a023.
  • Brown, S. R. B., E. C. Forauer, and D. J. D'Amico. 2018. Effect of modified atmosphere packaging on the growth of spoilage microorganisms and listeria monocytogenes on fresh cheese. Journal of Dairy Science 101 (9):7768–79. doi: 10.3168/jds.2017-14217.
  • Büchl, N. R., and H. Seiler. 2011. Yeasts and molds: Yeasts in milk and dairy products. In Encyclopedia of dairy sciences, 2nd ed., 744–753. Elsevier Inc. doi: 10.1016/B978-0-12-374407-4.00498-2.
  • Butnariu, M., and I. Sarac. 2018. Essential oils from plants. Journal of Biotechnology and Biomedical Science 1 (4):35–43. doi: 10.14302/issn.2576-6694.jbbs-18-2489.
  • Caballero, B. 2003. Encyclopedia of food sciences and nutrition. Encyclopedia of Food Sciences and Nutrition 1 (9):1689–99. doi: 10.1017/CBO9781107415324.004.
  • Cachon, R., P. Girardon, and A. Voilley. 2019. Gases in agro-food processes. doi: 10.1016/C2016-0-02608-6.
  • Caggia, C., C. Restuccia, A. Pulvirenti, and P. Giudici. 2001. Identification of pichia anomala isolated from yoghurt by RFLP of the ITS region. International Journal of Food Microbiology 71 (1):71–3. doi: 10.1016/S0168-1605(01)00556-6.
  • Cammue, B. P., M. F. De Bolle, F. R. Terras, P. Proost, J. Van Damme, S. B. Rees, J. Vanderleyden, and W. F. Broekaert. 1992. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. The Journal of Biological Chemistry 267 (4):2228–33. doi: 10.1016/S0021-9258(18)45866-8.
  • Camo, J., J. Antonio Beltrán, and P. Roncalés. 2008. Extension of the display life of lamb with an antioxidant active packaging. Meat Science 80 (4):1086–91. doi: 10.1016/j.meatsci.2008.04.031.
  • Carvalho, A. d O., and V. M. Gomes. 2009. Plant defensins-prospects for the biological functions and biotechnological properties. Peptides 30 (5):1007–20. doi: 10.1016/j.peptides.2009.01.018.
  • Carvalho, A. D. O., and V. M. Gomes. 2007. Role of plant lipid transfer proteins in plant cell physiology - A concise review. Peptides 28 (5):1144–53. doi: 10.1016/j.peptides.2007.03.004.
  • Chagolla-Lopez, A., A. Blanco-Labra, A. Patthy, R. Sánchez, and S. Pongor. 1994. A novel α-amylase inhibitor from amaranth (Amaranthus hypocondriacus) seeds. Journal of Biological Chemistry 269 (38):23675–80.
  • Chapagain, A. K., and K. James. 2013. Accounting for the impact of food waste on water resources and climate change. In Food industry wastes, 217–36. Elsevier Inc. doi: 10.1016/B978-0-12-391921-2.00012-3.
  • Chen, B., W. Le, Y. Wang, Z. Li, D. Wang, L. Ren, L. Lin, S. Cui, J. J. Hu, Y. Hu, et al. 2016. Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics 6 (11):1887–98. doi: 10.7150/thno.16358.
  • Chen, C., S. Zhao, G. Hao, H. Yu, H. Tian, and G. Zhao. 2017. Role of lactic acid bacteria on the yogurt flavour: A review. International Journal of Food Properties 20 (sup1):S316–S330. doi: 10.1080/10942912.2017.1295988.
  • Chen, Y., M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant, and R. S. Hodges. 2007. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrobial Agents and Chemotherapy 51 (4):1398–406. doi: 10.1128/AAC.00925-06.
  • Colilla, F. J., A. Rocher, and E. Mendez. 1990. γ-Purothionins: Amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Letters 270 (1–2):191–4. doi: 10.1016/0014-5793(90)81265-P.
  • Combina, M., C. Daguerre, A. Massera, L. Mercado, M. E. Sturm, A. Ganga, and C. Martinez. 2008. Yeast identification in grape juice concentrates from Argentina. Letters in Applied Microbiology 46 (2):192–7. doi: 10.1111/j.1472-765X.2007.02291.x.
  • Cools, T. L., C. Struyfs, B. P. Cammue, and K. Thevissen. 2017. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiology 12 (5):441–54. doi: 10.2217/fmb-2016-0181.
  • Craik, D. J., M. Čemažar, C. K. L. Wang, and N. L. Daly. 2006. The cyclotide family of circular miniproteins: Nature's combinatorial peptide template. Biopolymers 84 (3):250–66. doi: 10.1002/bip.20451.
  • Cui, S., and Z. Fan. 2019. Lactic acid bacteria and fermented meat products. In Lactic acid bacteria, 211–25. doi: 10.1007/978-981-13-7283-4_8.
  • Daneshmand, F., H. Zare-Zardini, and L. Ebrahimi. 2013. Investigation of the antimicrobial activities of snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Natural Product Research 27 (24):2292–6. doi: 10.1080/14786419.2013.827192.
  • Das, K. 2016. Essential oils in food preservation, flavor and safety. Elsevier. doi: 10.1016/B978-0-12-416641-7.00095-X.
  • de León, I. Ponce, and M. Montesano. 2013. Activation of defense mechanisms against pathogens in mosses and flowering plants. International Journal of Molecular Sciences 14 (2):3178–200. doi: 10.3390/ijms14023178.
  • Deak, T., J. Chen, and L. R. Beuchat. 2000. Molecular characterization of Yarrowia lipolytica and Candida zeylanoides isolated from poultry. Applied and Environmental Microbiology 66 (10):4340–4. doi: 10.1128/AEM.66.10.4340-4344.2000.
  • Diz, M. S. S., A. O. Carvalho, R. Rodrigues, A. G. C. Neves-Ferreira, M. Da Cunha, E. W. Alves, A. L. Okorokova-Façanha, M. A. Oliveira, J. Perales, O. L. T. Machado, et al. 2006. Antimicrobial peptides from chili pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells. Biochimica et Biophysica Acta 1760 (9):1323–32. doi: 10.1016/j.bbagen.2006.04.010.
  • Du Toit, M., and I. S. Pretorius. 2019. Microbial spoilage and preservation of wine: Using weapons from nature’s own arsenal - A review. South African Journal of Enology & Viticulture 21 (1). doi: 10.21548/21-1-3559.
  • Edwards, I. A., A. G. Elliott, A. M. Kavanagh, J. Zuegg, M. A. T. Blaskovich, and M. A. Cooper. 2016. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infectious Diseases 2 (6):442–50. doi: 10.1021/acsinfecdis.6b00045.
  • El-Deeb, A. M. 2017. Utilization of propolis extract as a natural preservative in raw milk. Journal of Food and Dairy Sciences 8 (8):315–21.
  • Epley, R. J., P. B. Addis, and J. J. Warthesen. 1992. Nitrite in meat. Minneapolis, MN: Minnesota Extension Service, University of Minnesota.
  • Erkmen, O., and F. T. Bozoglu. 2016a. Spoilage of vegetables and fruits. In Food microbiology: Principles into practice, 337–63. Wiley. doi: 10.1002/9781119237860.ch20.
  • Erkmen, O., and T. F. Bozoglu. 2016b. Food microbiology: Principles into practice. Vol. 1. Wiley. doi: 10.1002/9781119237860.
  • Escott, C., I. Loira, A. Morato, M. A. Bañuelos, and J. A. Suárez-Lepe. 2017. Wine spoilage yeasts: Control strategy. In Yeast - industrial applications. InTech. doi: 10.5772/intechopen.69942.
  • Escott, C., J. del Fresno, I. Loira, A. Morata, and J. Suárez-Lepe. 2018. Zygosaccharomyces rouxii: Control strategies and applications in food and winemaking. Fermentation 4 (3):69. doi: 10.3390/fermentation4030069.
