734
Views
7
CrossRef citations to date
0
Altmetric
Reviews

The potential application of supercritical CO2 in microbial inactivation of food raw materials and products

ORCID Icon, , ORCID Icon, , , , & show all

References

  • Ballestra, P., A. A. Silva, and J. L. Cuq. 1996. Inactivation of Escherichia coli by carbon dioxide under pressure. Journal of Food Science 61 (4):829–31. doi: 10.1111/j.1365-2621.1996.tb12212.x.
  • Benedito, J., C. Ortuño, R. I. Castillo-Zamudio, and A. Mulet. 2015. Microbial inactivation by ultrasound assisted supercritical fluids. Physics Procedia 70:824–27. doi: 10.1016/j.phpro.2015.08.168.
  • Bernhardt, A., M. Wehrl, B. Paul, T. Hochmuth, M. Schumacher, K. Schütz, and M. Gelinsky. 2015. Improved sterilization of sensitive biomaterials with supercritical carbon dioxide at low temperature. PLoS One 10 (6):e0129205–19. doi: 10.1371/journal.pone.0129205.
  • Bertoloni, G., A. Bertucco, V. De Cian, and T. Parton. 2006. A study on the inactivation of micro-organisms and enzymes by high pressure CO2. Biotechnology and Bioengineering 95 (1):155–60. doi: 10.1002/bit.21006.
  • Boannaillie, L. M., and P. M. Tomasula. 2015.  Carbon dioxide: An alternative processing method for milk. In Emerging dairy processing technologies: Opportunities for dairy industry, ed. N. Datta and P. M. Tomasula, 20–80. John Wiley & Sons, Ltd.
  • Bothun, G. D., B. L. Knutson, H. J. Strobel, S. E. Nokes. 2005. Liposome fluidization and melting point depression by pressurized CO2 determined by fluorescence anisotropy. Langmuir 21:530–536. doi: 10.1021/la0496542.
  • Cappelletti, M., G. Ferrentino, and S. Spilimbergo. 2015. High pressure carbon dioxide on pork raw meat: Inactivation of mesophilic bacteria and effects on colour properties. Journal of Food Engineering 156:55–58. doi: 10.1016/j.jfoodeng.2015.02.009.
  • Checinska, A., A. Paszczynski, and M. Burbank. 2015. Bacillus and other spore-forming genera: Variations in responses and mechanisms for survival. Annual Review of Food Science and Technology 6:351–69. doi: 10.1146/annurev-food-030713-092332.
  • Chen, Y. Y., F. Temelli, and M. G. Gänzle. 2017. Mechanisms of inactivation of dry Escherichia coli by high-pressure carbon dioxide. Applied and Environmental Microbiology 83 (10):1–10. doi: 10.1128/AEM.00062-1.
  • Cuppini, M., J. Zeni, J. Barbosa, E. Franceschi, G. Toniazzo, and R. L. Cansian. 2017. Inactivation of Staphylococcus aureus in raw salmon with supercritical CO2 using experimental design. Food Science and Technology 36 (suppl 1):8–11. doi: 10.1590/1678-457x.0038.
  • Damar, S., M. O. Balaban, and C. A. Sims. 2009. Continuous dense-phase CO2 processing of a coconut water beverage. International Journal of Food Science & Technology 44 (4):666–73. doi: 10.1111/j.1365-2621.2008.01784.x.
  • Daniels, J. A., R. Krishnamurthi, and S. S. H. Rizvi. 1985. A review of effects of carbon dioxide on microbial growth and food quality. Journal of Food Protection 48 (6):532–37. doi: 10.4315/0362-028X-48.6.532.
  • Devlieghere, F., L. Vermeiren, and J. Debevere. 2004. New preservation technologies: Possibilities and limitations. International Dairy Journal 14 (4):273–85. doi: 10.1016/j.idairyj.2003.07.002.
  • Dillow, A. K., F. Dehghani, J. S. Hrkach, N. R. Foster, and R. Langer. 1999. Bacterial inactivation by using near- and supercritical carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America 96 (18):10344–48. doi: 10.1073/pnas.96.18.10344.
