1,383
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Food safety and quality assessment: comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS)

, ORCID Icon, &

References

  • Aladaghlo, Z., A. R. Fakhari, S. I. Alavioon, and M. Dabiri. 2020. A mesoporous nanosorbent composed of silica, graphene, and palladium (II) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry. Microchimica Acta 187 (4): 209. doi: 10.1007/s00604-020-4174-2.
  • Abdel-Shafy, H., and M. Mansour. 2016. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 25 (1):107–23. doi: 10.1016/j.ejpe.2015.03.011.
  • Abdurrahman, M., and K. Badri. 2020. The importance of derivatizing reagent in chromatography applications for biogenic amine detection in food and beverages. Journal of Analytical Methods in Chemistry 2020:1–14.
  • Aboul-Enein, H., and P. I. Ali. 2001. Enantiomeric resolution of some imidazole antifungal agents on Chiralpak WH chiral stationary phase using HPLC. Chromatographia 54 (3–4):200–2. doi: 10.1007/BF02492245.
  • Aboul-Enein, H. Y., and I. Ali. 2002. Optimization strategies for HPLC enantioseparation of racemic drugs using polysaccharides and macrocyclic glycopeptide antibiotic chiral stationary phases. Farmaco (Societa Chimica Italiana : 1989) 57 (7):513–29. doi: 10.1016/s0014-827x(02)01242-9.
  • Aboul-Enein, H. Y., I. Ali, G. Gübitz, C. Simons, and P. J. Nicholls. 2000. HPLC enantiomeric resolution of novel aromatase inhibitors on cellulose- and amylose-based chiral stationary phases under reversed phase mode. Chirality 12 (10):727–33. doi: 10.1002/1520-636X(2000)12:10<727::AID-CHIR5>3.0.CO;2-T.
  • Aheto, J. H., X. Huang, X. Tian, R. Lv, C. Dai, E. Bonah, and X. Chang. 2020. Evaluation of lipid oxidation and volatile compounds of traditional dry-cured pork belly: the hyperspectral imaging and multi-gas-sensory approaches. Journal of Food Process Engineering 43 (1):e13092. doi: 10.1111/jfpe.13092.
  • Akram, S., R. Najam, G. H. Rizwani, and S. A. Abbas. 2015. Determination of heavy metal contents by atomic absorption spectroscopy (AAS) in some medicinal plants from Pakistani and Malaysian origin. Pakistan Journal of Pharmaceutical Sciences 28 (5):1781–7.
  • Aliaño-González, M. J., M. Ferreiro-González, E. Espada-Bellido, G. F. Barbero, and M. Palma. 2020. Novel method based on ion mobility spectroscopy for the quantification of adulterants in honeys. Food Control. 114:107236. doi: 10.1016/j.foodcont.2020.107236.
  • Ali, I., and H. Y. Aboul-Enein. 2003. Enantioseparation of some clinically used drugs by HPLC using cellulose tris (3,5-dichlorophenylcarbamate) chiral stationary phase. Biomedical Chromatography 17 (2–3):113–7. doi: 10.1002/bmc.220.
  • Ali, P. I., V. Gupta, and H. Aboul-Enein. 2003. Chirality: a challenge for the environmental scientists. Current Science 84
  • Ali, I., V. K. Gupta, H. Y. Aboul-Enein, and A. Hussain. 2008. Hyphenation in sample preparation: Advancement from the micro to the nano world. Journal of Separation Science 31 (11):2040–53. doi: 10.1002/jssc.200800123.
  • Ali, I., H. Y. Aboul-Enein, V. D. Gaitonde, P. Singh, M. S. M. Rawat, and B. Sharma. 2009a. Chiral separations of imidazole antifungal drugs on AmyCoat RP column in HPLC. Chromatographia 70 (1-2):223–7. doi: 10.1365/s10337-009-1106-z.
  • Ali, P. I., P. Singh, H. Aboul-Enein, and B. Sharma. 2009b. Chiral analysis of ibuprofen residues in water and sediment. Analytical Letters - Letters 42 (12):1747–60. doi: 10.1080/00032710903060768.
  • Ali, I., Z. A. Al-Othman, A. Hussain, K. Saleem, and H. Y. Aboul-Enein. 2011. Chiral separation of β-adrenergic blockers in human plasma by SPE-HPLC. Chromatographia 73 (3–4):251–6. doi: 10.1007/s10337-010-1891-4.
  • Ali, I., Z. A. Al-Othman, and M. Al-Za'Abi. 2012a. Superficially porous particles columns for super fast HPLC separations. Biomedical Chromatography 26 (8):1001–8. doi: 10.1002/bmc.2690.
  • Ali, I., Z. A. Al-Othman, N. Nagae, V. D. Gaitonde, and K. K. Dutta. 2012b. Recent trends in ultra-fast HPLC: new generation superficially porous silica columns. Journal of Separation Science 35 (23):3235–49. doi: 10.1002/jssc.201200454.
  • Ali, I., Z. A. Al-Othman, A. Al-Warthan, L. Asnin, and A. Chudinov. 2014. Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. Journal of Separation Science 37 (18):2447–66. doi: 10.1002/jssc.201400587.
  • Ali, I., B. Julin, A. Glynn, J. Hogberg, M. Berglund, J. E. Johansson, S. O. Andersson, O. Andren, E. Giovannucci, A. Wolk, et al. 2016. Exposure to polychlorinated biphenyls and prostate cancer: Population-based prospective cohort and experimental studies. Carcinogenesis 37 (12):1144–51. doi: 10.1093/carcin/bgw105.
  • Ali, I., L. Naim, A. Ghanem, and H. Y. Aboul-Enein. 2006. Chiral separations of piperidine-2,6-dione analogues on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta 69 (4):1013–7. doi: 10.1016/j.talanta.2005.12.004.
  • Alikord, M., Keramat, M. Mahdi, K. Momtaz Hassan, N. Eshtiaghi Mohammad. A. Z. I. Z., and H.-R. 2016. Multiplex-PCR as a rapid and sensitive method for identification of meat species in halal-meat products. Recent Patents on Food, Nutrition & Agriculture 8:175–82.
  • Alikord, M., H. Momtaz, J. Keramat, M. Kadivar, and A. H. Rad. 2018. Species identification and animal authentication in meat products: a review. Journal of Food Measurement and Characterization 12 (1):145–55. doi: 10.1007/s11694-017-9625-z.
  • Al-Kaseem, M., Z. Al-Assaf, and F. Karabeet. 2014. Development and validation of GC-FID method for the determination of volatile N-nitrosamines in meat. International Journal of Pharmaceutical Sciences Review and Research 25:59–64.
  • Alonso, R., V. Rodriguez-Estevez, A. Dominguez-Vidal, M. J. Ayora-Canada, L. Arce, and M. Valcarcel. 2008. Ion mobility spectrometry of volatile compounds from Iberian pig fat for fast feeding regime authentication. Talanta 76 (3):591–6. doi: 10.1016/j.talanta.2008.03.052.
  • Al-Othman, Z. A., A. Al-Warthan, and I. Ali. 2014. Advances in enantiomeric resolution on monolithic chiral stationary phases in liquid chromatography and electrochromatography. Journal of Separation Science 37 (9–10):1033–57. doi: 10.1002/jssc.201301326.
  • Alves, T. O., C. T. S. D’Almeida, V. C. M. Victorio, G. H. M. F. Souza, L. C. Cameron, and M. S. L. Ferreira. 2018. Immunogenic and allergenic profile of wheat flours from different technological qualities revealed by ion mobility mass spectrometry. Journal of Food Composition and Analysis 73:67–75. doi: 10.1016/j.jfca.2018.07.012.
  • Amirahmadi, M., H. Yazdanpanah, F. Kobarfard, S. Shoeibi, M. Pirali-Hamedani, and H. Rastegar. 2018. Exposure assessment for some pesticides through rice consumption in iran using a multiresidue analysis by GC-MS. Iranian Journal of Pharmaceutical Research 17 (1):124–39.
  • Aparicio, J. L., and M. Elizalde. 2015. Migration of photoinitiators in food packaging: a review. Packaging Technology and Science 28 (3):181–203. doi: 10.1002/pts.2099.
  • Arce, L., and M. Valcárcel. 2013. The role of ion mobility spectrometry to support the food protected designation of origin. Comprehensive Analytical Chemistry 60: 221–249. doi: 10.1016/B978-0-444-59562-1.00009-8.
  • Armenta, S., and M. Blanco. 2012. Ion mobility spectrometry for monitoring diamine oxidase activity. The Analyst 137 (24):5891–7. doi: 10.1039/c2an35965k.
  • Armenta, S., M. DE LA Guardia, A. Abad-Fuentes, A. Abad-Somovilla, and F. A. Esteve-Turrillas. 2015. Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: a promising partnership. Journal of Chromatography A 1426:110–7. doi: 10.1016/j.chroma.2015.11.050.
  • Armenta, S., M. Guardia, A. Abad-Fuentes, A. Abad-Somovilla, and F. Esteve-Turrillas. 2016. Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry. Analytical and Bioanalytical Chemistry 408 (29):8559–67. doi: 10.1007/s00216-016-9995-9.
  • Arroyo-Manzanares, N., A. MARTíN-GóMEZ, N. Jurado-Campos, R. Garrido-Delgado, C. Arce, and L. Arce. 2018a. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace - gas chromatography-ion mobility spectrometry. Food Chemistry 246:65–73. doi: 10.1016/j.foodchem.2017.11.008.
  • Arroyo-Manzanares, N., A. MARTíN-GóMEZ, N. Jurado-Campos, R. Garrido-Delgado, C. Arce, and L. Arce. 2018b. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace - gas chromatography-ion mobility spectrometry. Food Chemistry 246:65–73. doi: 10.1016/j.foodchem.2017.11.008.
  • Aslipashaki, S. N., T. Khayamian, and Z. Hashemian. 2013. Aptamer based extraction followed by electrospray ionization-ion mobility spectrometry for analysis of tetracycline in biological fluids. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 925:26–32. doi: 10.1016/j.jchromb.2013.02.018.
  • Aurela, B., H. Kulmala, and L. Söderhjelm. 1999. Phthalates in paper and board packaging and their migration into Tenax and sugar. Food Additives and Contaminants 16 (12):571–7. doi: 10.1080/026520399283713.
  • Awad, A. M., A. Martinez, R. F. Marek, and K. C. Hornbuckle. 2016. Occurrence and distribution of two hydroxylated polychlorinated biphenyl congeners in Chicago air. Environmental Science & Technology Letters 3 (2):47–51. doi: 10.1021/acs.estlett.5b00337.
  • Awan, M. A., I. Fleet, and C. L. P. Thomas. 2008. Optimising cell temperature and dispersion field strength for the screening for putrescine and cadaverine with thermal desorption-gas chromatography-differential mobility spectrometry. Analytica Chimica Acta 611 (2):226–32. doi: 10.1016/j.aca.2008.01.083.
  • Aznar, M., P. Alfaro, C. NERíN, E. Jones, and E. Riches. 2016. Progress in mass spectrometry for the analysis of set-off phenomena in plastic food packaging materials. Journal of Chromatography A 1453:124–33. doi: 10.1016/j.chroma.2016.05.032.
  • Baker, E. S., K. E. Burnum-Johnson, Y. M. Ibrahim, D. J. Orton, M. E. Monroe, R. T. Kelly, R. J. Moore, X. Zhang, R. Theberge, C. E. Costello, et al. 2015. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics 15 (16):2766–76. doi: 10.1002/pmic.201500048.
  • Balaram, V. 2016. Recent advances in the determination of elemental impurities in pharmaceuticals - status, challenges and moving frontiers. TRAC Trends in Analytical Chemistry 80:83–93. doi: 10.1016/j.trac.2016.02.001.
  • Bannon, D. I., C. Murashchik, C. R. Zapf, M. R. Farfel, and J. J. Chisolm. 1994. Graphite furnace atomic absorption spectroscopic measurement of blood lead in matrix-matched standards. Clinical Chemistry 40 (9):1730–4.
  • Bansal, V., P. Kumar, E. E. Kwon, and K.-H. Kim. 2017. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Critical Reviews in Food Science and Nutrition 57 (15):3297–312. doi: 10.1080/10408398.2015.1116970.
  • Barnard, G., E. Atweh, G. Cohen, M. Golan, and Z. Karpas. 2011. Clearance of biogenic amines from saliva following the consumption of tuna in water and in oil. International Journal for Ion Mobility Spectrometry 14 (4):207–11. doi: 10.1007/s12127-011-0082-9.
  • Barzegar, F., N. Omidi, M. Kamankesh, and A. Mohammadi. 2020. Determination of heterocyclic aromatic amines in heated meat samples using an efficient microwave assisted extraction and microextraction method followed by HPLC. Iranian Journal of Nutrition Sciences & Food Technology 15:49–58.