  • Espina, L., D. García-Gonzalo, A. Laglaoui, B. M. Mackey, and R. Pagán. 2013. Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices. International Journal of Food Microbiology 161 (1):23–30. doi: 10.1016/j.ijfoodmicro.2012.11.015.
  • Espina, L., S. Monfort, I. Álvarez, D. García-Gonzalo, and R. Pagán. 2014. Combination of pulsed electric fields, mild heat and essential oils as an alternative to the ultrapasteurization of liquid whole egg. International Journal of Food Microbiology 189:119–25. doi: 10.1016/j.ijfoodmicro.2014.08.002.
  • Evans, D., H. Campbell, and A. Murcott. 2013. A brief pre-history of food waste and the social sciences. The Sociological Review 60:5–26. doi: 10.1111/1467-954X.12035.
  • FAO. 2019. Moving forward on food loss and waste reduction food and agriculture. FAO. www.fao.org/publications.
  • Farkas, J., and C. Mohácsi-Farkas. 2011. History and Future of Food Irradiation. Trends in Food Science and Technology 22 (2–3):121–126. doi: 10.1016/j.tifs.2010.04.002.
  • Fernandez de Caleya, R., B. Gonzalez-Pascual, F. García-Olmedo, and P. Carbonero. 1972. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Applied Microbiology 23 (5):998–1000. doi: 10.1128/aem.23.5.998-1000.1972.
  • Ferre, R., E. Badosa, L. Feliu, M. Planas, E. Montesinos, and E. Bardají. 2006. Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Applied and Environmental Microbiology 72 (5):3302–8. doi: 10.1128/AEM.72.5.3302-3308.2006.
  • Fleet, G. 1992. Spoilage yeasts. Critical Reviews in Biotechnology 12 (1–2):1–44. doi: 10.3109/07388559209069186.
  • Florack, D. E. A., B. Visser, P. M. Vries, J. W. L. Vuurde, and W. J. Stiekema. 1993. Analysis of the toxicity of purothionins and hordothionins for plant pathogenic bacteria. Netherlands Journal of Plant Pathology 99 (5–6):259–68. doi: 10.1007/BF01974307.
  • Fratianni, F., L. De Martino, A. Melone, V. De Feo, R. Coppola, and F. Nazzaro. 2010. Preservation of chicken breast meat treated with thyme and balm essential oils. Journal of Food Science 75 (8):M528–35. doi: 10.1111/j.1750-3841.2010.01791.x.
  • FSAI. 2018. Sulphur Dioxide and Sulphites | Additives | FAQs | The Food Safety Authority of Ireland. FSAI. https://www.fsai.ie/faq/additives/sulphur_dioxide_sulphites.html.
  • Galdino da Rocha Pitta, M., M. G. da Rocha Pitta, and S. L. Galdino. 2010. Development of novel therapeutic drugs in humans from plant antimicrobial peptides. Current Protein & Peptide Science 11 (3):236–47. doi: 10.2174/138920310791112066.
  • Gao, A. G., S. M. Hakimi, C. A. Mittanck, Y. Wu, B. M. Woerner, D. M. Stark, D. M. Shah, J. Liang, and C. M. Rommens. 2000. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology 18 (12):1307–10. doi: 10.1038/82436.
  • García, A. N., N. D. Ayub, A. R. Fox, M. C. Gómez, M. J. Diéguez, E. M. Pagano, C. A. Berini, J. P. Muschietti, and G. Soto. 2014. Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biology 14 (1):248. doi: 10.1186/s12870-014-9.
  • Gardini, F., G. Suzzi, A. Lombardi, F. Galgano, M. A. Crudele, C. Andrighetto, M. Schirone, and R. Tofalo. 2001. A survey of yeasts in traditional sausages of Southern Italy. FEMS Yeast Research 1 (2):161–7. doi: 10.1111/j.1567-1364.2001.tb00027.x.
  • Garnier, L., F. Valence, and J. Mounier. 2017. Diversity and control of spoilage fungi in dairy products: An update. Microorganisms 5 (3):42. doi: 10.3390/microorganisms5030042.
  • Ghaly, A. E., D. Dave, and A. E. Ghaly. 2011. Meat spoilage mechanisms and preservation techniques: A critical review. American Journal of Agricultural and Biological Sciences 6 (4):486–510.
  • Ghaly, A. E., D. Dave, S. Budge, and M. S. Brooks. 2010. Fish spoilage mechanisms and preservation techniques: Review. American Journal of Applied Sciences 7 (7):859–77. doi: 10.3844/ajassp.2010.859.877.
  • Ghosh, T., A. Beniwal, A. Semwal, and N. K. Navani. 2019. Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Frontiers in Microbiology. doi: .
  • Gill, C. O. 1990. Controlled atmosphere packaging of chilled meat. Food Control 1 (2):74–8. doi: 10.1016/0956-7135(90)90088-T.
  • González-Aguilar, G. A., J. G. Buta, and C. Y. Wang. 2003. Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya ‘sunrise’. Postharvest Biology and Technology 28 (3):361–70. doi: 10.1016/S0925-5214(02)00200-4.
  • Gram, L., L. Ravn, M. Rasch, J. B. Bruhn, A. B. Christensen, and M. Givskov. 2002. Food spoilage - Interactions between food spoilage bacteria. International Journal of Food Microbiology 78 (1–2):79–97. doi: 10.1016/S0168-1605(02)00233-7.
  • Ha, J.-U., Y.-M. Kim, and D.-S. Lee. 2001. Multilayered antimicrobial polyethylene films applied to the packaging of ground beef. Packaging Technology and Science 14 (2):55–62. doi: 10.1002/pts.537.
  • Hancock, R. E. 1997. Peptide antibiotics. The Lancet 349 (9049):418–22. doi: 10.1016/S0140-6736(97)80051-7.
  • Harris, P. W. R., S.-H. Yang, A. Molina, G. López, M. Middleditch, and M. A. Brimble. 2014. Plant antimicrobial peptides snakin-1 and snakin-2: Chemical synthesis and insights into the disulfide connectivity. Chemistry (Weinheim an Der Bergstrasse, Germany) 20 (17):5102–10. doi: 10.1002/chem.201303207.
  • Harrison, R. 1906. Food preservatives. The Lancet 168 (4338):1095. doi: 10.1016/S0140-6736(01)44109-2.
  • Hayes, B. M. E., M. R. Bleackley, J. L. Wiltshire, M. A. Anderson, A. Traven, and N. L. Van Der Weerden. 2013. Identification and mechanism of action of the plant defensin Nad1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrobial Agents and Chemotherapy 57 (8):3667–75. doi: 10.1128/AAC.00365-13.
  • Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407 (6805):770–6. doi: 10.1038/35037710.
  • Herbel, V., H. Schäfer, and M. Wink. 2015. Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity. Molecules (Basel, Switzerland) 20 (8):14889–901. doi: 10.3390/molecules200814889.
  • Ho, T. M., T. Howes, and B. R. Bhandari. 2016. Methods to extend the shelf-life of cottage cheese - A review. International Journal of Dairy Technology 69 (3):313–27. doi: 10.1111/1471-0307.12309.
  • Hoang, Y. T. H., and A. T. L. Vu. 2016. Sodium benzoate and potassium sorbate in processed meat products collected in Ho Chi Minh City, Vietnam. International Journal on Advanced Science, Engineering and Information Technology 6 (4):477–82. doi: 10.18517/ijaseit.6.4.876.
  • Hoffmann, J. A., and C. Hetru. 1992. Insect defensins: Inducible antibacterial peptides. Immunology Today 13 (10):411–5. doi: 10.1016/0167-5699(92)90092-L.
  • IFT. 2020. Food Preservation in a Clean Label Era - IFT.Org. IFT. Accessed July 31, 2020. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2020/january/columns/food-preservation-in-a-clean-label-era.
  • Ishangulyyev, R., S. Kim, and S. H. Lee. 2019. Understanding food loss and waste-why are we losing and wasting food? Foods 8 (8):297. doi: 10.3390/foods8080297.
