9,270
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Mechanisms of umami taste perception: From molecular level to brain imaging

, , , , & ORCID Icon

References

  • Autzen, H. E., A. G. Myasnikov, M. G. Campbell, D. Asarnow, D. Julius, and Y. F. Cheng. 2018. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359 (6372):228–32. doi: 10.1126/science.aar4510.
  • Kalyanasundar, B., G. D. Blonde, A. C. Spector, and S. P. Travers. 2020. Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract of type 1 taste receptor double-knockout mice. Journal of Neurophysiology 123 (2):843–59. doi:10.1152/jn.00584.2019.
  • Baryłko-Pikielna, N., and E. Kostyra. 2007. Sensory interaction of umami substances with model food matrices and its hedonic effect. Food Quality and Preference 18 (5):751–8. doi: 10.1016/j.foodqual.2007.01.002.
  • Baylis, L. L., and E. T. Rolls. 1991. Responses of neurons in the primate taste cortex to glutamate. Physiology & Behavior 49 (5):973–9. doi: 10.1016/0031-9384(91)90210-f.
  • Bellisle, F. 2008. Experimental studies of food choices and palatability responses in European subjects exposed to the Umami taste. Asia Pacific Journal of Clinical Nutrition 17 (Suppl 1):376–9.
  • Blonde, G. D., and A. C. Spector. 2017. An examination of the role of L-glutamate and inosine 5'-monophosphate in hedonic taste-guided behavior by mice lacking the T1R1 + T1R3 receptor. Chemical Senses 42 (5):393–404. doi: 10.1093/chemse/bjx015.
  • Blonde, G. D., S. P. Travers, and A. C. Spector. 2018. Taste sensitivity to a mixture of monosodium glutamate and inosine 5'-monophosphate by mice lacking both subunits of the T1R1 + T1R3 amino acid receptor. American Journal of Physiology 314:R802–R810.
  • Cao, E., M. F. Liao, Y. F. Cheng, and D. Julius. 2013. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504 (7478):113–9.
  • Cerkevich, C. M., H. X. Qi, and J. H. Kaas. 2013. Thalamic input to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys. Journal of Comparative Neurology 521:3954–71.
  • Chandrashekar, J., M. A. Hoon, N. J. P. Ryba, and C. S. Zuker. 2006. The receptors and cells for mammalian taste. Nature 444 (7117):288–94. doi: 10.1038/nature05401.
  • Chaudhari, N. 2014. Synaptic communication and signal processing among sensory cells in taste buds. The Journal of Physiology 592 (16):3387–92. doi: 10.1113/jphysiol.2013.269837.
  • Chaudhari, N., A. M. Landin, and S. D. Roper. 2000. A metabotropic glutamate receptor variant functions as a taste receptor. Nature Neuroscience 3 (2):113–9. doi: 10.1038/72053.
  • Chaudhari, N., E. Pereira, and S. D. Roper. 2009. Taste receptors for umami: The case for multiple receptors. The American Journal of Clinical Nutrition 90 (3):738S–42S. doi: 10.3945/ajcn.2009.27462H.
  • Chaudhari, N., H. Yang, C. Lamp, E. Delay, C. Cartford, T. Than, and S. Roper. 1996. The taste of monosodium glutamate: Membrane receptors in taste buds. The Journal of Neuroscience 16 (12):3817–26. doi: 10.1523/JNEUROSCI.16-12-03817.1996.
  • Chen, Q.-Y., S. Alarcon, A. Tharp, O. M. Ahmed, N. L. Estrella, T. A. Greene, J. Rucker, and P. A. S. Breslin. 2009. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes. The American Journal of Clinical Nutrition 90 (3):770S–9S. doi: 10.3945/ajcn.2009.27462N.
  • Chen, X. K., M. Gabitto, Y. Q. Peng, N. J. P. Ryba, and C. S. Zuker. 2011. A gustotopic map of taste qualities in the mammalian brain. Science (New York, N.Y.) 333 (6047):1262–6.
  • Choudhuri, S. P., R. J. Delay, and E. R. Delay. 2015. L-amino acids elicit diverse response patterns in taste sensory cells: A role for multiple receptors. Plos One 10 (6):e0130088 doi: 10.1371/journal.pone.0130088.
  • Cisneros-Mejorado, A., A. Perez-Samartin, M. Gottlieb, and C. Matute. 2015. ATP signaling in brain: Release, excitotoxicity and potential therapeutic targets. Cellular and molecular neurobiology 35 (1):1–6. doi: 10.1007/s10571-014-0092-3.