  • Beach, D. G., E. S. Kerrin, and M. A. Quilliam. 2015a. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS)). Analytical and Bioanalytical Chemistry 407 (28):8397–409. doi: 10.1007/s00216-015-9012-8.
  • Beach, D. G., J. E. Melanson, and R. W. Purves. 2015b. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry 407 (9):2473–84. doi: 10.1007/s00216-015-8488-6.
  • Bedia Erim, F. 2013. Recent analytical approaches to the analysis of biogenic amines in food samples. TrAC Trends in Analytical Chemistry 52:239–47. doi: 10.1016/j.trac.2013.05.018.
  • Bentayeb, K., L. K. Ackerman, T. Lord, and T. H. Begley. 2013. Non-visible print set-off of photoinitiators in food packaging: detection by ambient ionisation mass spectrometry. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 30 (4):750–9. doi: 10.1080/19440049.2012.762694.
  • Bermudo, E., O. Nunez, L. Puignou, and M. T. Galceran. 2006. Analysis of acrylamide in food products by in-line preconcentration capillary zone electrophoresis. Journal of Chromatography A 1129 (1):129–34. doi: 10.1016/j.chroma.2006.06.076.
  • Berry, K. A. Z., R. M. Barkley, J. J. Berry, J. A. Hankin, E. Hoyes, J. M. Brown, and R. C. Murphy. 2017. Tandem mass spectrometry in combination with product ion mobility for the identification of phospholipids. Analytical Chemistry 89 (1):916–21. doi: 10.1021/acs.analchem.6b04047.
  • Besaratinia, A., and G. P. Pfeifer. 2007. A review of mechanisms of acrylamide carcinogenicity. Carcinogenesis 28 (3):519–28. doi: 10.1093/carcin/bgm006.
  • Beucher, L., G. Dervilly-Pinel, N. Cesbron, M. Penot, A. Gicquiau, F. Monteau, and B. Le Bizec. 2017. Specific characterization of non-steroidal selective androgen peceptor modulators using supercritical fluid chromatography coupled to ion-mobility mass spectrometry: Application to the detection of enobosarm in bovine urine. Drug Testing and Analysis 9 (2):179–87. doi: 10.1002/dta.1951.
  • Beucher, L., G. Dervilly-Pinel, S. Prevost, F. Monteau, and B. Le Bizec. 2015. Determination of a large set of β-adrenergic agonists in animal matrices based on ion mobility and mass separations. Analytical Chemistry 87 (18):9234–42. doi: 10.1021/acs.analchem.5b01831.
  • Beyer, A., and M. Biziuk. 2008. Methods for determining pesticides and polychlorinated biphenyls in food samples-problems and challenges. Critical Reviews in Food Science and Nutrition 48 (10):888–904. doi: 10.1080/10408390701761878.
  • Blazenovic, I., T. Shen, S. S. Mehta, T. Kind, J. Ji, M. Piparo, F. Cacciola, L. Mondello, and O. Fiehn. 2018. Increasing compound identification rates in untargeted lipidomics research with liquid chromatography drift time-ion mobility mass spectrometry. Analytical Chemistry 90:10758–64.
  • Bock, C., C. Stachel, and P. Gowik. 2007. Validation of a confirmatory method for the determination of residues of four nitrofurans in egg by liquid chromatography-tandem mass spectrometry with the software InterVal. Analytica Chimica Acta 586 (1–2):348–58. doi: 10.1016/j.aca.2006.11.001.
  • Bogusz, M. J., Hassan, H. Al-Enazi, E. Ibrahim, Z. Tufail. A. L., and M. 2006. Application of LC-ESI-MS-MS for detection of synthetic adulterants in herbal remedies. Journal of Pharmaceutical and Biomedical Analysis 41 (2):554–64. doi: 10.1016/j.jpba.2005.12.015.
  • Borsdorf, H., S. Roetering, E. Nazarov, and C. Weickhardt. 2009. Rapid screening of pesticides from fruit surfaces: preliminary examinations using a laser desorption-differential mobility spectrometry coupling. International Journal for Ion Mobility Spectrometry 12 (1):15–22. doi: 10.1007/s12127-008-0014-5.
  • Bota, G. M., and P. B. Harrington. 2006. Direct detection of trimethylamine in meat food products using ion mobility spectrometry. Talanta 68 (3):629–35. doi: 10.1016/j.talanta.2005.05.001.
  • Bowman, A. P., R. R. Abzalimov, and A. A. Shvartsburg. 2017. Broad separation of isomeric lipids by high-resolution differential ion mobility spectrometry with tandem mass spectrometry. Journal of the American Society for Mass Spectrometry 28 (8):1552–61. doi: 10.1007/s13361-017-1675-2.
  • Bradley, E. L., L. Castle, J. S. Day, I. Ebner, K. Ehlert, R. Helling, S. Koster, J. Leak, and K. Pfaff. 2010. Comparison of the migration of melamine from melamine-formaldehyde plastics ('melaware') into various food simulants and foods themselves. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 27 (12):1755–64. doi: 10.1080/19440049.2010.513339.
  • Bradley, E. L., L. Castle, T. J. Dines, A. G. Fitzgerald, P. Gonzalez Tunon, S. M. Jickells, S. M. Johns, E. S. Layfield, K. A. Mountfort, H. Onoh, et al. 2005. Test method for measuring non-visible set-off from inks and lacquers on the food-contact surface of printed packaging materials. Food Additives and Contaminants 22 (5):490–502. doi: 10.1080/02652030500129253.
  • Browne, C. A., T. P. Forbes, and E. Sisco. 2016. Detection and identification of sugar alcohol sweeteners by ion mobility spectrometry. Analytical Methods: Advancing Methods and Applications 8 (28):5611–8. doi: 10.1039/c6ay01554a.
  • Castellanos, A., P. Benigni, D. R. Hernandez, J. D. Debord, M. E. Ridgeway, M. A. Park, and F. Fernandez-Lima. 2014. Fast screening of polycyclic aromatic hydrocarbons using trapped ion mobility spectrometry – mass spectrometry. Analytical Methods 6 (23):9328–32. doi: 10.1039/C4AY01655F.
  • Causon, T. J., M. Došen, G. Reznicek, and S. Hann. 2016. Workflow development for the analysis of phenolic compounds in wine using liquid chromatography combined with drift-tube ion mobility-mass spectrometry. LC-GC North America 34:854–867.
  • Causon, T. J., V. Ivanova-Petropulos, D. Petrusheva, E. Bogeva, and S. Hann. 2019. Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry. Analytica Chimica Acta 1052:179–89. doi: 10.1016/j.aca.2018.11.040.
  • Cavanna, D., S. Zanardi, C. Dall'Asta, and M. Suman. 2019a. Ion mobility spectrometry coupled to gas chromatography: a rapid tool to assess eggs freshness. Food Chemistry 271:691–6. doi: 10.1016/j.foodchem.2018.07.204.
  • Cavanna, D., S. Zanardi, C. Dall'Asta, and M. Suman. 2019b. Ion mobility spectrometry coupled to gas chromatography: a rapid tool to assess eggs freshness. Food Chemistry 271:691–6. doi: 10.1016/j.foodchem.2018.07.204.
  • Chen, T., Qi, X., Chen, M. & Chen, B. 2019. Gas chromatography-ion mobility spectrometry detection of odor fingerprint as markers of rapeseed oil refined grade. Journal of Analytical Methods in Chemistry, 2019, 2019, 3163204. doi: 10.1155/2019/3163204.
  • Chen, T., X. Chen, D. Lu, and B. Chen. 2018. Detection of adulteration in canola oil by using GC-IMS and chemometric analysis. International Journal of Analytical Chemistry 2018:1–8.
  • Chen, Y., L. Zhao, F. Lu, Y. Yu, Y. Chai, and Y. Wu. 2009. Determination of synthetic drugs used to adulterate botanical dietary supplements using QTRAP LC-MS/MS. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 26 (5):595–603. doi: 10.1080/02652030802641880.
  • Cheng, S., H. Li, D. Jiang, C. Chen, T. Zhang, Y. Li, H. Wang, Q. Zhou, H. Li, and M. Tan. 2017. Sensitive detectionof trimethylamine based on dopant-assisted positive photoionization ion mobility spectrometry. Talanta 162:398–402. doi: 10.1016/j.talanta.2016.10.056.
  • Chien, C. Y., W. U. Liu, C. F. C. C. Chen, B. H. Huang, S. P. Chou, Y. H. Chang, A. W. Lee, H. H. Pan, C. H. W. U. W. J. Shen, J. T. Chang, et al. 2011. High melamine migration in daily-use melamine-made tableware. Journal of Hazardous Materials 188 (1–3):350–6. doi: 10.1016/j.jhazmat.2011.01.128.
  • Chik, Z., D. E. Haron, E. D. Ahmad, H. Taha, and A. M. Mustafa. 2011. Analysis of melamine migration from melamine food contact articles. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 28 (7):967–73. doi: 10.1080/19440049.2011.576401.
  • Chouinard, C. D., G. Nagy, R. D. Smith, and E. S. Baker. 2019. Chapter five - ion mobility-mass spectrometry in metabolomic, lipidomic, and proteomic analyses. In ed. W. A. Donald and J. S. Prell, Comprehensive Analytical Chemistry. Elsevier.
  • Chouinard, C., G. Nagy, R. Smith, and E. Baker. 2018. Ion mobility-mass spectrometry in metabolomic, lipidomic, and proteomic analyses. Comprehensive Analytical Chemistry 83: 123–159. doi: 10.1016/bs.coac.2018.11.001.
  • Christodoulou, E. A., V. F. Samanidou, and I. N. Papadoyannis. 2007. Validation of an HPLC-UV method according to the European Union Decision 2002/657/EC for the simultaneous determination of 10 quinolones in chicken muscle and egg yolk. Journal of Chromatography B 859 (2):246–55. doi: 10.1016/j.jchromb.2007.10.009.
  • Clowers, B. H., W. E. Steiner, H. M. Dion, L. M. Matz, M. Tam, E. E. Tarver, and H. H. Hill. 2001. Evaluation of sulfonylurea herbicides using high resolution electrospray ionization ion mobility quadrupole mass spectrometry. Field Analytical Chemistry & Technology 5:302–12.
  • Cohen, A., N. W. Ross, P. M. Smith, and J. P. Fawcett. 2017. Analysis of 17β-estradiol, estriol and estrone in American eel (Anguilla rostrata) tissue samples using liquid chromatography coupled to electrospray differential ion mobility tandem mass spectrometry. Rapid Communications in Mass Spectrometry : RCM 31 (10):842–50. doi: 10.1002/rcm.7853.
  • Cohen, G., M. Laloush, and Z. Karpas. 2014. Biogenic amines in bread as indicators of spoilage. International Journal for Ion Mobility Spectrometry 17 (3–4):125–9. doi: 10.1007/s12127-014-0159-3.
  • Cohen, G., D. D. Rudnik, M. Laloush, D. Yakir, and Z. Karpas. 2015. A novel method for determination of histamine in tuna fish by ion mobility spectrometry. Food Analytical Methods 8 (9):2376–82. doi: 10.1007/s12161-015-0129-3.
  • COMMISSION DECISION (2002/657/EC). 2002. Implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, O. J. E.
  • Commission Regulation (EC) No 1881/2006. 2006. Setting maximum levels for certain contaminants in foodstuffs, OJEUL.
  • Contreras, M. D. M., N. Jurado-Campos, L. Arce, and N. Arroyo-Manzanares. 2019. A robustness study of calibration models for olive oil classification: targeted and non-targeted fingerprint approaches based on GC-IMS. Food Chemistry 288:315–24. doi: 10.1016/j.foodchem.2019.02.104.
  • Cumeras, R., E. Figueras, C. E. Davis, J. I. Baumbach, and I. Gracia. 2015. Review on ion mobility spectrometry. Part 1: current instrumentation. The Analyst 140 (5):1376–90. doi: 10.1039/c4an01100g.
  • Danezis, G. P., A. S. Tsagkaris, F. Camin, V. Brusic, and C. A. Georgiou. 2016. Food authentication: techniques, trends & emerging approaches. TrAC Trends in Analytical Chemistry 85:123–32.
  • D'Atri, V., T. Causon, O. Hernandez-Alba, A. Mutabazi, J. L. Veuthey, S. Cianferani, and D. Guillarme. 2018. Adding a new separation dimension to MS and LC-MS: what is the utility of ion mobility spectrometry? Journal of Separation Science 41:20–67.
  • Debono, R., Grigoriev, A. Jackson, R. James, R. Kuja, F. Loveless, A. L. E. Nacson, T. S. Rudolph, A. Yin. and S. 2001. Rapid analysis of pesticides on imported fruits by GCIONSCAN. International Journal for Ion Mobility Spectrometry 4:16–9.
  • Delatour, T., L. Racault, T. Bessaire, and A. Desmarchelier. 2018. Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges. Food Additives & Contaminants: Part A 35:633–46.