  • Ishaq, N., M. Bilal, and H. Iqbal. 2019. Medicinal potentialities of plant defensins: A review with applied perspectives. Medicines 6 (1):29. doi: 10.3390/medicines6010029.
  • Jaiswal, A. K., S. Gupta, and N. Abu-Ghannam. 2012. Optimisation of lactic acid fermentation of York cabbage for the development of potential probiotic products. International Journal of Food Science & Technology 47 (8):1605–12. doi: 10.1111/j.1365-2621.2012.03010.x.
  • Jalilzadeh, A., Y. Tunçtürk, and J. Hesari. 2015. Extension shelf life of cheese: A review. International Journal of Dairy Science 10 (2):44–60. doi: 10.3923/ijds.2015.44.60.
  • James, T. C., L. Gallagher, J. Titze, P. Bourke, J. Kavanagh, E. Arendt, and U. Bond. 2014. In situ production of human β defensin-3 in lager yeasts provides bactericidal activity against beer-spoiling bacteria under fermentation conditions. Journal of Applied Microbiology 116 (2):368–79. doi: 10.1111/jam.12382.
  • Jay, J. M. 1998a. Low-temperature food preservation and characteristics of psychrotrophic microorganisms, 328–46. Boston, MA: Springer. doi: 10.1007/978-1-4615-7476-7_15.
  • Jay, J. M. 1998b. Food Preservation with Chemicals. In, :273–303. doi: 10.1007/978-1-4615-7476-7_13.
  • Jeandet, P., A. C. Douillet-Breuil, R. Bessis, S. Debord, M. Sbaghi, and M. Adrian. 2002. Phytoalexins from the vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural and Food Chemistry 50 (10):2731–41. doi: 10.1021/jf011429s.
  • Ji, H., G. Gheysen, C. Ullah, R. Verbeek, C. Shang, D. De Vleesschauwer, M. Höfte, and T. Kyndt. 2015. The role of thionins in rice defence against root pathogens. Molecular Plant Pathology 16 (8):870–81. doi: 10.1111/mpp.12246.
  • Jiang, Z., B. J. Kullberg, H. Van Der Lee, A. I. Vasil, J. D. Hale, C. T. Mant, E. W. Robert, M. L. Hancock, M. G. Vasil, R. S. Netea, et al. 2008. Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chemical Biology & Drug Design 72 (6):483–95. doi: 10.1111/j.1747-0285.2008.00728.x.
  • Jin, L., X. Bai, N. Luan, H. Yao, Z. Zhang, W. Liu, Y. Chen, X. Yan, M. Rong, R. Lai, et al. 2016. A designed tryptophan- and lysine/arginine-rich antimicrobial peptide with therapeutic potential for clinical antibiotic-resistant Candida albicans vaginitis. Journal of Medicinal Chemistry 59 (5):1791–9. doi: 10.1021/acs.jmedchem.5b01264.
  • Jin, Q., and M. F. Kirk. 2018. PH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science 6: 21. doi: 10.3389/fenvs.2018.00021.
  • Johnson, E. A., and C. Echavarri-Erasun. 2011. Yeast biotechnology. In The yeasts, vol. 1, 21–44. Elsevier. doi: 10.1016/B978-0-444-52149-1.00003-3.
  • Josephson, E. S., and M. S. Peterson. 2018. Preservation of food by ionizing radiation. Vol. 2. doi: 10.1201/9781351075985.
  • Joshi, V. K., and S. Sharma. 2009. Lactic acid fermentation of radish for shelf-stability and pickling. Natural Product Radiance 8 (1):19–24.
  • Kader, J. C. 1996. Lipid-transfer proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47 (1):627–54. doi: 10.1146/annurev.arplant.47.1.627.
  • Karabagias, I., A. Badeka, and M. G. Kontominas. 2011. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Science 88 (1):109–16. doi: 10.1016/j.meatsci.2010.12.010.
  • Khan, U., J. Ullah, B. Saeed, and F. Ali. 2014. Effect of potassium sorbate and sodium benzoate on the quality and shelf-life of strawberry jam during storage. Journal of Agriculture and Biological Science 9 (12):454–8.
  • Kilcast, D., and P. Subramaniam. 2000. The stability and shelf-life of food. doi: 10.1533/9781855736580.
  • Kim, J.-Y., R. Gopal, S. Kim, C. Seo, H. Lee, H. Cheong, and Y. Park. 2013. PG-2, a potent AMP against pathogenic microbial strains, from potato (Solanum tuberosum L Cv. Gogu Valley) tubers not cytotoxic against human cells. International Journal of Molecular Sciences 14 (2):4349–60. doi: 10.3390/ijms14024349.
  • Kirtil, E., and M. H. Oztop. 2016. Controlled and modified atmosphere packaging. In Reference module in food science. Elsevier. doi: 10.1016/b978-0-08-100596-5.03376-x.
  • Kondejewski, L. H., M. Jelokhani-Niaraki, S. W. Farmer, B. Lix, C. M. Kay, B. D. Sykes, R. E. W. Hancock, and R. S. Hodges. 1999. Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. The Journal of Biological Chemistry 274 (19):13181–92. doi: 10.1074/jbc.274.19.13181.
  • Kregiel, D. 2015. Health safety of soft drinks: Contents, containers, and microorganisms. BioMed Research International 2015:128697. doi: 10.1155/2015/128697.
  • Krockel, L. 2013. The role of lactic acid bacteria in safety and flavour development of meat and meat products. In Lactic acid bacteria - R & D for food, health and livestock purposes. doi: 10.5772/51117.
  • Lado, B. H., and A. E. Yousef. 2002. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes Infect 4 (4):433–40. doi: 10.1016/S1286-4579(02)01557-5.
  • Latham, P. W. 1999. Therapeutic peptides revisited. Nature Biotechnology 17 (8):755–7. doi: 10.1038/11686.
  • Lawlor, K. A., J. D. Schuman, P. G. Simpson, and P. J. Taormina. 2009. Microbiological spoilage of beverages. In Compendium of the microbiological spoilage of foods and beverages, 245–84. New York: Springer. doi: 10.1007/978-1-4419-0826-1_9.
  • Lay, F. T., F. Brugliera, and M. A. Anderson. 2003. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiology 131 (3):1283–93. doi: 10.1104/pp.102.016626.
  • Le Nguyen, D., A. Heitz, L. Chiche, B. Castro, R. A. Boigegrain, A. Favel, and M. A. Coletti-Previero. 1990. Molecular recognition between serine proteases and new bioactive microproteins with a knotted structure. Biochimie 72 (6–7):431–5. doi: 10.1016/0300-9084(90)90067-Q.
  • Ledenbach, L. H., and R. T. Marshall. 2009. Microbiological spoilage of dairy products. In Compendium of the microbiological spoilage of foods and beverages, 41–67. New York: Springer. doi: 10.1007/978-1-4419-0826-1_2.
  • Lee, H. S., and G. A. Coates. 1999. Thermal pasteurization effects on color of red grapefruit juices. Journal of Food Science 64 (4):663–6. doi: 10.1111/j.1365-2621.1999.tb15106.x.
  • Lee, H. S., and G. A. Coates. 2003. Effect of thermal pasteurization on valencia orange juice color and pigments. LWT - Food Science and Technology 36 (1):153–6. doi: 10.1016/S0023-6438(02)00087-7.
  • Legan, J. D. 2018. Mould spoilage of bread: The problem and some solutions. International Biodeterioration & Control 32 (1–3):33–53. doi: 10.1016/0964-8305(93)90038-4.
  • Lehrer, R. I. 2004. Primate defensins. Nature Reviews. Microbiology 2 (9):727–38. doi: 10.1038/nrmicro976.
  • Lennerz, B. S., S. B. Vafai, N. F. Delaney, C. B. Clish, A. A. Deik, K. A. Pierce, D. S. Ludwig, and V. K. Mootha. 2015. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Molecular Genetics and Metabolism 114 (1):73–9. doi: 10.1016/j.ymgme.2014.11.010.