  • Dominguez, D. C. 2004. Calcium signalling in bacteria. Molecular Microbiology 54 (2):291–97. doi: 10.1111/j.1365-2958.2004.04276.x.
  • Duan, Z., and R. Sun. 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar Chemical Geology. Chemical Geology 193 (3-4):257–71. . (02)00263-2 doi: 10.1016/S0009-2541(02)00263-2.
  • Ebara, M., Y. Kotsuchibashi, R. Narain, N. Idota, Y.-J. Kim, J. M. Hoffman, K. Uto, and T. Aoyagi. 2004. Smart biomaterials. Tokyo, Japan: Springer.
  • Efaq, A. N., N. N. N. A. Rahman, H. Nagao, A. A. Al-Gheethi, M. Shahadat, and M. O. A. Kadir. 2014. Supercritical carbon dioxide as non-thermal alternative technology for safe handling of clinical wastes. Environmental Processes 2 (4):797–822. doi: 10.1007/s40710-015-0116-0.
  • Erkmen, O. 1997. Antimicrobial effect of pressurized carbon dioxide on Staphylococcus aureus in broth and milk. LWT - Food Science and Technology 30 (8):826–29. doi: 10.1006/fstl.1997.0277.
  • Estrada-Girón, Y., B. G. Swanson, and G. V. Barbosa-Cánovas. 2005. Advances in the use of high hydrostatic pressure for processing cereal grains and legumes. Trends in Food Science & Technology 16 (5):194–203. doi: 10.1016/j.tifs.2004.10.005.
  • Fabroni, S., M. Amenta, N. Timpanaro, and P. Rapisarda. 2010. Supercritical carbon dioxide-treated blood orange juice as a new product in the fresh fruit juice market. Innovative Food Science & Emerging Technologies 11 (3):477–84. doi: 10.1016/j.ifset.2010.02.004.
  • Ferrentino, G., D. Komes, and S. Spilimbergo. 2015. High-power ultrasound assisted high pressure carbon dioxide pasteurization of fresh-cut coconut: A microbial and physicochemical study. Food and Bioprocess Technology 8 (12):2368–82. doi: 10.1007/s11947-015-1582-0.
  • Fleury, C., R. Savoire, C. Harscoat-Schiavo, A. Hadj-Sassi, and P. Subra-Paternault. 2018. Optimization of supercritical CO2 process to pasteurize dietary supplement: Influencing factors and CO2 transfer approach. The Journal of Supercritical Fluids 141:240–51. doi: 10.1016/j.supflu.2018.01.009.
  • Fricks, A. T., D. P. B. Souza, E. G. Oestreicher, O. A. C. Antunes, J. S. Girardi, D. Oliveira, and C. Dariva. 2006. Evaluation of radish (Raphanus sativus L.) peroxidase activity after high-pressure treatment with carbon dioxide. The Journal of Supercritical Fluids 38 (3):347–53. doi: 10.1016/j.supflu.2005.11.019.
  • Furukawa, S., T. Watanabe, T. Koyama, J. Hirata, N. Narisawa, H. Ogihara, and M. Yamasaki. 2009. Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment. Food Control 20 (1):53–58. doi: 10.1016/j.foodcont.2008.02.002.
  • Garcia-Gonzalez, L., A. H. Geeraerd, K. Elst, L. Van Ginneken, J. F. Van Impe, and F. Devlieghere. 2009. Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms. International Journal of Food Microbiology 129 (3):253–63. doi: 10.1016/j.ijfoodmicro.2008.12.005.
  • Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., Van Impe, J. F., and Devlieghere, F. 2007. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117:1–28. doi: 10.1016/j.ijfoodmicro.2007.02.018.
  • Giulitti, S., C. Cinquemani, and S. Spilimbergo. 2011. High pressure gases: Role of dynamic intracellular pH in pasteurization. Biotechnology and Bioengineering 108 (5):1211–14. doi: 10.1002/bit.23019.