  • Dion, H. M., L. K. Ackerman, and H. H. Hill. 2002. Detection of inorganic ions from water by electrospray ionization-ion mobility spectrometry. Talanta 57 (6):1161–71. doi: 10.1016/s0039-9140(02)00197-2.
  • Dugo, G., G. Bella, G. L. LA Torre, and M. Saitta. 2005. Rapid GC-FPD determination of organophosphorus pesticide residues in Sicilian and Apulian olive oil. Food Control. 16 (5):435–8. doi: 10.1016/j.foodcont.2004.05.003.
  • Dunn, J. D., C. M. Gryniewicz-Ruzicka, J. F. Kauffman, B. J. Westenberger, and L. F. Buhse. 2011. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine. Journal of Pharmaceutical and Biomedical Analysis 54 (3):469–74. doi: 10.1016/j.jpba.2010.09.017.
  • Dwivedi, P., Matz, L. M. Atkinson, D. A. Hill. H. H., and J. R. 2004. Electrospray ionization-ion mobility spectrometry: a rapid analytical method for aqueous nitrate and nitrite analysis. The Analyst 129 (2):139–44. doi: 10.1039/b311098b.
  • Dworzanski, J. P., M.-G. Kim, A. Peter Snyder, N. S. Arnold, and H. L. C. Meuzelaar. 1994. Performance advances in ion mobility spectrometry through combination with high speed vapor sampling, preconcentration and separation techniques. Analytica Chimica Acta 293 (3):219–35. doi: 10.1016/0003-2670(94)85027-5.
  • EEC 2002. European Commission Decision (EEC) 2002/657/EC. O. J. Eur. Commun L221:8.
  • EEC 2016. European Commission, Guidance Document on Identification of Mycotoxins in Food and Feed. SANTE/12089/2016; European Commission: Brussels, Belgium.
  • EEC 2017. European Commission, Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. SANTE/11813/2017; European Commission: Brussels, Belgium.
  • EEC 2018. European commission, Liquid Chromatography-Ion Mobility-Mass Spectrometry and Capillary Electrophoresis-Mass Spectrometry as ground-breaking approaches to expand the boundaries of metabolomics in chemical risk assessment.
  • European Food Safety Authority (EFSAJ). 2010. Scientific opinion on melamine in food and feed. EFSAJ. 8:1573–1717.
  • Eghbaljoo-Gharehgheshlaghi, H., N. Shariatifar, A. Arab, M. Alizadeh-Sani, I. K. Sani, A. Asdagh, M. Rostami, M. Alikord, and M. Arabameri. 2020. The concentration and probabilistic health risk assessment of trace metals in three type of sesame seeds using ICP- OES in Iran. International Journal of Environmental Analytical Chemistry :1–15. doi: 10.1080/03067319.2020.1804896.
  • Eiceman, G. A., D. A. Blyth, D. B. Shoff, and A. P. Snyder. 1990. Screening of solid commercial pharmaceuticals using ion mobility spectrometry. Analytical Chemistry 62 (14):1374–9. doi: 10.1021/ac00213a005.
  • Escuderos-Morenas, M., M. Santos-Delgado, S. Rubio-Barroso, and L. Polo-DíEZ. 2003. Direct determination of monolinuron, linuron and chlorbromuron residues in potato samples by gas chromatography with nitrogen-phosphorus detection. Journal of Chromatography. A 1011 (1–2):143–53. doi: 10.1016/s0021-9673(03)01139-7.
  • European Commission. 2002. Commission decision (EEC)/657/EC. O. J. EUR. COMMUN. 2002, L., 8./7.
  • European-Commission. XXXXa. C. R. E. N. O. J. O. P. M. A. A. I. T. C. I. C. W.
  • European-Commission. XXXXb. R. E. N. O. T. E. O. M. A. A. I. T. C. I. C. W. F.
  • Fan, R., D. Wang, R. Ramage, and J. She. 2012. Fast and simultaneous determination of urinary 8-hydroxy-2'-deoxyguanosine and ten monohydroxylated polycyclic aromatic hydrocarbons by liquid chromatography/tandem mass spectrometry. Chemical Research in Toxicology 25 (2):491–9. doi: 10.1021/tx200517h.
  • Fasano, E., F. Bono-Blay, T. Cirillo, P. Montuori, and S. Lacorte. 2012. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control. 27 (1):132–8. doi: 10.1016/j.foodcont.2012.03.005.
  • Fenn, L. S., and J. A. Mclean. 2008. Enhanced carbohydrate structural selectivity in ion mobility-mass spectrometry analyses by boronic acid derivatization. Chemical Communications (43):5505–7. doi: 10.1039/b810421b.
  • Fernandes, J., I. Judas, M. Oliveira, I. Ferreira, and M. Ferreira. 2001. A GC-MS method for quantitation of histamine and other biogenic amines in beer. Chromatographia 53 (S1):S327–S331. doi: 10.1007/BF02490351.
  • Fernández-Maestre, R., and H. H. Hill. 2009. Ion mobility spectrometry for the rapid analysis of over-the-counter drugs and beverages. International Journal for Ion Mobility Spectrometry 12 (3):91–102. doi: 10.1007/s12127-009-0025-x.
  • Filazi, A., U. T. Sireli, H. Ekici, H. Y. Can, and A. Karagoz. 2012. Determination of melamine in milk and dairy products by high performance liquid chromatography. Journal of Dairy Science 95 (2):602–8. doi: 10.3168/jds.2011-4926.
  • Frenich, A. G., R. Romero-GONZáLEZ, and M. DEL Mar Aguilera-Luiz. 2014. Comprehensive analysis of toxics (pesticides, veterinary drugs and mycotoxins) in food by UHPLC-MS. TrAC Trends in Analytical Chemistry 63:158–69. doi: 10.1016/j.trac.2014.06.020.
  • Galaon, T., L. Cruceru, J. Petre, L. F. Pascu, V. Iancu, and M. Niculescu. 2016. New LC-MS/MS method for the determination of eight nitrosamines in drinking water. Journal of Environmental Protection and Ecology 17:74–82.
  • Gallegos, J., C. Arce, R. Jordano, L. Arce, and L. M. Medina. 2017. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry. Food Chemistry 220:362–70. doi: 10.1016/j.foodchem.2016.10.022.]
  • Galvão, J., Yamatogi, R., Biondo, A., Almeida Nogueira Pinto, J., Silva, J., Carbonari, C. & Velini, E. 2017. Multiscreening LC-MS/MS designed for ten pesticide and six antimicrobial residues in eggs. Journal of Food Quality, 2017, 1–6. doi: 10.1155/2017/9718451.
  • Garrido-Delgado, R., L. Arce, A. V. GUAMáN, A. Pardo, S. Marco, and M. VALCáRCEL. 2011a. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools. Talanta 84 (2):471–9. doi: 10.1016/j.talanta.2011.01.044.
  • Garrido-Delgado, R., F. Mercader-Trejo, S. Sielemann, W. DE Bruyn, L. Arce, and M. Valcarcel. 2011b. Direct classification of olive oils by using two types of ion mobility spectrometers. Analytica Chimica Acta 696 (1-2):108–15. doi: 10.1016/j.aca.2011.03.007.
  • Garrido-Delgado, R., L. Arce, and M. Valcarcel. 2012. Multi-capillary column-ion mobility spectrometry: A potential screening system to differentiate virgin olive oils. Analytical and Bioanalytical Chemistry 402 (1):489–98. doi: 10.1007/s00216-011-5328-1.
  • Garrido-Delgado, R., M. Eugenia Muñoz-Perez, and L. Arce. 2018. Detection of adulteration in extra virgin olive oils by using UV-IMS and chemometric analysis. Food Control. 85:292–9. doi: 10.1016/j.foodcont.2017.10.012.
  • Garrido, R., M. Dobao-Prieto, L. Arce, and M. Valcárcel. 2015. Determination of volatile compounds by Gc-Ims to assign the quality of virgin olive oil. Food Chemistry 187: 572–579. doi: 10.1016/j.foodchem.2015.04.082.
  • Garrido, R., F. Mercader-Trejo, S. Sielemann, W. Bruyn, L. Arce, and M. Valcárcel. 2011. Direct classification of olive oils by using two types of ion mobility spectrometers. Analytica Chimica Acta 696:108–15.
  • Gaye, M. M., G. Nagy, D. E. Clemmer, and N. L. B. Pohl. 2016. Multidimensional Analysis of 16 Glucose Isomers by Ion Mobility Spectrometry. Analytical Chemistry 88 (4):2335–44. doi: 10.1021/acs.analchem.5b04280.
  • Gerhardt, N., M. Birkenmeier, D. Sanders, S. Rohn, and P. Weller. 2017. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Analytical and Bioanalytical Chemistry 409 (16):3933–42. doi: 10.1007/s00216-017-0338-2.
  • Gerhardt, N., M. Birkenmeier, S. Schwolow, S. Rohn, and P. Weller. 2018. Volatile-compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey . Analytical Chemistry 90 (3):1777–85. doi: 10.1021/acs.analchem.7b03748.
  • Gerhardt, N., S. Schwolow, S. Rohn, P. R. Perez-Cacho, H. GALáN-Soldevilla, L. Arce, and P. Weller. 2019. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: comparison of different processing approaches by LDA, kNN, and SVM. Food Chemistry 278:720–8. doi: 10.1016/j.foodchem.2018.11.095.
  • Ghotbadini-Bahraman, N., A. Sheibani, and M. Reza Shishehbore. 2017. Off-line coupling of QuEChERS sample preparation to ion mobility spectrometry for the determination of chlorpyrifos residue in pistachio oil. International Journal for Ion Mobility Spectrometry 20 (1-2):41–5. doi: 10.1007/s12127-017-0214-y.
  • Gil Garcia, M. D., M. Martinez Galera, S. Ucles, A. Lozano, and A. R. Fernandez-Alba. 2018. Ultrasound-assisted extraction based on QuEChERS of pesticide residues in honeybees and determination by LC-MS/MS and GC-MS/MS. Analytical and Bioanalytical Chemistry 410:5195–210.
  • Giles, K., S. D. Pringle, K. R. Worthington, D. Little, J. L. Wildgoose, and R. H. Bateman. 2004. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Communications in Mass Spectrometry 18 (20):2401–14. doi: 10.1002/rcm.1641.
  • Glaskin, R. S., K. Khatri, Q. Wang, J. Zaia, and C. E. Costello. 2017. Construction of a database of collision cross section values for glycopeptides, glycans, and peptides determined by IM-MS. Analytical Chemistry 89 (8):4452–60. doi: 10.1021/acs.analchem.6b04146.
  • Gloess, A. N., C. Yeretzian, R. Knochenmuss, and M. Groessl. 2018. On-line analysis of coffee roasting with ion mobility spectrometry-mass spectrometry (IMS-MS). International Journal of Mass Spectrometry 424:49–57. doi: 10.1016/j.ijms.2017.11.017.
  • Gokmen, V., H. Z. Senyuva, J. Acar, and K. Sarioglu. 2005. Determination of acrylamide in potato chips and crisps by high-performance liquid chromatography. Journal of Chromatography A 1088:193–9.
  • Goscinny, S., L. Joly, E. DE Pauw, V. Hanot, and G. 2. Eppe. 2015. Travelling-wave ion mobility time-of-flight mass spectrometry as an alternative strategy for screening of multi-class pesticides in fruits and vegetables. Journal of Chromatography A 1405:85–93. doi: 10.1016/j.chroma.2015.05.057.
  • Gossner, C. M., J. Schlundt, P. Ben Embarek, S. Hird, D. Lo-Fo-Wong, J. J. Beltran, K. N. Teoh, and A. Tritscher. 2009. The melamine incident: implications for international food and feed safety. Environmental Health Perspectives 117 (12):1803–8. doi: 10.1289/ehp.0900949.
  • Govari, M., and A. Pexara. 2018. Nitrates and Nitrites in meat products. Journal of the Hellenic Veterinary Medical Society 66:127.
  • Gryniewicz, C. M., J. C. Reepmeyer, J. F. Kauffman, and L. F. Buhse. 2009. Detection of undeclared erectile dysfunction drugs and analogues in dietary supplements by ion mobility spectrometry. Journal of Pharmaceutical and Biomedical Analysis 49 (3):601–6. doi: 10.1016/j.jpba.2008.12.002.
  • Gu, S., W. Chen, Z. Wang, J. Wang, and Y. Huo. 2020. Rapid detection of Aspergillus spp. infection levels on milled rice by headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) and E-nose. LWT 132:109758. doi: 10.1016/j.lwt.2020.109758.
  • Guddat, S., M. Thevis, J. Kapron, A. Thomas, and W. Schanzer. 2009. Application of FAIMS to anabolic androgenic steroids in sport drug testing. Drug Testing and Analysis 1 (11–12):545–53. doi: 10.1002/dta.73.