  • Leth, T., S. Fagt, S. Nielsen, and R. Andersen. 2008. Nitrite and nitrate content in meat products and estimated intake in Denmark from 1998 to 2006. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 25 (10):1237–45. doi: 10.1080/02652030802101885.
  • Li, S.-S., J. Gullbo, P. Lindholm, R. Larsson, E. Thunberg, G. Samuelsson, L. Bohlin, and P. Claeson. 2002. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. The Biochemical Journal 366 (Pt 2):405–13. doi: 10.1042/BJ20020221.
  • Li, Z., Y. Hao, Y. Yang, and W. Deng. 2010. Molecular cloning and expression analysis of a cytochrome P450 gene in Tomato. Plant Growth Regulation 61 (3):297–304. doi: 10.1007/s10725-010-9477-6.
  • Ligon, B. L. 2004. Penicillin: Its discovery and early development. Seminars in Pediatric Infectious Diseases 15 (1):52–7. doi: 10.1053/j.spid.2004.02.001.
  • Lindholm, P., U. Göransson, S. Johansson, P. Claeson, J. Gullbo, R. Larsson, L. Bohlin, and A. Backlund. 2002. Cyclotides: A novel type of cytotoxic agents. Molecular Cancer Therapeutics 1 (6):365–9.
  • Liu, H., S. Li, C. S. Brennan, and Q. Wang. 2020. Antimicrobial activity of Arg–Ser–Ser against the food‐borne pathogen Pseudomonas aeruginosa. International Journal of Food Science & Technology 55 (1):379–88. doi: 10.1111/ijfs.14287.
  • Liu, N., S. Guan, H. Wang, C. Li, J. Cheng, H. Yu, L. Lin, and Y. Pan. 2018. The antimicrobial peptide Nal-P-113 exerts a reparative effect by promoting cell proliferation, migration, and cell cycle progression. BioMed Research International 2018:7349351. doi: 10.1155/2018/7349351.
  • Loeza-Ángeles, H., E. Sagrero-Cisneros, L. Lara-Zárate, E. Villagómez-Gómez, J. E. López-Meza, and A. Ochoa-Zarzosa. 2008. Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnology Letters 30 (10):1713–9. doi: 10.1007/s10529-008-9756-8.
  • López, P., C. Sánchez, R. Batlle, and C. Nerín. 2007. Development of flexible antimicrobial films using essential oils as active agents. Journal of Agricultural and Food Chemistry 55 (21):8814–24. doi: 10.1021/jf071737b.
  • López-Sáez, J. F., C. de la Torre, J. Pincheira, and G. Giménez-Martín. 1998. Cell proliferation and cancer. Histology and Histopathology 13 (4):1197–214. doi: 10.14670/HH-13.1197.
  • López-Solanilla, E., B. González-Zorn, S. Novella, J. A. Vázquez-Boland, and P. Rodríguez-Palenzuela. 2003. Susceptibility of listeria monocytogenes to antimicrobial peptides. FEMS Microbiology Letters 226 (1):101–5. doi: 10.1016/S0378-1097(03)00579-2.
  • Lourens-Hattingh, A., and B. C. Viljoen. 2002. Survival of dairy-associated yeasts in yoghurt and yoghurt-related products. Food Microbiology 19 (6):597–604. doi: 10.1006/fmic.2002.0515.
  • Luck, J., M. Spackman, A. Freeman, P. Tre˛bicki, W. Griffiths, K. Finlay, and S. Chakraborty. 2011. Climate change and diseases of food crops. Plant Pathology 60 (1):113–21. doi: 10.1111/j.1365-3059.2010.02414.x.
  • MacDonald, R., C. Reitmeier, R. MacDonald, and C. Reitmeier. 2017. Food processing. In Understanding food systems. Academic Press. doi: 10.1016/B978-0-12-804445-2.00006-5.
  • Magan, N., D. Aldred, and M. Arroyo. 2012. Mould prevention in bread. In Breadmaking: Improving quality, 2nd ed., 597–613. Elsevier Inc. doi: 10.1533/9780857095695.3.597.
  • Mahlapuu, M., J. Håkansson, L. Ringstad, and C. Björn. 2016. Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology 6:194. doi: 10.3389/fcimb.2016.00194.
  • Malfeito-Ferreira, M. 2018. Two decades of ‘horse sweat’ taint and brettanomyces yeasts in wine: Where do we stand now? Beverages 4 (2):32. doi: 10.3390/beverages4020032.
  • Malfeito-Ferreira, M. 2019. Spoilage yeasts in red wines. In Red wine technology, 219–35. Academic Press. doi: 10.1016/B978-0-12-814399-5.00015-3.
  • Marcelino, J. 2013. Lactic acid bacteria as starter-cultures for cheese processing: Past, present and future developments. In Lactic acid bacteria - R & D for food, health and livestock purposes, 2–22. doi: 10.5772/55937.
  • Marcucci, M. C. C. 1995. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 26 (2):83–99. doi: 10.1051/apido:19950202.
  • Martillanes, S., J. Rocha-Pimienta, M. Cabrera-Bañegil, D. Martín-Vertedor, and J. Delgado-Adámez. 2017. Application of phenolic compounds for food preservation: Food additive and active packaging. In Phenolic compounds - biological activity. InTech. doi: 10.5772/66885.
  • Martorell, P., M. Stratford, H. Steels, M. T. Fernández-Espinar, and A. Querol. 2007. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. International Journal of Food Microbiology 114 (2):234–42. doi: 10.1016/j.ijfoodmicro.2006.09.014.
  • Mason, A. J., A. Marquette, and B. Bechinger. 2007. Zwitterionic phospholipids and sterols modulate antimicrobial peptide-induced membrane destabilization. Biophysical Journal 93 (12):4289–99. doi: 10.1529/biophysj.107.116681.
  • Mazdeh, F., Zamani, S. Sasanfar, A. Chalipour, E. Pirhadi, G. Yahyapour, A. Mohammadi, A. Rostami, M. Amini, and M. Hajimahmoodi. 2017. Simultaneous determination of preservatives in dairy products by HPLC and chemometric analysis. International Journal of Analytical Chemistry 2017:1–8. doi: 10.1155/2017/3084359.
  • McDonald, W. L., K. J. O'Riley, C. J. Schroen, and R. J. Condron. 2005. Heat inactivation of Mycobacterium avium subsp. paratuberculosis in milk. Applied and Environmental Microbiology 71 (4):1785–9. doi: 10.1128/AEM.71.4.1785-1789.2005.
  • McMillin, K. W. 2008. Where is MAP going? A review and future potential of modified atmosphere packaging for meat. Meat Science 80 (1):43–65. doi: 10.1016/j.meatsci.2008.05.028.
  • Meier-Dörnberg, T., O. I. Kory, F. Jacob, M. Michel, and M. Hutzler. 2018. Saccharomyces cerevisiae variety diastaticus friend or foe? - Spoilage potential and brewing ability of different saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization. FEMS Yeast Research 18 (4). doi: 10.1093/femsyr/foy023.
  • Mendez, E., A. Moreno, F. Colilla, F. Pelaez, G. G. Limas, R. Mendez, F. Soriano, M. Salinas, and C. de Haro. 1990. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. European Journal of Biochemistry 194 (2):533–9. doi: 10.1111/j.1432-1033.1990.tb15649.x.
  • Meng, H., and K. Kumar. 2007. Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. Journal of the American Chemical Society 129 (50):15615–22. doi: 10.1021/ja075373f.
  • Molina, A., P. A. Goy, A. Fraile, R. Sánchez-Monge, and F. García-Olmedo. 1993. Inhibition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Science 92 (2):169–77. doi: 10.1016/0168-9452(93)90203-C.
  • Montesinos, E., and E. Bardají. 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chemistry & Biodiversity 5 (7):1225–37. doi: 10.1002/cbdv.200890111.