  • González-Alonso, V., M. Cappelletti, F. Bertolini, G. Lomolino, A. Zambon, and S. Spilimbergo. 2020. Research note: Microbial inactivation of raw chicken meat by supercritical carbon dioxide treatment alone and in combination with fresh culinary herbs. Poultry Science 99 (1):536–45. doi: 10.3382/ps/pez563.
  • Hong, S. I., and Y. R. Pyun. 2001. Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. International Journal of Food Microbiology 63 (1-2):19–28. . (00)00393-7 doi: 10.1016/S0168-1605(00)00393-7.
  • Hong, S.-I., and Y. R. Pyun. 1999. Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. Journal of Food Science 64 (4):728–33. doi: 10.1111/j.1365-2621.1999.tb15120.x.
  • Hong, S.-I., W.-S. Park, and Y.-R. Pyun. 1997. Inactivation of Lactobacillus sp. from kimchi by high pressure carbon dioxide. LWT - Food Science and Technology 30 (7):681–85. doi: 10.1006/fstl.1997.0250.
  • Hossain, M. S., N. N. Nik Ab Rahman, V. Balakrishnan, A. F. M. Alkarkhi, Z. Ahmad Rajion, and M. O. Ab Kadir. 2015a. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology. Waste Management (New York, N.Y.) 38:462–73. doi: 10.1016/j.wasman.2015.01.003.
  • Hossain, M. S., N. N. Nik Ab Rahman, V. Balakrishnan, Z. A. Rajion, and M. O. A. Kadir. 2015b. Mathematical modeling of Enterococcus faecalis, Escherichia coli, and Bacillus sphaericus inactivation in infectious clinical solid waste by using steam autoclaving and supercritical fluid carbon dioxide sterilization. Chemical Engineering Journal 267:221–34. doi: 10.1016/j.cej.2014.07.097.
  • Hu, W., L. Zhou, Z. Xu, Y. Zhang, and X. Liao. 2013. Enzyme inactivation in food processing using high pressure carbon dioxide technology. Critical Reviews in Food Science and Nutrition 53 (2):145–61. doi: 10.1080/10408398.2010.526258.
  • Huang, S., B. Liu, D. Ge, and J. Dai. 2017. Effect of combined treatment with supercritical CO2 and rosemary on microbiological and physicochemical properties of ground pork stored at 4 °C. Meat Science 125:114–20. doi: 10.1016/j.meatsci.2016.11.022.
  • Hutkins, R. W., and N. L. Nannen. 1993. pH homeostasis in lactic acid bacteria. Journal of Dairy Science 76 (8):2354–65. . (93)77573-6 doi: 10.3168/jds.S0022-0302(93)77573-6.
  • Ishikawa, H., M. Shimoda, K. Tamaya, A. Yonekura, T. Kawano, and Y. Osajima. 1997. Inactivation of Bacillus spores by the supercritical carbon dioxide micro-bubble method. Bioscience, Biotechnology, and Biochemistry 61 (6):1022–23. doi: 10.1271/bbb.61.1022.
  • Jones, R. P., and P. F. Greenfield. 1982. Effect of carbon dioxide on yeast growth and fermentation. Enzyme and Microbial Technology 4 (4):210–23. . (82)90034-5 doi: 10.1016/0141-0229(82)90034-5.
  • Kamihira, M., M. Taniguchi, and T. Kobayashi. 1987. Sterilization of microorganisms with supercritical carbon dioxide. Agricultural and Biological Chemistry 51 (2):407–12. doi: 10.1080/00021369.1987.10868053.
  • Kim, S. R., H. J. Park, D. S. Yim, H. T. Kim, I. G. Choi, and K. H. Kim. 2008. Analysis of survival rates and cellular fatty acid profiles of Listeria monocytogenes treated with supercritical carbon dioxide under the influence of cosolvents. Journal of Microbiological Methods 75 (1):47–54. doi: 10.1016/j.mimet.2008.04.012.