  • Guevremont, R. 2004. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. Journal of Chromatography A 1058 (1–2):3–19.
  • Guo, Y., D. Chen, Y. Dong, H. Ju, C. Wu, and S. Lin. 2018. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS. Journal of Chromatography B. 1099:46–55. doi: 10.1016/j.jchromb.2018.09.011.
  • Guo, Z., P. Gai, T. Hao, S. Wang, D. Wei, and N. Gan. 2011. Determination of melamine in dairy products by an electrochemiluminescent method combined with solid-phase extraction. Talanta 83 (5):1736–41. doi: 10.1016/j.talanta.2010.12.013.
  • Halbfeld, C., B. E. Ebert, and L. M. Blank. 2014. Multi-capillary column-ion mobility spectrometry of volatile metabolites emitted by Saccharomyces Cerevisiae. Metabolites 4 (3):751–74. doi: 10.3390/metabo4030751.
  • Haler, J., J. Far, A. Abdelhafid, J. Claereboudt, N. Tomczyk, K. Giles, C. Jerome, and E. DE Pauw. 2017. Multiple gas-phase conformations of a synthetic linear poly(acrylamide) polymer observed using ion mobility-mass spectrometry. Journal of the American Society for Mass Spectrometry 28 (11):2492–9. doi: 10.1007/s13361-017-1769-x.
  • Helmfrid, I., M. Berglund, O. Lofman, and G. Wingren. 2012. Health effects and exposure to polychlorinated biphenyls (PCBs) and metals in a contaminated community. Environment International 44:53–8. doi: 10.1016/j.envint.2012.01.009.
  • Hernandez, D. R., J. D. Debord, M. E. Ridgeway, D. A. Kaplan, M. A. Park, and F. Fernandez-Lima. 2014. Ion dynamics in a trapped ion mobility spectrometer. The Analyst 139 (8):1913–21. doi: 10.1039/C3AN02174B.
  • Hernández-Mesa, M., A. Escourrou, F. Monteau, B. Le Bizec, and G. Dervilly-Pinel. 2017. Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues. TrAC Trends in Analytical Chemistry 94:39–53. doi: 10.1016/j.trac.2017.07.006.
  • Hernández-Mesa, M., D. Ropartz, A. M. García-Campaña, H. Rogniaux, G. Dervilly-Pinel, and B. Le Bizec. 2019. Ion mobility spectrometry in food analysis: principles, current applications and future trends. Molecules 24 (15):2706. doi: 10.3390/molecules24152706.
  • Hernández-Mesa, M., D. Ropartz, A. M. García-Campaña, H. Rogniaux, G. A. U. D. Dervilly-Pinel, and B. L. Bizec. 2019. Ion mobility spectrometry in food analysis: principles, current applications and future trends. Molecules 24 (15):2706. doi: 10.3390/molecules24152706.
  • Hines, K. M., D. H. Ross, K. L. Davidson, M. F. Bush, and L. Xu. 2017. Large-scale structural characterization of drug and drug-like compounds by high-throughput ion mobility-mass spectrometry. Analytical Chemistry 89 (17):9023–30. doi: 10.1021/acs.analchem.7b01709.
  • Huang, Y., and E. D. Dodds. 2015a. Discrimination of isomeric carbohydrates as the electron transfer products of group II cation adducts by ion mobility spectrometry and tandem mass spectrometry. Analytical Chemistry 87 (11):5664–8. doi: 10.1021/acs.analchem.5b00759.
  • Huang, Y., and E. D. Dodds. 2015b. Ion-neutral collisional cross sections of carbohydrate isomers as divalent cation adducts and their electron transfer products. The Analyst 140 (20):6912–21. doi: 10.1039/c5an01093d.
  • Huang, H. Y., C. L. Lin, S. H. Jiang, B. Singco, and Y. J. Cheng. 2012. Capillary electrochromatography-mass spectrometry determination of melamine and related triazine by-products using poly(divinyl benzene-alkene-vinylbenzyl trimethylammonium chloride) monolithic stationary phases. Analytica Chimica Acta 719:96–103. doi: 10.1016/j.aca.2011.12.073.
  • Huang, K.-J., Y.-J. Liu, G.-W. Shi, X.-R. Yang, and Y.-M. Liu. 2014. Label-free aptamer sensor for 17β-estradiol based on vanadium disulfide nanoflowers and Au nanoparticles. Sensors and Actuators B: Chemical 201:579–85. doi: 10.1016/j.snb.2014.05.055.
  • Ibáñez, M., J. V. Sancho, and F. Hernández. 2009. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta 649 (1):91–7. doi: 10.1016/j.aca.2009.07.016.
  • Ilbeigi, V., Y. Valadbeigi, and M. Tabrizchi. 2016. Ion mobility spectrometry of heavy metals. Analytical Chemistry 88 (14):7324–8. doi: 10.1021/acs.analchem.6b01664.
  • Jafari, M. T. 2006. Determination and identification ofmalathion, ethion, and dichlorovos using ion mobility spectrometry. Talanta 69 (5):1054–8. doi: 10.1016/j.talanta.2005.12.017.
  • Jafari, M. T., T. Khayamian, V. Shaer, and N. Zarei. 2007. Determination of veterinary drug residues in chicken meat using corona discharge ion mobility spectrometry. Analytica Chimica Acta 581 (1):147–53. doi: 10.1016/j.aca.2006.08.005.
  • Jafari, M. T., B. Rezaei, and M. Javaheri. 2011. A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultaneous determination of caffeine and theophylline. Food Chemistry 126 (4):1964–70. doi: 10.1016/j.foodchem.2010.12.054.
  • Jafari, M. T., and F. Riahi. 2014. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction. Journal of Chromatography A 1343:63–8. doi: 10.1016/j.chroma.2014.03.069.
  • Jafari, M. T., M. Saraji, and H. Sherafatmand. 2014. Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography-corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides. Analytica Chimica Acta 814:69–78. doi: 10.1016/j.aca.2014.01.037.
  • Jafari, M. T., F. Torki, and M. Saraji. 2012. Simultaneous determination of nitrite and nitrate in potato and water samples using negative electrospray ionization ion mobility spectrometry. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 28 (4):391 doi: 10.2116/analsci.28.391.
  • Jasak, J., Y. Le Blanc, K. Speer, P. Billian, and R. M. Schoening. 2012. Analysis of triazole-based metabolites in plant materials using differential mobility spectrometry to improve LC/MS/MS selectivity. Journal of AOAC International 95 (6):1768–76. doi: 10.5740/jaoacint.12-073.
  • Jia, S., Y. Li, S. Zhuang, X. Sun, L. Zhang, J. Shi, H. Hong, and Y. Luo. 2019. Biochemical changes induced by dominant bacteria in chill-stored silver carp (Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic compounds. Food Microbiology 84:103248. doi: 10.1016/j.fm.2019.103248.
  • Jiang, W., N. A. Chung, J. C. May, J. A. Mclean, and R. A. S. Robinson. 2019. Ion mobility–mass spectrometry. In Encyclopedia of Analytical Chemistry, ed R. A. Meyers.doi: 10.1002/9780470027318.a9292.pub2.
  • Jiao, J., J. Wang, M. Li, J. Li, Q. Li, Q. Quan, and J. Chen. 2016. Simultaneous determination of three azo dyes in food product by ion mobility spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1025:105–9. doi: 10.1016/j.jchromb.2016.05.002.
  • Jung, T., and T. J. Simat. 2014. Multi-analyte methods for the detection of photoinitiators and amine synergists in food contact materials and foodstuffs – Part II: UHPLC-MS/MS analysis of materials and dry foods. Food Additives & Contaminants: Part A 31:743–766.
  • Jung, T., T. J. Simat, and W. Altkofer. 2010. Mass transfer ways of ultraviolet printing ink ingredients into foodstuffs. Food Additives & Contaminants: Part A 27:1040–1049.
  • Kafle, G. K., L. R. Khot, S. Sankaran, H. Y. Bahlol, J. A. Tufariello, and H. H. Hill. 2016. State of ion mobility spectrometry and applications in agriculture: a review. Engineering in Agriculture, Environment and Food 9 (4):346–357. doi: 10.1016/j.eaef.2016.05.004.
  • Kailasa, S. K., and H.-F. Wu. 2015. Electrospray ionization tandem mass spectrometry for rapid, sensitive and direct detection of melamine in dairy products. Journal of Industrial and Engineering Chemistry 21:138–144. doi: 10.1016/j.jiec.2014.03.012.
  • Kalhor, H., S. Hashemipour, and M. R. Yaftian. 2016. Ultrasound-assisted emulsification-microextraction/ion mobility spectrometry combination: application for analysis of organophosphorus pesticide residues in rice samples. Food Analytical Methods 9 (11):3006–3014. doi: 10.1007/s12161-016-0492-8.
  • Kamalabadi, M., E. Ghaemi, A. Mohammadi, and N. Alizadeh. 2015a. Determination of furfural and hydroxymethylfurfural from baby formula using headspace solid phase microextraction based on nanostructured polypyrrole fiber coupled with ion mobility spectrometry. Food Chemistry 181:72–77. doi: 10.1016/j.foodchem.2015.02.069.
  • Kamalabadi, M., E. Ghaemi, A. Mohammadi, and N. Alizadeh. 2015b. Determination of furfural and hydroxymethylfurfural from baby formula using headspace solid phase microextraction based on nanostructured polypyrrole fiber coupled with ion mobility spectrometry. Food Chemistry 181:72–7. doi: 10.1016/j.foodchem.2015.02.069.
  • Kamalabadi, M., A. Mohammadi, and N. Alizadeh. 2016. Polypyrrole nanowire as an excellent solid phase microextraction fiber for bisphenol A analysis in food samples followed by ion mobility spectrometry. Talanta 156-157:147–153. doi: 10.1016/j.talanta.2016.05.007.
  • Karami, H., N. Shariatifar, S. Nazmara, M. Moazzen, B. Mahmoodi, and A. Mousavi Khaneghah. 2021. The concentration and probabilistic health risk of potentially toxic elements (PTEs) in edible mushrooms (wild and cultivated) samples collected from different cities of Iran. Biological Trace Element Research 199 (1):389–400. doi: 10.1007/s12011-020-02130-x.
  • Karpas, Z. 2013. Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Research International 54 (1):1146–1151. doi: 10.1016/j.foodres.2012.11.029.
  • Karpas, Z., A. V. Guaman, D. Calvo, A. Pardo, and S. Marco. 2012. The potential of ion mobility spectrometry (IMS) for detection of 2,4,6-trichloroanisole (2,4,6-TCA) in wine. Talanta 93:200–5. doi: 10.1016/j.talanta.2012.02.012.
  • Karpas, Z., A. V. GUAMáN, A. Pardo, and S. Marco. 2013. Comparison of the performance of three ion mobility spectrometers for measurement of biogenic amines. Analytica Chimica Acta 758:122–129. doi: 10.1016/j.aca.2012.11.003.
  • Karpas, Z., B. Tilman, R. Gdalevsky, and A. Lorber. 2002. Determination of volatile biogenic amines in muscle food products by ion mobility spectrometry. Analytica Chimica Acta 463 (2):155–163. doi: 10.1016/S0003-2670(02)00378-1.
  • Khalesi, M., M. Sheikh-Zeinoddin, and M. Tabrizchi. 2011. Determination of ochratoxin A in licorice root using inverse ion mobility spectrometry. Talanta 83 (3):988–993. doi: 10.1016/j.talanta.2010.11.004.
  • Kim, C. T., E.-S. Hwang, and H. J. Lee. 2007. An improved LC-MS/MS method for the quantitation of acrylamide in processed foods. Food Chemistry 101 (1):401–409. doi: 10.1016/j.foodchem.2005.10.025.
  • Kolberg, D. I. S., S. Zechmann, C. Wildgrube, I. Sigalov, E. Scherbaum, and M. Anastassiades. 2016. Determination of Triazole Derivative Metabolites (TDMs) in Fruit and Vegetables Using the QuPPe Method and Differential Mobility Spectrometry (DMS) and Survey of the Residue Situation in Organic and Conventional Procedure, EURL-SRM.
  • Kong, W. J., H. H. Shen, X. F. Zhang, X. L. Yang, F. Qiu, Z. Ou-Yang, and M. H. Yang. 2013. Analysis of zearalenone and α-zearalenol in 100 foods and medicinal plants determined by HPLC-FLD and positive confirmation by LC-MS-MS. Journal of the Science of Food and Agriculture 93 (7):1584–90. doi: 10.1002/jsfa.5926.
  • KöSE, S., S. Koral, B. Tufan, M. Pompe, A. Scavnicar, and D. Kocar. 2012. Biogenic amine contents of commercially processed traditional fish products originating from European countries and Turkey. European Food Research and Technology = Zeitschrift Fur Lebensmittel-Untersuchung und -Forschung A 235:669–683.