  • Moradi, M., H. Tajik, S. M. Razavi Rohani, and A. R. Oromiehie. 2011. Effectiveness of Zataria multiflora Boiss essential oil and grape seed extract impregnated chitosan film on ready-to-eat mortadella-type sausages during refrigerated storage. Journal of the Science of Food and Agriculture 91 (15):2850–7. doi: 10.1002/jsfa.4531.
  • Morrissey, W. F., B. Davenport, A. Querol, and A. D. W. Dobson. 2004. The role of indigenous yeasts in traditional Irish cider fermentations. Journal of Applied Microbiology 97 (3):647–55. doi: 10.1111/j.1365-2672.2004.02354.x.
  • Muhlisin, P., D. S. Kim, Y. R. Song, S. J. Lee, J. K. Lee, and S. K. Lee. 2014. Effects of gas composition in the modified atmosphere packaging on the shelf-life of longissimus dorsi of Korean native black pigs-duroc crossbred during refrigerated storage. Asian-Australasian Journal of Animal Sciences 27 (8):1157–63. doi: 10.5713/ajas.2013.13768.
  • Muir, D. D. 1996. The shelf-life of dairy products: 1. Factors influencing raw milk and fresh products. Journal of the Society of Dairy Technology doi: 10.1111/j.1471-0307.1996.tb02616.x.
  • Muñoz, A., B. López-García, E. Pérez-Payá, and J. F. Marcos. 2007. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26. Biochemical and Biophysical Research Communications 354 (1):172–7. doi: 10.1016/j.bbrc.2006.12.173.
  • Münzker, L., A. Oddo, and P. R. Hansen. 2017. Chemical synthesis of antimicrobial peptides. Methods in Molecular Biology (Clifton, N.J.) 1548:35–49. doi: 10.1007/978-1-4939-6737-7_3.
  • Muttagi, A. S., R. S. Chavan, and S. B. Bhatt. 2019. Preservation of milk using botanical preservatives (essential oils). In Technological interventions in dairy science, 81–109. Apple Academic Press. doi: 10.1201/9781315169408-4.
  • Nadal, A., M. Montero, N. Company, E. Badosa, J. Messeguer, L. Montesinos, E. Montesinos, and M. Pla. 2012. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: Impact on rice host plant fitness. BMC Plant Biology 12 (1):159. doi: 10.1186/1471-2229-12-159.
  • Nahirñak, V., N. Inés Almasia, H. E. Hopp, and C. Vazquez-Rovere. 2012. Snakin/GASA proteins: Involvement in hormone crosstalk and redox homeostasis. Plant Signaling & Behavior 7 (8):1004–8. doi: 10.4161/psb.20813.
  • Nawrot, R., J. Barylski, G. Nowicki, J. Broniarczyk, W. Buchwald, and A. Goździcka-Józefiak. 2014. Plant antimicrobial peptides. Folia Microbiologica 59 (3):181–96. doi: 10.1007/s12223-013-0280-4.
  • Neff, R. A., M. L. Spiker, and P. L. Truant. 2015. Wasted food: U.S. consumers' reported awareness, attitudes, and behaviors. PLoS One. 10 (6):e0127881. doi: 10.1371/journal.pone.0127881.
  • Nychas, G.-J. E., and E. Panagou. 2011. Microbiological spoilage of foods and beverages. In Food and beverage stability and shelf life, 3–28. Elsevier. doi: 10.1533/9780857092540.1.3.
  • Oddo, A., and P. R. Hansen. 2017. Hemolytic activity of antimicrobial peptides. Methods in Molecular Biology 1548:427–35. doi: 10.1007/978-1-4939-6737-7_31.
  • Odintsova, T. I., A. A. Vassilevski, A. A. Slavokhotova, A. K. Musolyamov, E. I. Finkina, N. V. Khadeeva, E. A. Rogozhin, T. V. Korostyleva, V. A. Pukhalsky, E. V. Grishin, et al. 2009. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif. The FEBS Journal 276 (15):4266–75. doi: 10.1111/j.1742-4658.2009.07135.x.
  • Oelofse, A., I. S. Pretorius, and M. du Toit. 2008. Significance of brettanomyces and dekkera during winemaking: A synoptic review. South African Journal of Enology and Viticulture 29 (2):128–44. doi: 10.21548/29-2-1445.
  • Olli, S., and P. B. Kirti. 2006. Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L. Journal of Biochemistry and Molecular Biology 39 (3):278–83. doi: 10.5483/bmbrep.2006.39.3.278.
  • Oro, L., L. Canonico, V. Marinelli, M. Ciani, and F. Comitini. 2019. Occurrence of Brettanomyces bruxellensis on grape berries and in related winemaking cellar. Frontiers in Microbiology 10:415. doi: 10.3389/fmicb.2019.00415.
  • Osborn, R. W., G. W. De Samblanx, K. Thevissen, I. Goderis, S. Torrekens, F. Van Leuven, S. Attenborough, S. B. Rees, and W. F. Broekaert. 1995. Isolation and characterisation of plant defensins from seeds of asteraceae, fabaceae, hippocastanaceae and saxifragaceae. FEBS Letters 368 (2):257–62. doi: 10.1016/0014-5793(95)00666-W.
  • Pal, M. 2014. Spoilage of dairy products due to fungi. Beverage & Food World 41 (7):37–40. https://www.researchgate.net/publication/273039049.
  • Parashina, E. V. Serdobinskii, L. A. E. G. Kalle, N. V. Lavrova, Vladik Avanesovich Avetisov, V. G. Lunin, and B. S. Naroditskii. 2000. Genetic engineering of oilseed rape and tomato plants expressing a radish defensin gene. Russian Journal of Plant Physiology 47 (3):417–23.
  • Paredes-Gamero, E. J., M. N. C. Martins, F. A. M. Cappabianco, J. S. Ide, and A. Miranda. 2012. Characterization of dual effects induced by antimicrobial peptides: Regulated cell death or membrane disruption. Biochimica et Biophysica Acta 1820 (7):1062–72. doi: 10.1016/j.bbagen.2012.02.015.
  • Park, K. Y., H. Y. Kim, and J. K. Jeong. 2017. Kimchi and its health benefits. In Fermented foods in health and disease prevention, 477–502. Elsevier Inc. doi: 10.1016/B978-0-12-802309-9.00020-0.
  • Penfield, M. P., and A. M. Campbell. 1990. Milk and milk products. In Experimental food science, 162–83. Elsevier. doi: 10.1016/b978-0-12-157920-3.50012-0.
  • Phansri, K., R. Sarnthima, S. Thammasirirak, P. Boonchalee, and S. Khammuang. 2011. Antibacterial activity of Bauhinia acuminata L. seed protein extract with low hemolytic activity against human erythrocytes. Chiang Mai Journal of Science 38. www.science.cmu.ac.th/journal-science/josci.html.
  • Pitt, J. I., and A. D. Hocking. 2009. Fungi and food spoilage. Springer US. doi: 10.1007/978-0-387-92207-2.
  • Porto, W. F., L. Irazazabal, E. S. F. Alves, S. M. Ribeiro, C. O. Matos, Á. S. Pires, I. C. M. Fensterseifer, V. J. Miranda, E. F. Haney, V. Humblot, et al. 2018. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature Communications 9 (1). doi: 10.1038/s41467-018-03746-3.
  • Prakash, V., O. Martín-Belloso, L. Keener, S. Astley, S. Braun, H. McMahon, and H. Lelieveld. 2015. Regulating safety of traditional and ethnic foods. doi: 10.1016/C2013-0-09926-4.
  • Pränting, M., C. Lööv, R. Burman, U. Göransson, and D. I. Andersson. 2010. The cyclotide cycloviolacin O2 from viola odorata has potent bactericidal activity against gram-negative bacteria. The Journal of Antimicrobial Chemotherapy 65 (9):1964–71. doi: 10.1093/jac/dkq220.