  • Kim, S. R., M. S. Rhee, B. C. Kim, and K. H. Kim. 2007. Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide. International Journal of Food Microbiology 118 (1):52–61. doi: 10.1016/j.ijfoodmicro.2007.05.014.
  • Kim, S. R., M. S. Rhee, B. C. Kim, H. Lee, and K. H. Kim. 2007. Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphate-buffered saline. Journal of Microbiological Methods 70 (1):132–41. doi: 10.1016/j.mimet.2007.04.003.
  • Koubaa, M., H. Mhemdi, and J. Fages. 2018. Recovery of valuable components and inactivating microorganisms in the agro-food industry with ultrasound-assisted supercritical fluid technology. The Journal of Supercritical Fluids 134:71–79. doi: 10.1016/j.supflu.2017.12.012.
  • Kumagai, H., C. Hata, and K. Nakamura. 1997. CO2 sorption by microbial cells and sterilization by high-pressure CO2, Bioscience. Biotechnology, and Biochemistry 61 (6):931–35. doi: 10.1271/bbb.61.931.
  • Kustyawati, M. E., F. Pratama, D. Saputra, and A. Wijaya. 2018. Viability of molds and bacteria in tempeh processed with supercritical carbon dioxides during storage. International Journal of Food Science 2018:8591015–17. doi: 10.1155/2018/8591015.
  • Lehotay, S. J., and A. Valverde-García. 1997. Evaluation of different solid-phase traps for automated collection and clean-up in the analysis of multiple pesticides in fruits and vegetables after supercritical fluid extraction. Journal of Chromatography A 765 (1):69–84. . (96)00846-1 doi: 10.1016/S0021-9673(96)00846-1.
  • Lin, H.-M., N. J. Cao, and L.-F. Chen. 1994. Antimicrobial effect of pressurized carbon dioxide on Listeria monocytogenes. Journal of Food Science 59 (3):657–59. doi: 10.1111/j.1365-2621.1994.tb05587.x.
  • Lin, H.-M., Z. Y. Yang, and L.-F. Chen. 1992. Inactivation of Saccharomyces cerevisiae by supercritical and subcritical carbon dioxide. Biotechnology Progress 8 (5):458–61. doi: 10.1021/bp00017a013.
  • Lin, H.-M., Z. Y. Yang, and L.-F. Chen. 1993. Inactivation of Leuconostoc dextranicum with carbon dioxide under pressure. The Chemical Engineering Journal 52 (1):B29–B34. . (93)80047-R doi: 10.1016/0300-9467(93)80047-R.
  • Lopes, R. P., M. J. Mota, A. M. Gomes, I. Delgadillo, and J. A. Saraiva. 2018. Application of high pressure with homogenization, temperature, carbon dioxide, and cold plasma for the inactivation of bacterial spores: A review. Comprehensive Reviews in Food Science and Food Safety 17 (3):532–55. doi: 10.1111/1541-4337.12311.
  • Lucien, F. P., and N. R. Foster. 1999. Phase behavior and solubility. In Chemical synthesis using supercritical fluids, ed. P. G. Jessop and W. Leitner, 37–53. Weinheim: Wiley-VCH. doi: 10.1002/9783527613687.ch2.
  • Matsubara, M., Y. Nakato, and E. Kondo. 2021. Enhancing resistant starch content in brown rice using supercritical carbon dioxide processing. Journal of Food Process Engineering 44 (2). doi:10.1111/jfpe.13617.
  • Meloni, D. 2019. High-Hydrostatic-Pressure (HHP) processing technology as a novel control method for Listeria monocytogenes occurrence in Mediterranean style dry fermented sausages. Foods 8 (12):672. doi: 10.3390/foods8120672.
  • Messens, W., J. Van Camp, and A. Huyghebaert. 1997. The use of high pressure to modify the functionality of food proteins. Trends in Food Science & Technology 8:107e112. doi: 10.1016/S0924-2244(97)01015-7.