  • Koszucka, A., and A. Nowak. 2019. Thermal processing food-related toxicants: a review. Critical Reviews in Food Science and Nutrition 59 (22):3579–3596. doi: 10.1080/10408398.2018.1500440.
  • Kuang, A., I. Erlund, C. Herder, J. A. Westerhuis, J. Tuomilehto, and M. C. Cornelis. 2018. Lipidomic response to coffee consumption. Nutrients 10 (12):1851. doi: 10.3390/nu10121851.
  • Kuklya, A., L. Coban, F. Uteschil, K. Kerpen, and U. Telgheder. 2018. Direct inlet probe ion mobility spectrometry. Talanta 180:61–68. doi: 10.1016/j.talanta.2017.12.028.
  • Lago, M. A., A. Rodriguez-Bernaldo DE Quiros, R. Sendon, J. Bustos, M. T. Nieto, and P. Paseiro. 2015. Photoinitiators: a food safety review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 32 (5):779–98. doi: 10.1080/19440049.2015.1014866.
  • Lapthorn, C., F. Pullen, and B. Z. Chowdhry. 2013. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrometry Reviews 32 (1):43–71. doi: 10.1002/mas.21349.
  • Latorre-Moratalla, M. L., S. Bover-Cid, T. Veciana-Nogues, and M. C. Vidal-Carou. 2009. Thin-layer chromatography for the identification and semi-quantification of biogenic amines produced by bacteria. Journal of Chromatography A 1216 (18):4128–4132. doi: 10.1016/j.chroma.2009.02.045.
  • Lawrence, A. H. 1986. Ion mobility spectrometry/mass spectrometry of some prescription and illicit drugs. Analytical Chemistry 58 (6):1269–1272. doi: 10.1021/ac00297a069.
  • Li, J., Z. Chen, and Y. Li. 2011. A strategy for constructing sensitive and renewable molecularly imprinted electrochemical sensors for melamine detection. Analytica Chimica Acta 706 (2):255–260. doi: 10.1016/j.aca.2011.08.048.
  • Liedtke, S., L. Seifert, N. Ahlmann, C. Hariharan, J. Franzke, and W. Vautz. 2018. Coupling laser desorption with gas chromatography and ion mobility spectrometry for improved olive oil characterisation. Food Chemistry 255:323–331. doi: 10.1016/j.foodchem.2018.01.193.
  • Li, S., J. Jia, X. Gao, X. He, and J. Li. 2012. Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry. Analytica Chimica Acta 720:97–103. doi: 10.1016/j.aca.2012.01.014.
  • Lipok, C., J. Hippler, and O. J. Schmitz. 2018. A four dimensional separation method based on continuous heart-cutting gas chromatography with ion mobility and high resolution mass spectrometry. Journal of Chromatography A 1536:50–57. doi: 10.1016/j.chroma.2017.07.013.
  • Li, J., H. Y. Qi, and Y. P. Shi. 2009. Determination of melamine residues in milk products by zirconia hollow fiber sorptive microextraction and gas chromatography-mass spectrometry. Journal of Chromatography A 1216 (29):5467–71. doi: 10.1016/j.chroma.2009.05.047.
  • Liu, D., L. Bai, X. Feng, Y. P. Chen, D. Zhang, W. Yao, H. Zhang, G. Chen, and Y. Liu. 2020. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS). Meat Science 168:108178 doi: 10.1016/j.meatsci.2020.108178.
  • Liu, Y. T., J. Deng, X. L. Xiao, L. Ding, Y. L. Yuan, H. Li, X. T. Li, X. N. Yan, and L. L. Wang. 2011. Electrochemical sensor based on a poly(para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochimica Acta 56 (12):4595–4602. doi: 10.1016/j.electacta.2011.02.088.
  • Liu, Y., E. E. D. Todd, Q. Zhang, J.-R. Shi, and X.-J. Liu. 2012a. Recent developments in the detection of melamine. Journal of Zhejiang University. Science. B 13 (7):525–532. doi: 10.1631/jzus.B1100389.
  • Liu, Y., E. E. D. Todd, Q. Zhang, J.-R. Shi, and X.-J. Liu. 2012b. Recent developments in the detection of melamine. Journal of Zhejiang University Science B 13 (7):525–532. doi: 10.1631/jzus.B1100389.
  • Liu, X., Y.-Y. Zhao, K. Chan, S. Hrudey, X.-F. Li, and J. Li. 2007. Analysis of nitrosamines by capillary electrospray-high-field asymmetric waveform ion mobility spectrometry-MS with programmed compensation voltage. Electrophoresis 28 (9):1327–34. doi: 10.1002/elps.200600582.
  • Li, J., H. Yuan, Y. Yao, J. Hua, Y. Yang, C. Dong, Y. Deng, J. Wang, H. Li, Y. Jiang, et al. 2019. Rapid volatiles fingerprinting by dopant-assisted positive photoionization ion mobility spectrometry for discrimination and characterization of Green Tea aromas. Talanta 191:39–45. doi: 10.1016/j.talanta.2018.08.039.
  • Loehmannsroeben, H.-G., T. Beitz, R. Laudien, and R. Schultze. 2004. Laser-based ion mobility spectrometry for sensing of aromatic compounds. Proceedings of the SPIE 5547, Remote Sensing in Atmospheric Pollution Monitoring and Control. doi: 10.1117/12.559509.
  • Loehmannsroeben, H.-G., T. Beitz, R. Laudien, and R. Schultze. 2004. Laser-based ion mobility spectrometry for sensing of aromatic compounds. Paper presented at the SPIE. doi: 10.1117/12.559509.
  • Lopez-Morales, C. A., S. Vazquez-Leyva, L. Vallejo-Castillo, G. Carballo-Uicab, L. Munoz-Garcia, J. E. Herbert-Pucheta, L. G. Zepeda-Vallejo, M. Velasco-Velazquez, L. Pavon, S. M. Perez-Tapia, et al. 2019. Determination of peptide profile consistency and safety of collagen hydrolysates as quality attributes. Journal of Food Science 84:430–439.
  • Lu, S.-Y., W.-J. Chang, S. O. Sojinu, and H.-G. Ni. 2013. Bisphenol A in supermarket receipts and its exposure to human in Shenzhen, China. Chemosphere 92 (9):1190–1194. doi: 10.1016/j.chemosphere.2013.01.096.
  • Lu, Y., J. Guo, J. Yu, J. Guo, X. Jia, W. Liu, and P. Tian. 2019. Two-dimensional analysis of phenolic acids in seedling roots by high performance liquid chromatography electrospray ionization-ion mobility spectrometry. Analytical Methods 11 (5):610–617. doi: 10.1039/C8AY02288G.
  • Lu, Y., X. Wu, L. Yuan, Y. Li, P. Wang, P. Tian, and W. Liu. 2020. A rapid liquid chromatography-electrospray ionization-ion mobility spectrometry method for monitoring nine representative metabolites in the seedlings of cucumber and wheat. Journal of Separation Science. doi: 10.1002/jssc.202000811.
  • Lung, S.-C., and C.-H. Liu. 2015. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry. Scientific Reports 5:12992. doi: 10.1038/srep12992.
  • Ma, Q., Y. Zhang, J. Zhai, X. Chen, Z. Du, W. Li, and H. Bai. 2019. Characterization and analysis of non-ionic surfactants by supercritical fluid chromatography combined with ion mobility spectrometry-mass spectrometry. Analytical and Bioanalytical Chemistry 411 (13):2759–2765. doi: 10.1007/s00216-019-01777-3.
  • Machado, I., N. Gerez, M. PISTóN, H. Heinzen, and M. V. Cesio. 2017. Determination of pesticide residues in globe artichoke leaves and fruits by GC-MS and LC-MS/MS using the same QuEChERS procedure. Food Chemistry 227:227–236. doi: 10.1016/j.foodchem.2017.01.025.
  • Maleki, J., F. Nazari, J. Yousefi, R. Khosrokhavar, and M.-J. Hosseini. 2018. Determinations of melamine residue in infant formula brands available in iran market using by HPLC method. Iranian Journal of Pharmaceutical Research 17 (2):563–570.
  • Man, Y., G. Liang, A. Li, and L. Pan. 2017. Recent advances in mycotoxin determination for food monitoring via microchip. Toxins (Toxins) 9 (10):324. doi: 10.3390/toxins9100324.
  • Manz, C., and K. Pagel. 2018. Glycan analysis by ion mobility-mass spectrometry and gas-phase spectroscopy. Current Opinion in Chemical Biology 42:16–24. doi: 10.1016/j.cbpa.2017.10.021.
  • Marek, R. F., P. S. Thorne, K. Wang, J. Dewall, and K. C. Hornbuckle. 2013. PCBs and OH-PCBs in serum from children and mothers in urban and rural U.S. communities. Environmental Science & Technology 47:3353–3361.
  • Márquez-Sillero, I., E. Aguilera-Herrador, S. Cárdenas, andM. Valcárcel. 2011. Determination of 2,4,6-tricholoroanisole in water and wine samples by ionic liquid-based single-drop microextraction and ion mobility spectrometry. Analytica Chimica Acta 702 (2):199–204. doi:10.1016/j.aca.2011.06.046. PMC: 21839198
  • Márquez-Sillero, I., S. Cardenas, and M. Valcarcel. 2011b. Direct determination of 2,4,6-tricholoroanisole in wines by single-drop ionic liquid microextraction coupled with multicapillary column separation and ion mobility spectrometry detection. Journal of Chromatography A 1218:7574–80. doi: 10.1016/j.chroma.2011.06.032.
  • Márquez-Sillero, I., E. Aguilera-Herrador, S. Cárdenas, andM. Valcárcel. 2011. Ion-mobility spectrometry for environmental analysis. TrAC Trends in Analytical Chemistry 30 (5):677–90. doi:10.1016/j.trac.2010.12.007.
  • Márquez-Sillero, I., S. Cárdenas, S. Sielemann, andM. Valcárcel. 2014. On-line headspace-multicapillary column-ion mobility spectrometry hyphenation as a tool for the determination of off-flavours in foods. Journal of Chromatography. A 1333:99–105. doi:10.1016/j.chroma.2014.01.062. PMC: 24529959
  • Martín-Gómez, A., N. Arroyo-Manzanares, V. Rodríguez-Estevez, and L. Arce. 2019. Use of a non-destructive sampling method for characterization of Iberian cured ham breed and feeding regime using GC-IMS. Meat Science 152:146–154. doi: 10.1016/j.meatsci.2019.02.018.
  • Mayer, T., and H. Borsdorf. 2014. Accuracy of ion mobility measurements dependent on the influence of humidity. Analytical Chemistry 86 (10):5069–5076. doi: 10.1021/ac5007393.
  • Mccooeye, M., B. Kolakowski, J. Boison, and Z. Mester. 2008. Evaluation of high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of the mycotoxin zearalenone. Analytica Chimica Acta 627 (1):112–6. doi: 10.1016/j.aca.2008.05.045.
  • Medina, S.,J. A. Pereira,P. Silva,R. Perestrelo, andJ. S. Câmara. 2019. Food fingerprints – A valuable tool to monitor food authenticity and safety. Food Chemistry 278:144–62. doi:10.1016/j.foodchem.2018.11.046.
  • Merenbloom, S. I., S. L. Koeniger, S. J. Valentine, M. D. Plasencia, and D. E. Clemmer. 2006. IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Analytical Chemistry 78 (8):2802–9. doi: 10.1021/ac052208e.
  • Midey, A. J., A. Camacho, J. Sampathkumaran, C. A. Krueger, M. A. Osgood, and C. Wu. 2013. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food. Analytica Chimica Acta 804:197–206. doi: 10.1016/j.aca.2013.10.010.
  • Mirzajani, R., and N. Tavaf. 2016. Rapid and highly sensitive determination of melamine in different food samples by corona discharge ion mobility spectrometry after dispersive liquid-liquid microextraction. Journal of the Brazilian Chemical Society 27:1657–1666.
  • Mirzajani, R., Z. Ramezani, and F. Kardani. 2016. Selective determination of thidiazuron herbicide in fruit and vegetable samples using molecularly imprinted polymer fiber solid phase microextraction with ion mobility spectrometry detection (MIPF-SPME-IMS). Microchemical Journal 130: 93–101. doi: 10.1016/j.microc.2016.08.009.
  • Mohammadi, V., M. T. Jafari, and M. Saraji. 2020. Solvent holder-assisted liquid-phase microextraction using nano-structure biomass-derived carbonaceous aerogel combined with ion mobility spectrometry for simultaneous determination of ethion and chlorpyrifos. Mikrochimica Acta 187 (4):232. doi: 10.1007/s00604-020-4215-x.]
  • Mu, R., X. He, X. Gao, J. Jia, and J. Li. 2018. Determination of malathion using corona discharge – ion mobility spectrometry with solid-phase microextraction. Analytical Letters 51 (6):807–19. doi: 10.1080/00032719.2017.1362645.