  • Qi, D., and B. E. Roe. 2016. Household food waste: Multivariate regression and principal components analyses of awareness and attitudes among U.S. consumers. Edited by Frank van Rijnsoever. PLoS One 11 (7):e0159250. doi: 10.1371/journal.pone.0159250.
  • Querol, A., and G. Fleet. 2006. The yeast handbook. Vol. 2. Springer.
  • Rai Aneja, K., R. Dhiman, N. K. Aggarwal, A. Aneja, and H. W. Morgan. 2014. Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. International Journal of Microbiology 2014 (7):758942. doi: 10.1155/2014/758942.
  • Rai, M., R. Pandit, S. Gaikwad, and G. Kövics. 2016. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. Journal of Food Science and Technology 53 (9):3381–94. doi: 10.1007/s13197-016-2318-5.
  • Ramesh, M. N. 2003. Sterilization of foods. In Encyclopedia of food sciences and nutrition, 5593–603. doi: 10.1016/b0-12-227055-x/01148-2.
  • Rantsiou, K., and L. Cocolin. 2007. Fermented meat products. In Molecular techniques in the microbial ecology of fermented foods, 91–118. New York: Springer. doi: 10.1007/978-0-387-74520-6_3.
  • Reyes-Díaz, M., T. Lobos, L. Cardemil, A. Nunes-Nesi, J. Retamales, L. Jaakola, M. Alberdi, and A. Ribera-Fonseca. 2016. Methyl jasmonate: An alternative for improving the quality and health properties of fresh fruits. Molecules 21 (6):567. doi: 10.3390/molecules21060567.
  • Rogozhin, E. A., M. P. Slezina, A. A. Slavokhotova, E. A. Istomina, T. V. Korostyleva, A. N. Smirnov, E. V. Grishin, T. A. Egorov, and T. I. Odintsova. 2015. A Novel antifungal peptide from leaves of the weed stellaria media L. Biochimie 116:125–32. doi: 10.1016/j.biochi.2015.07.014.
  • Ross, H. M., T. J. Harden, A. W. Nichol, and H. C. Deeth. 2000. Isolation and investigation of micro-organisms causing brown defects in mould-ripened cheeses. Australian Journal of Dairy Technology 55 (1):5–8.
  • Rozek, T., K. L. Wegener, J. H. Bowie, I. N. Olver, J. A. Carver, J. C. Wallace, and M. J. Tyler. 2000. The antibiotic and anticancer active aurein peptides from the australian bell frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. European Journal of Biochemistry 267 (17):5330–41. doi: 10.1046/j.1432-1327.2000.01536.x.
  • Ruiz, J., J. Calderon, P. Rondón-Villarreal, and R. Torres. 2014. Analysis of structure and hemolytic activity relationships of antimicrobial peptides (AMPs). In Advances in intelligent systems and computing, vol. 232, 253–8. Springer Verlag. doi: 10.1007/978-3-319-01568-2_36.
  • Rustagi, A., D. Kumar, S. Shekhar, M. A. Yusuf, S. Misra, and N. B. Sarin. 2014. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens. Molecular Biotechnology 56 (6):535–45. doi: 10.1007/s12033-013-9727-8.
  • Sagaram, U. S., R. Pandurangi, J. Kaur, T. J. Smith, and D. M. Shah. 2011. Structure-activity determinants in antifungal plant defensins Msdef1 and Mtdef4 with different modes of action against Fusarium graminearum. PLoS One 6 (4):e18550. doi: 10.1371/journal.pone.0018550.
  • Sancho-Madriz, M. F. 2003. Preservation of food. In Encyclopedia of food sciences and nutrition, 4766–4772. Academic Press. doi: 10.1016/b0-12-227055-x/00968-8.
  • Saranraj, P., and M. Geetha. 2012. Microbial spoilage of bakery products and its control by preservatives. International Journal of Pharmaceutical & Biological Archives 3 (1):38–48.
  • Schmidt, M., E. K. Arendt, and T. L. C. Thery. 2019. Isolation and characterisation of the antifungal activity of the cowpea defensin Cp-thionin II. Food Microbiology 82:504–14. doi: 10.1016/j.fm.2019.03.021.
  • Schmidt, M., E. Zannini, and E. K. Arendt. 2018. Recent advances in physical post-harvest treatments for shelf-life extension of cereal crops. Foods 7 (4):45. doi: 10.3390/foods7040045.
  • Sebranek, J. G., and T. A. Houser. 2017. Modified atmosphere packaging. In Advanced technologies for meat processing, 2nd ed., 615–46, Boca Raton, FL: CRC Press. doi: 10.1201/9781315152752.
  • Segura, A., M. Moreno, and F. García-Olmedo. 1993. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of arabidopsis and spinach. FEBS Letters 332 (3):243–6. doi: 10.1016/0014-5793(93)80641-7.
  • Segura, A., M. Moreno, F. Madueño, A. Molina, and F. García-Olmedo. 1999. Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant-Microbe Interactions® 12 (1):16–23. doi: 10.1094/MPMI.1999.12.1.16.
  • Serra Colomer, M., B. Funch, and J. Forster. 2019. The raise of brettanomyces yeast species for beer production. Current Opinion in Biotechnology 56:30–5. doi: 10.1016/j.copbio.2018.07.009.
  • Serrano, F. O., I. S. López, and G. N. Revilla. 1991. High performance liquid chromatography determination of chemical preservatives in yogurt. Journal of Liquid Chromatography 14 (4):709–17. doi: 10.1080/01483919108049282.
  • Serrano, M., D. Martínez-Romero, F. Guillén, J. M. Valverde, P. J. Zapata, S. Castillo, and D. Valero. 2008. The addition of essential oils to MAP as a tool to maintain the overall quality of fruits. Trends in Food Science & Technology 19 (9):464–71. doi: 10.1016/j.tifs.2008.01.013.
  • Seydim, A. C., and G. Sarikus. 2006. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International 39 (5):639–44. doi: 10.1016/j.foodres.2006.01.013.
  • Shao, C., Y. Zhu, Z. Lai, P. Tan, and A. Shan. 2019. Antimicrobial peptides with protease stability: Progress and perspective. Future Medicinal Chemistry 11 (16):2047–50. doi: 10.4155/fmc-2019-0167.
  • Shao, F. Hu, Z. Y. M. Xiong, Q. Z. Huang, Wang CG, R. H. Zhu, and D. C. Wang. 1999. A new antifungal peptide from the seeds of Phytolacca americana: Characterization, amino acid sequence and CDNA cloning. Biochimica et Biophysica Acta 1430 (2):262–8. doi: 10.1016/S0167-4838(99)00013-8.
  • Sharafati, C., A. A. Farhad, and R. S. Chaleshtori. 2018. Assessment of sodium benzoate and potassium sorbate preservatives in some products in Kashan, Iran with estimation of human health risk. Food and Chemical Toxicology 120:634–8. doi: 10.1016/j.fct.2018.08.010.
  • Shim, S.-M., S. H. Seo, Y. Lee, G.-I. Moon, M.-S. Kim, and J.-H. Park. 2011. Consumers’ knowledge and safety perceptions of food additives: Evaluation on the effectiveness of transmitting information on preservatives. Food Control 22 (7):1054–60. doi: 10.1016/j.foodcont.2011.01.001.
  • Shwaiki, L. N., E. K. Arendt, and K. M. Lynch. 2020. Anti-yeast activity and characterisation of synthetic radish peptides Rs-AFP1 and Rs-AFP2 against food spoilage yeast. Food Control 113:107178. doi: 10.1016/j.foodcont.2020.107178.
  • Shwaiki, L. N., E. K. Arendt, K. M. Lynch, and T. L. C. Thery. 2019. Inhibitory effect of four novel synthetic peptides on food spoilage yeasts. International Journal of Food Microbiology 300:43–52. doi: 10.1016/J.IJFOODMICRO.2019.04.005.
  • Silva, F. V. M. D., and P. Gibbs. 2009. Principles of thermal processing. doi: 10.1201/9781420058598.ch2.