  • Clapham, D. E. 2003. TRP channels as cellular sensors. Nature 426 (6966):517–24. doi: 10.1038/nature02196.
  • Clapp, T. R., R. Yang, C. L. Stoick, S. C. Kinnamon, and J. C. Kinnamon. 2004. Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. The Journal of Comparative Neurology 468 (3):311–21. doi: 10.1002/cne.10963.
  • Crowe, M. S., H. Wang, B. A. Blakeney, S. Mahavadi, K. Singh, K. S. Murthy, and J. R. Grider. 2020. Expression and function of umami receptors T1R1/T1R3 in gastric smooth muscle. Neurogastroenterology and Motility : The Official Journal of the European Gastrointestinal Motility Society 32 (2):e13737 doi: 10.1111/nmo.13737.
  • Damak, S., M. Rong, K. Yasumatsu, Z. Kokrashvili, C. A. Pérez, N. Shigemura, R. Yoshida, B. Mosinger, J. I. Glendinning, Y. Ninomiya, et al. 2006. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chemical senses 31 (3):253–64. doi: 10.1093/chemse/bjj027.
  • Damak, S., M. Rong, K. Yasumatsu, Z. Kokrashvili, V. Varadarajan, S. Zou, P. Jiang, Y. Ninomiya, and R. F. Margolskee. 2003. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science (New York, N.Y.) 301 (5634):850–3. doi: 10.1126/science.1087155.
  • De Araujo, I. E. T., M. L. Kringelbach, E. T. Rolls, and P. Hobden. 2003. Representation of umami taste in the human brain. Journal of Neurophysiology 90 (1):313–9. doi: 10.1152/jn.00669.2002.
  • De Araujo, I. E. T., M. L. Kringelbach, E. T. Rolls, and F. McGlone. 2003. Human Cortical Responses to Water in the Mouth, and the Effects of Thirst. Journal of Neurophysiology 90 (3):1865–76. doi: 10.1152/jn.00297.2003.
  • Deepankumar, S., M. Karthi, K. Vasanth, and S. Selvakumar. 2019. Insights on modulators in perception of taste modalities: A review. Nutrition Research Reviews 32 (2):231–46. doi: 10.1017/S0954422419000118.
  • DeFazio, R. A., G. Dvoryanchikov, Y. Maruyama, J. W. Kim, E. Pereira, and S. D. Roper. 2006. Separate populations of receptor cells and presynaptic cells in mouse taste buds. Journal of Neuroscience 26 (15):3971–80. doi: 10.1523/JNEUROSCI.0515-06.2006.
  • Delay, E. R., N. P. Hernandez, K. Bromley, and R. F. Margolskee. 2006. Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice. Chemical Senses 31 (4):351–7. doi: 10.1093/chemse/bjj039.
  • Dutta Banik, D., E. D. Benfey, L. E. Martin, K. E. Kay, G. C. Loney, A. R. Nelson, Z. C. Ahart, B. T. Kemp, B. R. Kemp, A.-M. Torregrossa, et al. 2020. A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLOS Genetics 16 (8):e1008925. doi: 10.1371/journal.pgen.1008925.
  • Dutta Banik, D.,. L. E. Martin, M. Freichel, A.-M. Torregrossa, and K. F. Medler. 2018. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proceedings of the National Academy of Sciences 115 (4):E772–781. doi: 10.1073/pnas.1718802115.
  • Dyer, J., K. S. H. Salmon, L. Zibrik, and S. P. Shirazi-Beechey. 2005. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochemical Society Transactions 33 (Pt 1):302–5. doi: 10.1042/BST0330302.
  • Eddy, M. C., B. K. Eschle, D. Peterson, N. Lauras, R. F. Margolskee, and E. R. Delay. 2012. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice. Chemical Senses 37 (5):391–401. doi: 10.1093/chemse/bjr093.
  • Flaherty, T. J., and J. Y. Lim. 2017. Individual Differences in Retronasal Odor Responsiveness: Effects of Aging and Concurrent Taste. Chemosensory Perception 10 (4):91–103. doi: 10.1007/s12078-016-9206-2.
  • Fu, O., Y. Iwai, M. Narukawa, A. W. Ishikawa, K. K. Ishii, K. Murata, et al. 2019. Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nature Communication 10:4560.
  • Fuke, S., and T. Shimizu. 1993. Sensory and preference aspects of umami. Trends in Food Science & Technology 4 (8):246–51. doi: 10.1016/0924-2244(93)90139-2.
  • Fuke, S., and Y. Ueda. 1996. Interactions between umami and other flavor characteristics. Trends in Food Science & Technology 7 (12):407–11. doi: 10.1016/S0924-2244(96)10042-X.