  • Mu, W.-Y., P.-Z. Huang, Q.-Y. Chen, and W. Wang. 2020. Determination of melamine and melamine-Cu(II) complexes in milk using a DNA-Ag hydrocolloid as the sensor. Food Chemistry 311:125889 doi: 10.1016/j.foodchem.2019.125889.
  • Nematollahi, A., M. Kamankesh, H. Hosseini, J. Ghasemi, F. Hosseini-Esfahani, A. Mohammadi, and A. Mousavi Khaneghah. 2020. Acrylamide content of collected food products from Tehran’s market: a risk assessment study. Environmental Science and Pollution Research 27 (24):30558–70. doi: 10.1007/s11356-020-09323-w.
  • Nerin, C., P. Alfaro, M. Aznar, and C. Domeno. 2013. The challenge of identifying non-intentionally added substances from food packaging materials: a review. Analytica Chimica Acta 775:14–24. doi: 10.1016/j.aca.2013.02.028.
  • Niko, Z. N., G. J. Khaniki, M. Alikord, and E. Molaee-Aghaee. 2020. ELISA and copan based evaluation and analysis of antibiotic residues in cattle milk in Qazvin, Iran. IEN 6: 219–277.
  • O'Donnell, R., X. Sun, and P. Harrington. 2008. Pharmaceutical applications of ion mobility spectrometry. TrAC Trends in Analytical Chemistry 27:44–53.
  • Ogden, I. D., and N. J. C. Strachan. 1993. Enumeration of Escherichia coli in cooked and raw meats by ion mobility spectrometry. Journal of Applied Bacteriology 74 (4):402–5. doi: 10.1111/j.1365-2672.1993.tb05145.x.
  • Ordóñez, J. L., A. M. Troncoso, M. D. C. García-Parrilla, and R. M. Callejón. 2016. Recent trends in the determination of biogenic amines in fermented beverages – a review. Analytica Chimica Acta 939:10–25. doi: 10.1016/j.aca.2016.07.045.
  • Othman, A., K. A. Goggin, N. I. Tahir, E. Brodrick, R. Singh, R. Sambanthamurthi, G. K. A. Parveez, A. N. Davies, A. J. Murad, N. H. Muhammad, et al. 2019. Use of headspace-gas chromatography-ion mobility spectrometry to detect volatile fingerprints of palm fibre oil and sludge palm oil in samples of crude palm oil. BMC Research Notes 12 (1):229 doi: 10.1186/s13104-019-4263-7.
  • Paglia, G., P. Angel, J. P. Williams, K. Richardson, H. J. Olivos, J. W. Thompson, L. Menikarachchi, S. Lai, C. Walsh, A. Moseley, et al. 2015. Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Analytical Chemistry 87 (2):1137–44. doi: 10.1021/ac503715v.
  • Parchami, R., M. Kamalabadi, and N. Alizadeh. 2017a. Determination of biogenic amines in canned fish samples using head-space solid phase microextraction based on nanostructured polypyrrole fiber coupled to modified ionization region ion mobility spectrometry. Journal of Chromatography A 1481:37–43. doi: 10.1016/j.chroma.2016.12.046.
  • Parchami, R., M. Kamalabadi, and N. Alizadeh. 2017b. Determination of biogenic amines in canned fish samples using head-space solid phase microextraction based on nanostructured polypyrrole fiber coupled to modified ionization region ion mobility spectrometry. Journal of Chromatography A 1481:37–43. doi: 10.1016/j.chroma.2016.12.046.
  • Park, J.-S., Y.-M. Yoon, and N.-G. Her. 2010. HPLC-MS/MS detection and sonodegradation of bisphenol A in water. Journal of Korean Society of Environmental Engineers 32.
  • Peng, L., Y. Guo, T. Gu, H. Li, S. Jian, D. Jia, and J. Sun. 2020. Benzene-assisted photoionization positive ion mobility spectrometry coupled with a time-resolved introduction for field detecting dimethyl sulfide in seawater. Analytical Methods: Advancing Methods and Applications 12 (43):5168–76. doi: 10.1039/d0ay01242d.
  • Peruski, A. H., and L. F. Peruski. 2003. Immunological methods for detection and identification of infectious disease and biological warfare agents. Clinical and Diagnostic Laboratory Immunology 10 (4):506–13. doi: 10.1128/cdli.10.4.506-513.2003.
  • Pervukhin, V. V., and D. G. Sheven’. 2014. Detection of acrylamide vapors by ion mobility increment spectrometry at reduced pressures. Journal of Analytical Chemistry 69 (11):1047–51. doi: 10.1134/S1061934814110094.
  • Piacentini, K. C., L. O. Rocha, L. C. Fontes, L. Carnielli, T. A. Reis, and B. Correa. 2017. Mycotoxin analysis of industrial beers from Brazil: the influence of fumonisin B(1) and deoxynivalenol in beer quality. Food Chemistry 218:64–9. doi: 10.1016/j.foodchem.2016.09.062.
  • Pietrzak, D., and D. M. Bieliński. 2018. Application of multi-capillary column – ion mobility spectrometry (MCC-IMS) in rubber chemistry and technology. International Journal for Ion Mobility Spectrometry 21 (1–2):1–9. doi: 10.1007/s12127-018-0229-z.
  • Piñero, M.-Y., M. Amo-González, R. D. Ballesteros, L. R. Perez, G. F. De La Mora, and L. Arce. 2020. Chemical fingerprinting of olive oils by electrospray ionization-differential mobility analysis-mass spectrometry: a new alternative to food authenticity testing. Journal of the American Society for Mass Spectrometry 31 (3):527–37. doi: 10.1021/jasms.9b00006.
  • Pleil, J. D., M. A. Stiegel, J. R. Sobus, S. Tabucchi, A. J. Ghio, and M. C. Madden. 2010. Cumulative exposure assessment for trace-level polycyclic aromatic hydrocarbons (PAHs) using human blood and plasma analysis. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 878 (21):1753–60. doi: 10.1016/j.jchromb.2010.04.035.
  • Pollard, M. J., C. K. Hilton, H. Li, K. Kaplan, R. A. Yost, and H. H. Hill. 2011. Ion mobility spectrometer—field asymmetric ion mobility spectrometer-mass spectrometry. International Journal for Ion Mobility Spectrometry 14 (1):15–22. doi: 10.1007/s12127-011-0058-9.
  • Pourmand, E., E. Ghaemi, and N. Alizadeh. 2017. Determination of acrylamide in potato-based foods using headspace solid-phase microextraction based on nanostructured polypyrrole fiber coupled with ion mobility spectrometry: A heat treatment study. Analytical Methods 9 (35):5127–34. doi: 10.1039/C7AY01506B.
  • Poyer, S., C. Loutelier-Bourhis, G. Coadou, F. Mondeguer, J. Enche, A. Bossee, P. Hess, and C. Afonso. 2015. Identification and separation of saxitoxins using hydrophilic interaction liquid chromatography coupled to traveling wave ion mobility-mass spectrometry. Journal of Mass Spectrometry : JMS 50 (1):175–81. doi: 10.1002/jms.3515.
  • Pu, D., H. Zhang, Y. Zhang, B. Sun, F. Ren, H. Chen, and J. He. 2019a. Characterization of the aroma release and perception of white bread during oral processing by gas chromatography-ion mobility spectrometry and temporal dominance of sensations analysis. Food Research International (Ottawa, Ont.) 123:612–22. doi: 10.1016/j.foodres.2019.05.016.
  • Pu, D., H. Zhang, Y. Zhang, B. Sun, F. Ren, H. Chen, and J. Xie. 2019b. Characterization of the oral breakdown, sensory properties, and volatile release during mastication of white bread. Food Chemistry 298:125003. doi: 10.1016/j.foodchem.2019.125003.
  • Qin, C., A. Granger, V. Papov, J. Mccaffrey, and D. L. Norwood. 2010. Quantitative determination of residual active pharmaceutical ingredients and intermediates on equipment surfaces by ion mobility spectrometry. Journal of Pharmaceutical and Biomedical Analysis 51 (1):107–13. doi: 10.1016/j.jpba.2009.08.016.
  • Raatikainen, O., J. Pursiainen, P. Hyvonen, A. Von Wright, S. P. Reinikainen, and P. Muje. 2001. Fish quality assessment with ion mobility based gas detector. Mededelingen (Rijksuniversiteit te Gent. Fakulteit Van de Landbouwkundige en Toegepaste Biologische Wetenschappen) 66 (3b):475–80.
  • Raatikainen, O., V. Reinikainen, P. Minkkinen, T. Ritvanen, P. Muje, J. Pursiainen, T. Hiltunen, P. Hyvönen, A. V. Wright, and S.-P. Reinikainen. 2005. Multivariate modelling of fish freshness index based on ion mobility spectrometry measurements. Analytica Chimica Acta 544 (1–2):128–34. doi: 10.1016/j.aca.2005.02.029.
  • Rai, P. K., S. S. Lee, M. Zhang, Y. F. Tsang, and K.-H. Kim. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International 125:365–85. doi: 10.1016/j.envint.2019.01.067..
  • Ramezani, H., K. Abhari, Z. Pilevar, H. Hosseini, and A. Mohammadi. 2020. Volatile N-nitrosamine, residual nitrite, and ascorbic acid levels in sausages during storage. Foods and Raw Materials 8 (1):107–14. doi: 10.21603/2308-4057-2020-1-107-114.
  • RASFF. 2005. Alert notification.
  • Raza, A., H. Song, N. Begum, J. Raza, M. Iftikhar, P. Li, and K. Li. 2020. Direct classification of volatile organic compounds in heat-treated glutathione-enriched yeast extract by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Food Analytical Methods 13 (12):2279–89. doi: 10.1007/s12161-020-01847-8.
  • Regueiro, J., N. Negreira, and M. Berntssen. 2016. Ion-mobility-derived collision cross section as an additional identification point for multiresidue screening of pesticides in fish feed. Analytical Chemistry 88 (22):11169–77. doi: 10.1021/acs.analchem.6b03381.
  • Regueiro, J., N. Negreira, R. Hannisdal, and M. H. G. Berntssen. 2017. Targeted approach for qualitative screening of pesticides in salmon feed by liquid chromatography coupled to traveling-wave ion mobility/quadrupole time-of-flight mass spectrometry. Food Control 78:116–25. doi: 10.1016/j.foodcont.2017.02.053.
  • Ridgeway, M. E., M. Lubeck, J. Jordens, M. Mann, and M. A. Park. 2018. Trapped ion mobility spectrometry: a short review. International Journal of Mass Spectrometry 425:22–35. doi: 10.1016/j.ijms.2018.01.006.
  • Righetti, L., A. Bergmann, G. Galaverna, O. Rolfsson, G. Paglia, and C. Dall’Asta. 2018a. Ion mobility-derived collision cross section database: application to mycotoxin analysis. Analytica Chimica Acta. 1014:50–7. doi: 10.1016/j.aca.2018.01.047.
  • Righetti, L., M. Fenclova, L. Dellafiora, J. Hajslova, M. Stranska-Zachariasova, and C. Dall'asta. 2018b. High resolution-ion mobility mass spectrometry as an additional powerful tool for structural characterization of mycotoxin metabolites. Food Chemistry 245:768–74. doi: 10.1016/j.foodchem.2017.11.113.
  • Rodriguez-Maecker, R., E. Vyhmeister, S. Meisen, A. Rosales Martinez, A. Kuklya, and U. Telgheder. 2017. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. Analytical and Bioanalytical Chemistry 409:6595–603.
  • Rue, E. A., J. A. Glinski, V. B. Glinski, and R. B. Van Breemen. 2020. Ion mobility-mass spectrometry for the separation and analysis of procyanidins. Journal of Mass Spectrometry : JMS 55 (2):e4377 doi: 10.1002/jms.4377.
  • Ruzsanyi, V., J. I. Baumbach, and G. A. Eiceman. 2003. Detection of the mold markers using ion mobility spectrometry. International Journal for Ion Mobility Spectrometry 2:53–8.
  • Sadat, S. A. A., V. Ilbeigi, Y. Valadbeigi, and M. Soleimani. 2020. Determination of pesticides phosalone and diazinon in pistachio using ion mobility spectrometry. International Journal for Ion Mobility Spectrometry 23 (2):127–31. doi: 10.1007/s12127-020-00262-3.
  • Saei, A., A. Javadi, M. R. A. Mogaddam, H. Mirzaei, and M. Nemati. 2020. Determination of three antibiotic residues in hamburger and cow liver samples using deep eutectic solvents based pretreatment method coupled with ion mobility spectrometry. International Journal of Environmental Analytical Chemistry 1–15. doi: 10.1080/03067319.2020.1759564..
  • Šala, M., M. Lísa, J. L. Campbell, and M. Holčapek. 2016. Determination of triacylglycerol regioisomers using differential mobility spectrometry. Rapid Communications in Mass Spectrometry 30 (2):256–64. doi: 10.1002/rcm.7430.