  • Silva, M. T., A. Do Vale, and N. M. N. Dos Santos. 2008. Secondary necrosis in multicellular animals: An outcome of apoptosis with pathogenic implications. Apoptosis: An International Journal on Programmed Cell Death 13 (4):463–82. doi: 10.1007/s10495-008-0187-8.
  • Singh, R. P., and N. M. Desrosier. 2018. Food Preservation - Food Irradiation | Britannica. Encyclopaedia Britannica. Encyclopaedia Britannica, Inc. https://www.britannica.com/topic/food-preservation/Food-irradiation.
  • Sivakumar, D., and S. Bautista-Baños. 2014. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection 64:27–37. doi: 10.1016/j.cropro.2014.05.012.
  • Skandamis, P. N., and G. J. E. Nychas. 2001. Effect of oregano essential oil on microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. Journal of Applied Microbiology 91 (6):1011–22. doi: 10.1046/j.1365-2672.2001.01467.x.
  • Smith, J. P., D. Phillips Daifas, W. El-Khoury, J. Koukoutsis, and A. El-Khoury. 2004. Shelf life and safety concerns of bakery products - A review. Critical Reviews in Food Science and Nutrition 44 (1):19–55. doi: 10.1080/10408690490263774.
  • Snyder, A. B., and R. W. Worobo. 2018. Fungal spoilage in food processing. Journal of Food Protection 81 (6):1035–40. doi: 10.4315/0362-028X.JFP-18-031.
  • Soedjanaatmadja, U. M. S., T. Subroto, and J. J. Beintema. 1995. Processed products of the hevein precursor in the latex of the rubber tree (Hevea brasiliensis). FEBS Letters 363 (3):211–3. doi: 10.1016/0014-5793(95)00309-W.
  • Stark, M., L.-P. Liu, and C. M. Deber. 2002. Cationic hydrophobic peptides with antimicrobial activity. Antimicrobial Agents and Chemotherapy 46 (11):3585–90. doi: 10.1128/AAC.46.11.3585-3590.2002.
  • Starr, C. G., and W. C. Wimley. 2017. Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochimica et Biophysica Acta. Biomembranes 1859 (12):2319–26. doi: 10.1016/j.bbamem.2017.09.008.
  • Stec, B. 2006. Plant thionins - The structural perspective. Cellular and Molecular Life Sciences: CMLS 63 (12):1370–85. doi: 10.1007/s00018-005-5574-5.
  • Steensels, J., L. Daenen, P. Malcorps, G. Derdelinckx, H. Verachtert, and K. J. Verstrepen. 2015. Brettanomyces yeasts - from spoilage organisms to valuable contributors to industrial fermentations. International Journal of Food Microbiology 206:24–38. doi: 10.1016/j.ijfoodmicro.2015.04.005.
  • Stewart, G. 2016. Saccharomyces species in the production of beer. Beverages 2 (4):34. doi: 10.3390/beverages2040034.
  • Stotz, H. U., B. Spence, and Y. Wang. 2009. A defensin from tomato with dual function in defense and development. Plant Molecular Biology 71 (1-2):131–43. doi: 10.1007/s11103-009-9512-z.
  • Stotz, H. U., J. G. Thomson, and Y. Wang. 2009. Plant defensins: Defense, development and application. Plant Signaling & Behavior 4 (11):1010–2. doi: 10.4161/psb.4.11.9755.
  • Stratford, M., H. Steels, G. Nebe-von-Caron, M. Novodvorska, K. Hayer, and D. B. Archer. 2013. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. International Journal of Food Microbiology 166 (1):126–34. doi: 10.1016/j.ijfoodmicro.2013.06.025.
  • Strömstedt, A. A., M. Pasupuleti, A. Schmidtchen, and M. Malmsten. 2009. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrobial Agents and Chemotherapy 53 (2):593–602. doi: 10.1128/AAC.00477-08.
  • Struyfs, C., T. L. Cools, K. De Cremer, B. Sampaio-Marques, P. Ludovico, B. M. Wasko, M. Kaeberlein, B. P. A. Cammue, and K. Thevissen. 2020. The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. Biochimica et Biophysica Acta. Biomembranes 1862 (8):183255. doi: 10.1016/j.bbamem.2020.183255.
  • Suarez, M., M. Haenni, S. Canarelli, F. Fisch, P. Chodanowski, C. Servis, O. Michielin, R. Freitag, P. Moreillon, and N. Mermod. 2005. Structure-Function characterization and optimization of a plant-derived antibacterial peptide. Antimicrobial Agents and Chemotherapy 49 (9):3847–57. doi: 10.1128/AAC.49.9.3847-3857.2005.
  • Suriyarachchi, V. R., and G. H. Fleet. 1981. Occurrence and growth of yeasts in yogurts. Applied and Environmental Microbiology 42 (4):574–9. doi: 10.1128/aem.42.4.574-579.1981.
  • Svangård, E., R. Burman, S. Gunasekera, H. Lövborg, J. Gullbo, and U. Göransson. 2007. Mechanism of action of cytotoxic cyclotides: Cycloviolacin O2 disrupts lipid membranes. Journal of Natural Products 70 (4):643–7. doi: 10.1021/np070007v.
  • Swart, G. J., C. M. Blignaut, and P. J. Jooste. 2003. Pasteurization: Other pasteurization processes. In Encyclopedia of food sciences and nutrition, 4401–6. doi: 10.1016/b0-12-227055-x/00892-0.
  • Szołtysik, M., A. Dąbrowska, K. Babij, M. Pokora, A. Zambrowicz, X. Połomska, M. Wojtatowicz, and J. Chrzanowska. 2013. Biochemical and microbiological changes in cheese inoculated with Yarrowia lipolytica yeast. Zywnosc: Nauka, Technologia, Jakosc/Food Science Technology Quality 4 (89):49–64. doi: 10.15193/zntj/2013/89/049-064.
  • Tabanelli, G., V. Verardo, F. Pasini, P. Cavina, R. Lanciotti, M. F. Caboni, F. Gardini, and C. Montanari. 2016. Survival of the functional yeast Kluyveromyces marxianus B0399 in fermented milk with added sorbic acid. Journal of Dairy Science 99 (1):120–9. doi: 10.3168/jds.2015-10084.
  • Tam, J., S. Wang, K. Wong, and W. Tan. 2015. Antimicrobial peptides from plants. Pharmaceuticals (Basel, Switzerland) 8 (4):711–57. doi: 10.3390/ph040.
  • Tamime, A. Y., and H. C. Deeth. 1980. Yogurt: Technology and biochemistry 1. Journal of Food Protection 43 (12):939–77. doi: 10.4315/0362-028x-43.12.939.
  • Tang, S. S., Z. H. Prodhan, S. K. Biswas, C. Foh Le, and S. D. Sekaran. 2018. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 154:94–105. doi: 10.1016/j.phytochem.2018.07.002.
  • Teoh, A. L., G. Heard, and J. Cox. 2004. Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology 95 (2):119–26. doi: 10.1016/j.ijfoodmicro.2003.12.020.
  • Terras, F. R. G., H. M. E. Schoofs, M. F. C. De Bolle, F. Van Leuven, S. B. Rees, J. Vanderleyden, B. P. A. Cammue, and W. F. Broekaert. 1992. Analysis of two novel classes of plant antifungal proteins from radish. Journal of Biological Chemistry 267 (22):15301–9. doi: 10.1016/S0021-9258(19)49534-3.
  • Theron, M. M., and J. F. Rykers. (Jan Frederick Rykers) Lues. 2011. Organic acids and food preservation. Taylor & Francis.
  • Thery, T., and E. K. Arendt. 2018. Antifungal activity of synthetic cowpea defensin Cp-thionin II and its application in dough. Food Microbiology 73:111–21. doi: 10.1016/j.fm.2018.01.006.