  • Ortuño, C., A. Quiles, and J. Benedito. 2014. Inactivation kinetics and cell morphology of E. coli and S. cerevisiae treated with ultrasound-assisted supercritical CO2. Food Research International 62:955–64. doi: 10.1016/j.foodres.2014.05.012.
  • Ortuño, C., M. Balaban, and J. Benedito. 2014. Modelling of the inactivation kinetics of Escherichia coli, Saccharomyces cerevisiae and pectin methylesterase in orange juice treated with ultrasonic-assisted supercritical carbon dioxide. The Journal of Supercritical Fluids 90:18–26. doi: 10.1016/j.supflu.2014.03.004.
  • Ortuño, C., M. T. Martínez-Pastor, A. Mulet, and J. Benedito. 2012. An ultrasound-enhanced system for microbial inactivation using supercritical carbon dioxide. Innovative Food Science & Emerging Technologies 15:31–37. doi: 10.1016/j.ifset.2012.02.006.
  • Paniagua-Martínez, I., A. Mulet, M. A. García-Alvarado, and J. Benedito. 2018. Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality. Innovative Food Science & Emerging Technologies 47:362–70. doi: 10.1016/j.ifset.2018.03.024.
  • Park, H. S., H. J. Choi, and K. H. Kim. 2013. Effect of supercritical CO2 modified with water cosolvent on the sterilization of fungal spore‐contaminated barley seeds and the germination of barley seeds. Journal of Food Safety 33 (1):94–101. doi: 10.1111/jfs.12027.
  • Park, H. S., H. J. Choi, M. D. Kim, and K. H. Kim. 2013. Addition of ethanol to supercritical carbon dioxide enhances the inactivation of bacterial spores in the biofilm of Bacillus cereus. International Journal of Food Microbiology 166 (2):207–12. doi: 10.1016/j.ijfoodmicro.2013.07.015.
  • Park, H. S., Y. H. Lee, W. Kim, H. J. Choi, and K. H. Kim. 2012. Disinfection of wheat grains contaminated with Penicillium oxalicum spores by a supercritical carbon dioxide-water cosolvent system. International Journal of Food Microbiology 156 (3):239–44. doi: 10.1016/j.ijfoodmicro.2013.07.015.
  • Perrut, M. 2012. Sterilization and virus inactivation by supercritical fluids (a review). The Journal of Supercritical Fluids 66:359–71. doi: 10.1016/j.supflu.2011.07.007.
  • Picart-Palmade, L., C. Cunault, D. Chevalier-Lucia, M.-P. Belleville, and S. Marchesseau. 2019. Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Frontiers in Nutrition 5:130. doi: 10.3389/fnut.2018.00130.
  • Porębska, I., B. Sokołowska, S. Skąpska, and S. J. Rzoska. 2017. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control 73:24–30. doi: 10.1016/j.foodcont.2016.06.005.
  • Postollec, F., A.-G. Mathot, M. Bernard, M.-L. Divanac'h, S. Pavan, and D. Sohier. 2012. Tracking spore-forming bacteria in food: From natural biodiversity to selection by processes. International Journal of Food Microbiology 158 (1):1–8. doi: 10.1016/j.ijfoodmicro.2012.03.004.
  • Qiu, Q.-Q., P. Leamy, J. Brittingham, J. Pomerleau, N. Kabaria, and J. Connor. 2009. Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant. Journal of Biomedical Materials Research. Part B, Applied Biomaterials 91 (2):572–78. doi: 10.1002/jbm.b.31431.
  • Qiu, Q.-Q., W.-Q. Sun, and J. Connor. 2011. Sterilization of biomaterials of synthetic and biological origin. In Comprehensive biomaterials, ed. P. Ducheyne, 1st ed., 127–44. Amsterdam: Elsevier Ltd.
  • Rao, L., F. Zhao, Y. Wang, F. Chen, X. Hu, and X. Liao. 2016. Investigating the inactivation mechanism of Bacillus subtilis spores by high pressure CO2. Frontiers in Microbiology 7:1411. doi: 10.3389/fmicb.2016.01411.