  • Sanches Filho, P. J., A. Rios, M. Valcarcel, M. I. Melecchi, and E. B. Caramão. 2007. Method of determination of nitrosamines in sausages by CO2 supercritical fluid extraction (SFE) and micellar electrokinetic chromatography (MEKC). Journal of Agricultural and Food Chemistry 55 (3):603–7. doi: 10.1021/jf062382j.
  • Saraji, M., M. T. Jafari, and H. Sherafatmand. 2015. Sol-gel/nanoclay composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water samples . Analytical and Bioanalytical Chemistry 407 (4):1241–52. doi: 10.1007/s00216-014-8344-0.
  • Saraji, M., M. Jafari, and M. Mossaddegh. 2016a. Halloysite nanotubes–titanium dioxide as a solid–phase microextraction coating combined with negative corona discharge–ion mobility spectrometry for the determination of parathion. Analytica Chimica Acta 926:55–62. doi: 10.1016/j.aca.2016.04.034.
  • Saraji, M., M. T. Jafari, and M. Mossaddegh. 2016b. Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography-corona discharge ion mobility spectrometric detection. Journal of Chromatography A 1429:30–9. doi: 10.1016/j.chroma.2015.12.008.
  • Saraji, M., M. T. Jafari, and M. Mossaddegh. 2017. Chemically modified halloysite nanotubes as a solid-phase microextraction coating. Analytica Chimica Acta 964:85–95. doi: 10.1016/j.aca.2017.02.018.
  • Schulz, S., S. Wagner, S. Gerbig, H. Wachter, D. Sielaff, D. Bohn, and B. Spengler. 2015. DESI MS based screening method for phthalates in consumer goods. The Analyst 140 (10):3484–91. doi: 10.1039/c5an00338e.
  • Seçilmiş Canbay, H., and M. Doğanturk. 2019. Analysis of acrylamide in drinking water by SPE and GC–MS. Applied Water Science 9:42.
  • Seyed Khademi, S. M., U. Telgheder, Y. Valadbeigi, V. Ilbeigi, and M. Tabrizchi. 2019. Direct detection of glyphosate in drinking water using corona-discharge ion mobility spectrometry: a theoretical and experimental study. International Journal of Mass Spectrometry 442:29–34. doi: 10.1016/j.ijms.2019.05.002.
  • Sforza, S., C. Dall'asta, and R. Marchelli. 2006. Recent advances in mycotoxin determination in food and feed by hyphenated chromatographic techniques/mass spectrometry. Mass Spectrometry Reviews 25 (1):54–76. doi: 10.1002/mas.20052.
  • Shahdousti, P. and N. Alizadeh. 2011. Headspace-solid phase microextraction of selenium(IV) from human blood and water samples using polypyrrole film and analysis with ion mobility spectrometry. Analytica Chimica Acta 684:58–62.
  • Shakouri, A., H. Yazdanpanah, M. H. Shojaee, and F. Kobarfard. 2014. Method development for simultaneous determination of 41 pesticides in rice using LC-MS/MS technique and its application for the analysis of 60 rice samples collected from tehran market. Iranian Journal of Pharmaceutical Research: IJPR 13:927–35.
  • Shariatifar, N., F. Seilani, B. Jannat, S. Nazmara, and M. Arabameri. 2020. The concentration and health risk assessment of trace elements in commercial soft drinks from Iran marketed. International Journal of Environmental Analytical Chemistry 1–15. doi: 10.1080/03067319.2020.1784412..
  • Sheibani, A., M. Tabrizchi, and H. S. Ghaziaskar. 2008. Determination of aflatoxins B1 and B2 using ion mobility spectrometry. Talanta 75 (1):233–8. doi: 10.1016/j.talanta.2007.11.006.
  • Shuai, Q., L. Zhang, P. Li, Q. Zhang, X. Wang, X. Ding, and W. Zhang. 2014. Rapid adulteration detection for flaxseed oil using ion mobility spectrometry and chemometric methods. Analytical Methods 6 (24):9575–80. doi: 10.1039/C4AY02139H.
  • Shvartsburg, A. A., and R. D. Smith.2008. Fundamentals of traveling wave ion mobility spectrometry. Analytical Chemistry 80 (24):9689–99. doi: 10.1021/ac8016295.
  • Sielemann, S., J. I. Baumbach, and H. Schmidt. 2002. IMS with non radioactive ionization sources suitable to detect chemical warfare agent simulation substances. International Journal of Ion Mobility Spectrometry 5:143–8.
  • Snyder, A. P., C. S. Harden, D. M. Davis, D. B. Shoff, and W. M. Maswadeh. 1994. Hand-portable gas chromatography-ion mobility spectrometer for the determination of freshness of fish. In Proceedings of the third international workshop on ion mobility spectrometry. Galveston, Texas, USA. ed. J. T. James and T. F. Limero, 146–50.
  • Soares, R., P. Novo, A. Azevedo, P. Fernandes, M. Aires-Barros, V. Chu, and J. P. Conde. 2014. On-chip sample preparation and analyte quantification using a microfluidic aqueous two phase extraction coupled to an Immunoassay. Lab on a Chip 14 (21):4284–94. doi: 10.1039/C4LC00695J.
  • Steiner, W. E., B. H. Clowers, P. E. Haigh, and H. H. Hill. 2003. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry. Analytical Chemistry 75 (22):6068. doi: 10.1021/ac034349r.
  • Struwe, W. B., C. Baldauf, J. Hofmann, P. M. Rudd, and K. Pagel. 2016. Ion mobility separation of deprotonated oligosaccharide isomers—evidence for gas-phase charge migration. Chemical Communications 52 (83):12353–12356. doi: 10.1039/C6CC06247D.
  • Sun, N., Y. Shen, Q. Sun, X. R. Li, L. Q. Jia, G. J. Zhang, W. P. Zhang, Z. Chen, J. F. Fan, Y. P. Jiang, et al. 2009. Diagnosis and treatment of melamine-associated urinary calculus complicated with acute renal failure in infants and young children. Chinese Medical Journal 122 (3):245–51.
  • Sun, T., M. M. Ali, D. Wang, and Z. Du. 2020. On-site rapid screening of benzodiazepines in dietary supplements using pipette-tip micro-solid phase extraction coupled to ion mobility spectrometry. Journal of Chromatography A 1610:460547 doi: 10.1016/j.chroma.2019.460547.
  • Swedish National Food Agency, P. R. 2002. http://www.slv.se/engdefault.asp.
  • Tabrizchi, M. 2003. Thermal ionization ion mobility spectrometry of alkali salts. Analytical Chemistry 75 (13):3101–3106. doi: 10.1021/ac0263420.
  • Tam, M., P. Dutta, and J., H. H. Hill. 2008. Miniaturized ion mobility spectrometry. In Encyclopedia of microfluidics and nanofluidics. ed. D. Li, Boston, MA: Springer US.
  • Tang, Z.-S., X.-A. Zeng, M. A. Brennan, Z. Han, D. Niu, and Y. Huo. 2019. Characterization of aroma profile and characteristic aromas during lychee wine fermentation. Journal of Food Processing and Preservation 43 (8):e14003. doi: 10.1111/jfpp.14003.
  • Tejada-Casado, C., M. Hernandez-Mesa, F. Monteau, F. J. Lara, M. D. Olmo-Iruela, A. M. Garcia-Campana, B. Le Bizec, and G. Dervilly-Pinel. 2018. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043:52–63. doi: 10.1016/j.aca.2018.09.065.
  • Tittlemier, S., B.P.-Y. Lau, M.Cathie, C. Catherine, S. Melissa, G. Dean, X.-L. Cao, B. Dabeka. 2010. Baseline levels of melamine in food items sold in Canada. I. Dairy products and soy-based dairy replacement products. Food Additives & Contaminants. Part B, Surveillance 3:135–139.
  • Tu, J., Z. Zhou, T. Li, and Z.-J. Zhu. 2019. The emerging role of ion mobility-mass spectrometry in lipidomics to facilitate lipid separation and identification. TrAC Trends in Analytical Chemistry 116:332–339. doi: 10.1016/j.trac.2019.03.017.
  • Tuovinen, K., H. Paakkanen, and O. Hänninen. 2000. Detection of pesticides from liquid matrices by ion mobility spectrometry. Analytica Chimica Acta 404 (1):7–17. doi: 10.1016/S0003-2670(99)00697-2.
  • Tuovinen, K., M. Kolehmainen, and H. Paakkanen. 2001. Determination and identification of pesticides from liquid matrices using ion mobility spectrometry. Analytica Chimica Acta 429 (2):257–268. doi: 10.1016/S0003-2670(00)01290-3.
  • Tyan, Y. C., M. H. Yang, S. B. Jong, C. K. Wang, and J. Shiea. 2009. Melamine contamination. Analytical and Bioanalytical Chemistry 395 (3):729–35. doi: 10.1007/s00216-009-3009-0.
  • Tzing, S. H., and W. H. Ding. 2010. Determination of melamine and cyanuric acid in powdered milk using injection-port derivatization and gas chromatography-tandem mass spectrometry with furan chemical ionization. Journal of Chromatography A 1217 (40):6267–73. doi: 10.1016/j.chroma.2010.07.081.
  • Tzschoppe, M., H. Haase, M. Höhnisch, D. Jaros, and H. Rohm. 2016. Using ion mobility spectrometry for screening the autoxidation of peanuts. Food Control 64:17–21. doi: 10.1016/j.foodcont.2015.12.017.
  • Valadbeigi, Y., V. Ilbeigi, M. Vahidi, B. Michalczuk, S. Matejcik, and M. Tabrizchi. 2020. Online detection and measurement of elemental mercury vapor by ion mobility spectrometry with chloroform dopant. Journal of Chromatography A 1634:461676. doi: 10.1016/j.chroma.2020.461676.
  • Van Hoeck, E., T. De Schaetzen, C. Pacquet, F. Bolle, L. Boxus, and J. Van Loco. 2010. Analysis of benzophenone and 4-methylbenzophenone in breakfast cereals using ultrasonic extraction in combination with gas chromatography-tandem mass spectrometry (GC-MS(n)). Analytica Chimica Acta 663 (1):55–9. doi: 10.1016/j.aca.2010.01.044.
  • Vautz, W., and J. I. Baumbach. 2008. Analysis of bio-processes using ion mobility spectrometry. Engineering in Life Sciences 8 (1):19–25. doi: 10.1002/elsc.200720221.
  • Vautz, W., D. Zimmermann, M. Hartmann, J. I. Baumbach, J. Nolte, and J. Jung. 2006. Ion mobility spectrometry for food quality and safety. Food Additives and Contaminants 23 (11):1064–73. doi: 10.1080/02652030600889590.
  • Vautz, W., S. Sielemann, and J. I. Baumbach. 2004a. Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry. Analytica Chimica Acta 513 (2):393–399. doi: 10.1016/j.aca.2004.03.016.
  • Vautz, W., J. I. Baumbach, and R. Gesthuisen. 2004b. On-line control of polymerisation processes using ion mobility spectrometry. International Journal for Ion Mobility Spectrometry 7:7–10.
  • Venkatasami, G., and J. Sowa. 2010. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Analytica Chimica Acta 665 (2):227–30. doi: 10.1016/j.aca.2010.03.037.
  • Venter, P., M. Muller, J. Vestner, M. A. Stander, A. G. J. Tredoux, H. Pasch, and A. De Villiers. 2018a. Comprehensive three-dimensional LC × LC × ion mobility spectrometry separation combined with high-resolution ms for the analysis of complex samples. Analytical Chemistry 90 (19):11643–11650. doi: 10.1021/acs.analchem.8b03234.
  • Venter, P., M. Muller, J. Vestner, M. A. Stander, A. G. J. Tredoux, H. Pasch, and A. De Villiers. 2018b. Comprehensive three-dimensional LC × LC × ion mobility spectrometry separation combined with high-resolution MS for the analysis of complex samples . Analytical Chemistry 90 (19):11643–11650. doi: 10.1021/acs.analchem.8b03234.
  • Verkouteren, J., and J. Staymates. 2011. Reliability of ion mobility spectrometry for qualitative analysis of complex, multicomponent illicit drug samples. Forensic Science International 206 (1–3):190–6. doi: 10.1016/j.forsciint.2010.08.005.
  • Vilarinho, F., R. Sendón, A. Van Der Kellen, M. F. Vaz, and A. S. Silva. 2019. Bisphenol A in food as a result of its migration from food packaging. Trends in Food Science & Technology 91:33–65.
  • Walravens, J., H. Mikula, M. Rychlik, S. Asam, T. Devos, E. Njumbe Ediage, J. Diana Di Mavungu, L. Jacxsens, A. Van Landschoot, L. Vanhaecke, et al. 2016. Validated UPLC-MS/MS methods to quantitate free and conjugated alternaria toxins in commercially available tomato products and fruit and vegetable juices in Belgium. Journal of Agricultural and Food Chemistry 64 (24):5101–9. doi: 10.1021/acs.jafc.6b01029.