  • Thery, T., L. N. Shwaiki, Y. C. O'Callaghan, N. M. O'Brien, and E. K. Arendt. 2019. Antifungal activity of a de novo synthetic peptide and derivatives against fungal food contaminants. Journal of Peptide Science: An Official Publication of the European Peptide Society 25 (1):e3137. doi: 10.1002/psc.3137.
  • Thery, T., Y. O'Callaghan, N. O'Brien, and E. K. Arendt. 2018. Optimisation of the antifungal potency of the amidated peptide H-Orn-Orn-Trp-Trp-NH2 against food contaminants. International Journal of Food Microbiology 265:40–8. doi: 10.1016/j.ijfoodmicro.2017.10.024.
  • Thevissen, K., D. C. Warnecke, I. E. J. A. François, M. Leipelt, E. Heinz, C. Ott, U. Zähringer, B. P. H. J. Thomma, K. K. A. Ferket, and B. P. A. Cammue. 2004. Defensins from insects and plants interact with fungal glucosylceramides. The Journal of Biological Chemistry 279 (6):3900–5. doi: 10.1074/jbc.M311165200.
  • Thevissen, K., F. R. Terras, and W. F. Broekaert. 1999. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Applied and Environmental Microbiology 65 (12):5451–8. doi: 10.1128/AEM.65.12.5451-5458.1999.
  • Thevissen, K., I. E. J. A. François, L. Sijtsma, A. Van Amerongen, W. M. M. Schaaper, R. Meloen, T. Posthuma-Trumpie, W. F. Broekaert, and B. P. A. Cammue. 2005. Antifungal activity of synthetic peptides derived from impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides 26 (7):1113–9. doi: 10.1016/j.peptides.2005.01.008.
  • Thomma, B. P. H. J., B. P. A. Cammue, and K. Thevissen. 2002. Plant defensins. Planta 216 (2):193–202. doi: 10.1007/s00425-002-0902-6.
  • Toussaint-Samat, M. 2009. A history of food. Wiley-Blackwell.
  • Trdá, L., M. Janda, D. Macková, R. Pospíchalová, P. I. Dobrev, L. Burketová, and P. Matušinsky. 2019. Dual mode of the saponin aescin in plant protection: Antifungal agent and plant defense elicitor. Frontiers in Plant Science 10:1448. doi: 10.3389/fpls.2019.01448.
  • Tripathi, P., and N. K. Dubey. 2004. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology 32 (3):235–45. doi: 10.1016/j.postharvbio.2003.11.005.
  • Vagelas, I., N. Gougoulias, E.-D. Nedesca, and G. Liviu. 2011. Bread contamination with fungus. Carpathian Journal of Food Science and Technology. 3 (2):1–6. https://www.researchgate.net/publication/229180508.
  • Valles, B. S., R. P. Bedriñana, N. F. Tascón, A. Q. Simón, and R. R. Madrera. 2007. Yeast species associated with the spontaneous fermentation of cider. Food Microbiology 24 (1):25–31. doi: 10.1016/j.fm.2006.04.001.
  • Van den Bergh, K. P. B., P. Proost, J. Van Damme, J. Coosemans, E. J. M. Van Damme, and W. J. Peumans. 2002. Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree. FEBS Letters 530 (1–3):181–5. doi: 10.1016/S0014-5793(02)03474-9.
  • Van Der Weerden, N. L., F. T. Lay, and M. A. Anderson. 2008. “The plant defensin, NaD1, enters the cytoplasm of fusarium oxysporum hyphae.” Journal of Biological Chemistry 283 (21): 14445–52. doi: 10.1074/jbc.M709867200.
  • van Dijk, A., E. J. A. Veldhuizen, and H. P. Haagsman. 2008. Avian defensins. Veterinary Immunology and Immunopathology 124 (1–2):1–18. doi: 10.1016/j.vetimm.2007.12.006.
  • Vestergaard, M., and H. Ingmer. 2019. Antibacterial and antifungal properties of resveratrol. International Journal of Antimicrobial Agents 53 (6):716–23. doi: 10.1016/j.ijantimicag.2019.02.015.
  • Walker, G., and G. Stewart. 2016. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2 (4):30. doi: 10.3390/beverages2040030.
  • Wang, K., W. Dang, J. Xie, R. Zhu, M. Sun, F. Jia, Y. Zhao, X. An, S. Qiu, X. Li, et al. 2015. Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells. Biochimica et Biophysica Acta 1848 (10 Pt A):2365–73. doi: 10.1016/j.bbamem.2015.07.008.
  • Wang, Y., G. Nowak, D. Culley, L. A. Hadwiger, and B. Fristensky. 1999. Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Molecular Plant-Microbe Interactions® 12 (5):410–8. doi: 10.1094/MPMI.1999.12.5.410.
  • Williams, H., F. Wikström, T. Otterbring, M. Löfgren, and A. Gustafsson. 2012. Reasons for household food waste with special attention to packaging. Journal of Cleaner Production 24:141–8. doi: 10.1016/j.jclepro.2011.11.044.
  • Wimley, W. C. 2019. Application of synthetic molecular evolution to the discovery of antimicrobial peptides. Advances in Experimental Medicine and Biology 1117:241–55. doi: 10.1007/978-981-13-3588-4_13.
  • Wong, K. H., W. L. Tan, A. Serra, T. Xiao, S. K. Sze, D. Yang, and J. P. Tam. 2016. Ginkgotides: proline-rich hevein-like peptides from gymnosperm ginkgo biloba. Frontiers in Plant Science 7:1639. doi: 10.3389/fpls.2016.01639.
  • Wong, K. H., W. L. Tan, S. G. Kini, T. Xiao, A. Serra, S. K. Sze, and J. P. Tam. 2017. Vaccatides: Antifungal glutamine-rich hevein-like peptides from Vaccaria hispanica. Frontiers in Plant Science 8:1100. doi: 10.3389/fpls.2017.01100.
  • Wray, E. 2015. Reducing microbial spoilage of beer using pasteurisation. In Brewing microbiology: Managing microbes, ensuring quality and valorising waste, 253–69. Elsevier. doi: 10.1016/B978-1-78242-331-7.00012-5.
  • Yang, W., Z. Wu, Z. Y. Huang, and X. Miao. 2017. Preservation of orange juice using propolis. Journal of Food Science and Technology 54 (11):3375–83. doi: 10.1007/s13197-017-2754-x.
  • Yenush, L. 2016. Potassium and sodium transport in yeast. Advances in Experimental Medicine and Biology 892:187–228. doi: 10.1007/978-3-319-25304-6_8.
  • Yi, J. Y., H. W. Seo, M. S. Yang, E. Jane Robb, R. N. Nazar, and S. W. Lee. 2004. Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato. Planta 220 (1):165–71. doi: 10.1007/s00425-004-1346-y.
  • Zabat, M. A., W. H. Sano, J. I. Wurster, D. J. Cabral, and P. Belenky. 2018. Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community. Foods 7 (5):77. doi: 10.3390/foods7050077.
  • Zarrabi, M., R. Dalirfardouei, Z. Sepehrizade, and R. K. Kermanshahi. 2013. Comparison of the antimicrobial effects of semipurified cyclotides from iranian viola odorata against some of plant and human pathogenic bacteria. Journal of Applied Microbiology 115 (2):367–75. doi: 10.1111/jam.12251.
  • Zeitler, B., A. Herrera Diaz, A. Dangel, M. Thellmann, H. Meyer, M. Sattler, and C. Lindermayr. 2013. De-novo design of antimicrobial peptides for plant protection. PLoS One 8 (8):e71687. doi: 10.1371/journal.pone.0071687.
  • Zhang, S. K., J. W. Song, F. Gong, S. B. Li, H. Yu Chang, H. M. Xie, H. W. Gao, Y. X. Tan, and S. P. Ji. 2016. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Scientific Reports 6 (1):27394. doi: 10.1038/srep27394.
  • Zhang, Y., and B. Wynne. 2012. Food and Agriculture Organization of the United Nations (FAO). In Encyclopedia of global health. SAGE Publications, Inc. doi: 10.4135/9781412963855.n464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.