  • Rao, L., X. Bi, F. Zhao, J. Wu, X. Hu, and X. Lia. 2016. Effect of high-pressure CO2 processing on bacterial spores. Critical Reviews in Food Science and Nutrition 56 (11):1808–25. doi: 10.1080/10408398.2013.787385.
  • Rao, L., Y. Wang, F. Chen, and X. Liao. 2016. The synergistic effect of high pressure CO2 and nisin on inactivation of Bacillus subtilis spores in aqueous solutions. Frontiers in Microbiology 7:1507. doi: 10.3389/fmicb.2016.01507.
  • Rawson, A., B. K. Tiwari, N. Brunton, C. Brennan, P. J. Cullen, and C. P. O'Donnell. 2012. Application of supercritical carbon dioxide to fruit and vegetables: Extraction, processing, and preservation. Food Reviews International 28 (3):253–76. doi: 10.1080/87559129.2011.635389.
  • Razgonova, M. P., T. K. Kalenik, V. V. Veselov, A. M. Zakharenko, A. Taghizadehghalehjoughi, V. Vita, F. Barbuceanu, B. N. Izotov, A. K. Stratidakis, A. M. Tsatsakis, et al. 2019. Supercritical green technologies for obtaining ginsenosides from Far-Eastern wild Panax ginseng C.A. Meyer using SFE for applying in drug, food and cosmetic industries. Farmacia 67 (1):81–91. doi: 10.31925/farmacia.2019.1.11.
  • Ribeiro, N., G. Soares, V. Santos-Rosales, A. Concheiro, C. Alvarez-Lorenzo, C. A. García-González, and A. L. Oliveira. 2019. A new era for sterilization based on supercritical CO2 technology. Journal of Biomedical Materials Research Part B: Applied Biomaterials 108 (2):399–30. doi: 10.1002/jbm.b.34398.
  • Rissato, S., M. S. Galhianea, A. G. Souza, and B. M. Aponc. 2004. Supercritical fluid extraction method for simultaneous determination of organophosphorus, organologen and pyretroids pesticides in fruit and vegetable and its comparison with a conventional method by GC-ECD and GC–MS. Journal of Brazilian Chemical Society 16 (5):153–39. doi: http://dx.doi.org/10.1590/S0103-50532005000600022.
  • Sara, S.,. C. Martina, and F. Giovanna. 2014. High pressure carbon dioxide combined with high power ultrasound processing of dry cured ham spiked with Listeria monocytogenes. Food Research International 66:264–73. doi: 10.1016/j.foodres.2014.09.024.
  • Sartori, R. B., M. L. Higino, L. H. P. Bastos, and M. F. Mendes. 2017. Supercritical extraction of pesticides from banana: Experimental and modeling. The Journal of Supercritical Fluids 128:149–15. doi: 10.1016/j.supflu.2017.05.027.
  • Setlow, B., G. Korza, K. M. S. Blatt, J. P. Fey, and P. Setlow. 2016. Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid. Journal of Applied Microbiology 120 (1):57–69. doi: 10.1111/jam.12995.
  • Silva, E. K., V. O. Alvarenga, M. A. Bargas, A. S. Sant'Ana, and M. A. A. Meireles. 2018. Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters. The Journal of Supercritical Fluids 139:97–104. doi: 10.1016/j.supflu.2018.05.013.
  • Silva, J. M., A. A. Rigo, I. A. Dalmolin, I. Debien, R. L. Cansian, J. V. Oliveira, and M. A. Mazutti. 2013. Effect of pressure, depressurization rate and pressure cycling on the inactivation of Escherichia coli by supercritical carbon dioxide. Food Control 29 (1):76–81. doi: 10.1016/j.foodcont.2012.05.068.
  • Sirisee, U., F. Hsieh, and H. Huff. 1998. Microbial safety of supercritical carbon dioxide processes. Journal of Food Processing and Preservation 22 (5):387–403. doi: 10.1111/j.1745-4549.1998.tb00358.x.