  • Wang, H., A. Zhang, W. Wang, M. Zhang, H. Liu, and X. Wang. 2013. Separation and determination of triclosan and bisphenol A in water, beverage, and urine samples by dispersive liquid-liquid microextraction combined with capillary zone electrophoresis-UV detection. Journal of AOAC International 96 (2):459–65. doi: 10.5740/jaoacint.10-402.
  • Wang, J., Z. Du, W. Yu, and S. Qu. 2012. Detection of seven pesticides in cucumbers using hollow fibre-based liquid-phase microextraction and ultra-high pressure liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A 1247:10–7. doi: 10.1016/j.chroma.2012.05.040.
  • Wang, J., Z. Zhang, Z. Du, and W. Sun. 2013. Development of a rapid detection method for seven pesticides in cucumber using hollow fiber liquid phase microextraction and ion mobility spectrometry. Analytical Methods 5 (23):6592–7. doi: 10.1039/c3ay40667a.
  • Wang, S., H. Chen, and B. Sun. 2020. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). ).Food Chemistry 315:126158 doi: 10.1016/j.foodchem.2019.126158.
  • Wang, X., K. M. Rogers, Y. Li, S. Yang, L. Chen, and J. Zhou. 2019a. Untargeted and targeted discrimination of honey collected by apis cerana and apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC-MS. Journal of Agricultural and Food Chemistry 67 (43):12144–12152. doi: 10.1021/acs.jafc.9b04438.
  • Wang, X., S. Yang, J. He, L. Chen, J. Zhang, Y. Jin, J. Zhou, and Y. Zhang. 2019b. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry. Food Research International (Ottawa, Ont.) 119:960–967. doi: 10.1016/j.foodres.2019.01.004.
  • Wang, Y., L. Shen, Z. Gong, J. Pan, X. Zheng, and J. Xue. 2019c. Analytical methods to analyze pesticides and herbicides. Water Environment Research : A Research Publication of the Water Environment Federation 91 (10):1009–1024. doi: 10.1002/wer.1167.
  • Weickhardt, C., N. Kaiser, and H. Borsdorf. 2012. Ion mobility spectrometry of laser desorbed pesticides from fruit surfaces. International Journal for Ion Mobility Spectrometry 15 (2):55–62. doi: 10.1007/s12127-012-0091-3.
  • Wenzl, T., D. Lachenmeier, and V. Gökmen. 2007. Analysis of heat-induced contaminants (acrylamide, chloropropanols and furan) in carbohydrate-rich food. Analytical and Bioanalytical Chemistry 389 (1):119–37. doi: 10.1007/s00216-007-1459-9.
  • Will, J. M., A. Behrens, M. Macke, C. D. Quarles, and U. Karst. 2021. Automated chiral analysis of amino acids based on chiral derivatization and trapped ion mobility–mass spectrometry. Analytical Chemistry 93 (2):878–885. doi: 10.1021/acs.analchem.0c03481.
  • Wu, C., J., H. H. Hill, and A. P. Gamerdinger. 1998. Electrospray ionization–Ion mobility spectrometry as a field monitoring method for the detection of atrazine in natural water. Field Analytical Chemistry & Technology 2:155–161.
  • Wu, H., J.-B. Guo, L.-M. Du, H. Tian, C.-X. Hao, Z.-F. Wang, and J.-Y. Wang. 2013. A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks, sugar- and gelatin-based confectionery by high-performance liquid chromatography. Food Chemistry 141 (1):182–186. doi: 10.1016/j.foodchem.2013.03.015.
  • Wu, M., W. Chen, G. Wang, P. He, and Q. Wang. 2016. Analysis of acrylamide in food products by microchip electrophoresis with on-line multiple-preconcentration techniques. Food Chemistry 209:154–161. doi: 10.1016/j.foodchem.2016.04.065.
  • Wu, Q., J.-Y. Wang, D.-Q. Han, and Z.-P. Yao. 2020. Recent advances in differentiation of isomers by ion mobility mass spectrometry. TrAC Trends in Analytical Chemistry 124:115801. doi: 10.1016/j.trac.2019.115801.
  • Wu, Q., K. Fan, W. Sha, H. Ruan, R. Zeng, and C. Shieh. 2009a. Highly sensitive detection of melamine based on reversed phase liquid chromatography mass spectrometry. Chinese Science Bulletin 54:732–737.
  • Wu, Y. T., C. M. Huang, C. C. Lin, W. A. Ho, L. C. Lin, T. F. Chiu, D. C. Tarng, C. H. Lin, and T. H. Tsai. 2009b. Determination of melamine in rat plasma, liver, kidney, spleen, bladder and brain by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1216 (44):7595–601. doi: 10.1016/j.chroma.2009.05.027.
  • Xia, J., N. Zhou, Y. Liu, B. Chen, Y. Wu, and S. Yao. 2010. Simultaneous determination of melamine and related compounds by capillary zone electrophoresis. Food Control. 21 (6):912–918. doi: 10.1016/j.foodcont.2009.12.009.
  • Xu, Z., J. Li, A. Chen, X. Ma, and S. Yang. 2018. A new retrospective, multi-evidence veterinary drug screening method using drift tube ion mobility mass spectrometry. Rapid Communications in Mass Spectrometry 32 (14):1141–1148. doi: 10.1002/rcm.8154.
  • Yang, H., L. Shi, X. Zhuang, R. Su, D. Wan, F. Song, J. Li, and S. Liu. 2016. Identification of structurally closely related monosaccharide and disaccharide isomers by PMP labeling in conjunction with IM-MS/MS. Scientific Reports 6:28079–28079. doi: 10.1038/srep28079.
  • Yang, L., J. Liu, X. Wang, R. Wang, F. Ren, Q. Zhang, Y. Shan, and S. Ding. 2019. Characterization of volatile component changes in jujube fruits during cold storage by using headspace-gas chromatography-ion mobility spectrometry. Molecules 24: 3904. doi: 10.3390/molecules24213904.
  • Yebra-Pimentel, I., R. Fernández-González, E. Martínez-Carballo, and J. Simal-Gándara. 2015. A critical review about the health risk assessment of PAHs and their metabolites in foods. Critical Reviews in Food Science and Nutrition 55 (10):1383–405. doi: 10.1080/10408398.2012.697497.
  • Yu, J., C. Zhang, P. Dai, and S. Ge. 2009. Highly selective molecular recognition and high throughput detection of melamine based on molecularly imprinted sol-gel film. Analytica Chimica Acta 651 (2):209–214. doi: 10.1016/j.aca.2009.08.018.
  • Zargar, T., T. Khayamian, and M. T. Jafari. 2017. Immobilized aptamer paper spray ionization source for ion mobility spectrometry. Journal of Pharmaceutical and Biomedical Analysis 132:232–237. doi: 10.1016/j.jpba.2016.10.014.
  • Zawilla, N. H., Mohammad, M. A. El Kousy, N. M. El-Moghazy, and Aly S. M. 2002. Determination of aceclofenac in bulk and pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis 27 (1-2):243–51. doi: 10.1016/s0731-7085(01)00518-0.
  • Zeng, H. J., R. Yang, Q. W. Wang, J. J. Li, and L. B. Qu. 2011. Determination of melamine by flow injection analysis based on chemiluminescence system. Food Chemistry 127 (2):842–6. doi: 10.1016/j.foodchem.2011.01.021.
  • Zhai, H., X. Yang, L. Li, G. Xia, J. Cen, H. Huang, and S. Hao. 2012. Biogenic amines in commercial fish and fish products sold in southern China. Food Control. 25 (1):303–308. doi: 10.1016/j.foodcont.2011.10.057.
  • Zhang, J.-S., Z.-L. Zhang, M.-Z. Yan, X.-M. Lin, and Y.-T. Chen. 2020. Gas chromatographic-ion mobility spectrometry combined with a multivariate analysis model exploring the characteristic changes of odor components during the processing of black sesame. Analytical Methods: Advancing Methods and Applications 12 (41):4987–4995. doi: 10.1039/d0ay01257b.
  • Zhang, L., Q. Shuai, P. Li, Q. Zhang, F. Ma, W. Zhang, and X. Ding. 2016a. Ion mobility spectrometry fingerprints: a rapid detection technology for adulteration of sesame oil. Food Chemistry 192:60–6. doi: 10.1016/j.foodchem.2015.06.096.
  • Zhang, L., Q. Shuai, P. Li, Q. Zhang, F. Ma, W. Zhang, and X. Ding. 2016b. Ion mobility spectrometry fingerprints: a rapid detection technology for adulteration of sesame oil. Food Chemistry 192:60–66. doi: 10.1016/j.foodchem.2015.06.096.
  • Zhao, W-j, Y. Wang, J. Li, L-f Li, Q. Wang, K. Han, Y. Zhang, X. Li, P. Li, J. Luo, et al. 2015. Determination of melamine in milk and dairy products by microchip-based high-field asymmetric ion mobility spectrometry combined with solid-phase extraction. Food Chemistry 188:489–495. doi: 10.1016/j.foodchem.2015.03.149.
  • Zhao, Y. Y., X. Liu, J. M. Boyd, F. Qin, J. Li, and X.-F. Li. 2009. Identification of N-Nitrosamines in Treated Drinking Water Using Nanoelectrospray Ionization High-Field Asymmetric Waveform Ion Mobility Spectrometry with Quadrupole Time-of-Flight Mass Spectrometry. Journal of Chromatographic Science 47 (1):92–6. doi: 10.1093/chromsci/47.1.92.
  • Zheng, X., K. T. Dupuis, N. A. Aly, Y. Zhou, F. B. Smith, K. Tang, R. D. Smith, and E. S. Baker. 2018. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Analytica Chimica Acta 1037:265–273. doi: 10.1016/j.aca.2018.02.054.
  • Zheng, X., R. Wojcik, X. Zhang, Y. M. Ibrahim, K. E. Burnum-Johnson, D. J. Orton, M. E. Monroe, R. J. Moore, R. D. Smith, and E. S. Baker. 2017. Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Annual Review of Analytical Chemistry (Palo Alto, Calif.) 10 (1):71–92. doi: 10.1146/annurev-anchem-061516-045212.
  • Zhou, J., J. Zhao, X. Xue, J. Zhang, F. Chen, Y. Li, L. Wu, C. Li, and J. Mi. 2009. Hydrophilic interaction chromatography/tandem mass spectrometry for the determination of melamine in royal jelly and royal jelly lyophilized powder. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 877 (32):4164–70. doi: 10.1016/j.jchromb.2009.11.002.
  • Zhou, R., X. Chen, Y. Xia, M. Chen, Y. Zhang, Q. Li, D. Zhen, and S. Fang. 2020. Research on the application of liquid-liquid extraction-gas chromatography-mass spectrometry (LLE-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) in distinguishing the Baiyunbian aged liquors. International Journal of Food Engineering doi: 10.1515/ijfe-2019-0382.
  • Zhou, Z., J. Tu, X. Xiong, X. Shen, and Z. J. Zhu. 2017. LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Analytical Chemistry 89 (17):9559–9566. doi: 10.1021/acs.analchem.7b02625.
  • Zou, N., C. Yuan, R. Chen, J. Yang, Y. Li, X. Li, and C. Pan. 2017. Study on mobility, distribution and rapid ion mobility spectrometry detection of seven pesticide residues in cucumber, apple, and cherry tomato. Journal of Agricultural and Food Chemistry 65 (1):182–189. doi: 10.1021/acs.jafc.6b03084.
  • Zou, N., C. Yuan, S. Liu, Y. Han, Y. Li, J. Zhang, X. Xu, X. Li, and C. Pan. 2016a. Coupling of multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction with pulse glow discharge-ion mobility spectrometry for analysis of triazine herbicides in water and soil samples. Journal of Chromatography A 1457:14–21. doi: 10.1016/j.chroma.2016.06.043.
  • Zou, N., K. Gu, S. Liu, Y. Hou, J. Zhang, X. Xu, X. Li, and C. Pan. 2016b. Rapid analysis of pesticide residues in drinking water samples by dispersive solid-phase extraction based on multiwalled carbon nanotubes and pulse glow discharge ion source ion mobility spectrometry. Journal of Separation Science 39 (6):1202–12. doi: 10.1002/jssc.201501258.
  • Zou, N., R. Chen, Y. Qin, S. Song, X. Tang, and C. Pan. 2016c. Comparison of pulse glow discharge-ion mobility spectrometry and liquid chromatography with tandem mass spectrometry based on multiplug filtration cleanup for the analysis of tricaine mesylate residues in fish and water. Journal of Separation Science 39 (18):3638–46. doi: 10.1002/jssc.201600614.diagnosis identifying the nature or cause of some phenomenon More (Definitions, Synonyms, Translation)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.