  • Smelt, J., and G. Rijke. 1992.  High pressure treatment as a tool for pasteurization of foods. In High pressure biotechnology, ed. C. Balny, K. Hayashi, K. Heremens, and P. Masson, 53–72. Montrouge, France: Colloque INSERM/John Libey Eurotext Ltd.
  • Soares, G. C., D. A. Learmonth, M. C. Vallejo, S. P. Davila, P. González, R. A. Sousa, and A. L. Oliveira. 2019. Supercritical CO2 technology: The next standard sterilization technique? Materials Science & Engineering. C, Materials for Biological Applications 99:520–40. doi: 10.1016/j.msec.2019.01.121.
  • Spilimbergo, S. 2002. A study about the effect of dense CO2 on microorganisms. PhD diss., University of Padova, Italy.
  • Spilimbergo, S., A. Bertucco, F. M. Lauro, and G. Bertoloni. 2003. Inactivation of Bacillus subtilis spores by supercritical CO2 treatment. Innovative Food Science & Emerging Technologies 4 (2):161–65. . doi: 10.1016/S1466-8564(02)00089-9.
  • Spilimbergo, S., and A. Bertucco. 2003. Non-thermal bacterial inactivation with dense CO(2). Biotechnology and Bioengineering 84 (6):627–38. doi: 10.1002/bit.10783.
  • Spilimbergo, S., N. Elvassore, and A. Bertucco. 2002. Microbial inactivation by high-pressure. The Journal of Supercritical Fluids 22 (1):55–63. . (01)00106-1 doi: 10.1016/S0896-8446(01)00106-1.
  • Stecchini, M. L., M. Del Torre, and P. Polese. 2013. Survival strategies of Bacillus spores in food. Indian Journal of Experimental Biology 51 (11):905–9.
  • Valley, G., and L. F. Rettger. 1927. The influence of carbon dioxide on bacteria. Journal of Bacteriology 14 (2):101–37. doi: 10.1128/JB.14.2.101-137.1927.
  • Vo, H. T., T. Imai, T. T. Ho, M. Sekine, A. Kanno, T. Higuchi, K. Yamamoto, and H. Yamamoto. 2014. Inactivation effect of pressurized carbon dioxide on bacteriophage Qβ and ΦX174 as a novel disinfectant for water treatment. Journal of Environmental Sciences 26 (6):1301–6. . (13)60603-8 doi: 10.1016/S1001-0742(13)60603-8.
  • Wan, R., Y. G. Chen, X. Zheng, Y. L. Su, and M. Li. 2016. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption. Environmental Science & Technology 50 (18):9915–22. doi: 10.1021/acs.est.5b05850.
  • Watanabe, T., S. Furukawa, J. Hirata, T. Koyama, H. Ogihara, and M. Yamasaki. 2003. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment. Applied and Environmental Microbiology 69 (12):7124–29. doi: 10.1128/aem.69.12.7124-7129.2003.
  • Watanabe, T., S. Furukawa, T. Kawarai, M. Wachi, H. Ogihara, and M. Yamasaki. 2007. Cytoplasmic acidification may occur in high-pressure carbon dioxide-treated Escherichia coli K12. Bioscience, Biotechnology, and Biochemistry 71 (10):2522–26. doi: 10.1271/bbb.70313.
  • Wei, C. I., M. O. Balaban, S. Y. Fernando, and A. J. Peplow. 1991. Bacterial effect of high pressure CO2 treatment on foods spiked with Listeria or Salmonella. Journal of Food Protection 54 (3):189–93. doi: 10.4315/0362-028X-54.3.189.
  • Werner, B. G., and J. H. Hotchkiss. 2006. Continuous flow nonthermal CO2 processing: The lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk. Journal of Dairy Science 89 (3):872–81. . (06)72151-8 doi: 10.3168/jds.S0022-0302(06)72151-8.
  • Wrona, O., K. Rafińska, C. Możeński, and B. Buszewski. 2017. Supercritical fluid extraction of bioactive compounds from plant materials. Journal of AOAC International 100 (6):1624–35. doi: 10.5740/jaoacint.17-0232.
  • Wrona, O., K. Rafińska, C. Możeński, and B. Buszewski. 2018. Supercritical fluid extraction as a technique for isolation of biologically active compounds from plant material of industrial importance. Przemysł Chemiczny 97:1246–52. doi: 10.15199/62.2018.8.3.
  • Wrona, O., K. Rafińska, C. Możeński, and B. Buszewski. 2019a. Optimization and upscaling of the supercritical carbon dioxide extraction of Solidago gigantea Ait. of an industrial relevance. Industrial Crops and Products 142:111787. doi: 10.1016/j.indcrop.2019.111787.
  • Wrona, O., K. Rafińska, C. Możeński, and B. Buszewski. 2019b. Supercritical carbon dioxide extraction of Solidago gigantea Ait.: optimization at quarter-technical scale and scale up the process to half-technical plant. Industrial Crops and Products 130:316–24. doi: 10.1016/j.indcrop.2018.12.050.
  • Xu, F., X. Feng, X. Sui, H. Lin, and Y. Han. 2017. Inactivation mechanism of Vibrio parahaemolyticus via supercritical carbon dioxide treatment. Food Research International 100:282–88. doi: 10.1016/j.foodres.2017.08.038.
  • Yao, C. Y., X. D. Li, W. W. Bi, and C. Jiang. 2014. Relationship between membrane damage, leakage of intracellular compounds, and inactivation of Escherichia coli treated by pressurized CO2. Journal of Basic Microbiology 54 (8):858–65. doi: 10.1002/jobm.201200640.
  • Yousefi, M., M. Rahimi-Nasrabadi, S. Mirsadeghi, and S. M. Pourmortazavi. 2020. Supercritical Fluid Extraction of Pesticides and Insecticides from Food Samples and Plant Materials. Critical Reviews in Analytical Chemistry :1–20. doi:10.1080/10408347.2020.1743965. PMC: 32295402
  • Zambon, A., F. Michelino, S. Bourdoux, F. Devlieghere, S. Sut, S. Dall’Acqua, A. Rajkovic, and S. Spilimbergo. 2018. Microbial inactivation efficiency of supercritical CO2 drying process. Drying Technology 36 (16):2016–21. doi: 10.1080/07373937.2018.1433683.
  • Zambon, A., S. Bourdoux, M. F. Pantanoc, N. M. Pugno, F. Boldrin, G. Hofland, A. Rajkovic, F. Devlieghere, and S. Spilimbergo. 2019. Supercritical CO2 for the drying and microbial inactivation of apple’s slices. Drying Technology 39 (2): 259–267. doi: 10.1080/07373937.2019.1676774.
  • Zhang, J., N. Dalal, C. Gleason, M. A. Matthews, L. N. Waller, K. F. Fox, A. Fox, M. J. Drews, M. LaBerge, and Y. H. An. 2006. On the mechanisms of deactivation of Bacillus atrophaeus spores using supercritical carbon dioxide. The Journal of Supercritical Fluids 38 (2):268–73. doi: 10.1016/j.supflu.2006.02.015.
  • Zhang, J., N. Dalal, M. A. Matthews, L. N. Waller, C. Saunders, K. F. Fox, and A. Fox. 2007. Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis. Journal of Microbiological Methods 70 (3):442–51. doi: 10.1016/j.mimet.2007.05.019.
  • Zhang, J., S. Burrows, C. Gleason, M. A. Matthews, M. J. Drews, M. Laberge, and Y. H. An. 2006. Sterilizing Bacillus pumilus spores using supercritical carbon dioxide. Journal of Microbiological Methods 66 (3):479–85. doi: 10.1016/j.mimet.2006.01.012.
  • Zhang, J., T. A. Davis, M. A. Matthews, M. J. Drews, M. LaBerge, and Y. H. An. 2006. Sterilization using high-pressure carbon dioxide. The Journal of Supercritical Fluids 38 (3):354–72. doi: 10.1016/j.supflu.2005.05.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.