  • Gould, N. J., S. Mobini, J. Prescott, and M. R. Yeomans. 2008. Acquired liking and intake of a novel soup conditioned by monosodium glutamate in humans. Appetite 51 (3):761. doi: 10.1016/j.appet.2008.05.042.
  • Han, P. F., M. Mohebbi, M. Unrath, C. Hummel, and T. Hummel. 2018. Different neural processing of umami and salty taste determined by umami identification ability independent of repeated umami exposure. Neuroscience 383:74–83. doi: 10.1016/j.neuroscience.2018.05.004.
  • Hayabuchi, H.,. R. Morita, M. Ohta, A. Nanri, H. Matsumoto, S. Fujitani, S. Yoshida, S. Ito, A. Sakima, H. Takase, et al. 2020. Validation of preferred salt concentration in soup based on a randomized blinded experiment in multiple regions in Japan-influence of umami (L-glutamate) on saltiness and palatability of low-salt solutions. Hypertension Research : official Journal of the Japanese Society of Hypertension 43 (6):525–33. doi: 10.1038/s41440-020-0397-1.
  • Hisatsune, C., K. Yasumatsu, H. Takahashi-Iwanaga, N. Ogawa, Y. Kuroda, R. Yoshida, Y. Ninomiya, and K. Mikoshiba. 2007. Abnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor. Journal of Biological Chemistry 282 (51):37225–31. doi: 10.1074/jbc.M705641200.
  • Hoon, M. A., E. Adler, J. Lindemeier, J. F. Battey, N. J. P. Ryba, and C. S. Zuker. 1999. Putative mammalian taste receptors: A class of taste-specific gpcrs with distinct topographic selectivity. Cell 96 (4):541–51. doi: 10.1016/s0092-8674(00)80658-3.
  • Huang, Y. J., Y. Maruyama, G. Dvoryanchikov, E. Pereira, N. Chaudhari, and S. D. Roper. 2007. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proceedings of the National Academy of Sciences of the United States of America 104 (15):6436–41. doi: 10.1073/pnas.0611280104.
  • Iwata, S., R. Yoshida, and Y. Ninomiya. 2014. Taste transductions in taste receptor cells: Basic tastes and moreover. Current Pharmaceutical Design 20 (16):2684–92. doi: 10.2174/13816128113199990575.
  • Jang, H.-J., Z. Kokrashvili, M. J. Theodorakis, O. D. Carlson, B.-J. Kim, J. Zhou, H. H. Kim, X. Xu, S. L. Chan, M. Juhaszova, et al. 2007. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proceedings of the National Academy of Sciences of the United States of America 104 (38):15069–74. doi: 10.1073/pnas.0706890104.
  • Jyotaki, M., N. Shigemura, and Y. Ninomiya. 2009. Multiple umami receptors and their variants in human and mice. Journal of Health Science 55 (5):674–81. doi: 10.1248/jhs.55.674.
  • Keast, R. S. J., and P. A. S. Breslin. 2003. An overview of binary taste–taste interactions. Food Quality and Preference 14 (2):111–24. doi: 10.1016/S0950-3293(02)00110-6.
  • Khan, A. S., B. Murtaza, A. Hichami, and N. A. Khan. 2019. A cross-talk between fat and bitter taste modalities. Biochimie 159:3–8. doi: 10.1016/j.biochi.2018.06.013.
  • Kim, U. K., S. Wooding, N. Riaz, L. B. Jorde, and D. Drayna. 2006. Variation in the human TAS1R taste receptor genes. Chemical Senses 31 (7):599–611. doi: 10.1093/chemse/bjj065.
  • Kinnamon, S. C. 2009. Umami taste transduction mechanisms. The American Journal of Clinical Nutrition 90 (3):753S–5s. doi: 10.3945/ajcn.2009.27462K.
  • Kinnamon, S. C. 2012. Taste receptor signalling - from tongues to lungs. Acta Physiol (Oxf) 204 (2):158–68. doi: 10.1111/j.1748-1716.2011.02308.x.
  • Kinnamon, S. C. 2013. Neurosensory transmission without a synapse new perspectives on taste signaling. BioMed Central Biology 11:42–5.
  • Kitagawa, M., Y. Kusakabe, H. Miura, Y. Ninomiya, and A. Hino. 2001. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochemical and Biophysical Research Communications 283 (1):236–42. doi: 10.1006/bbrc.2001.4760.
  • Kongstad, S., and D. Giacalone. 2020. Consumer perception of salt-reduced potato chips: Sensory strategies, effect of labeling and individual health orientation. Food Quality and Preference 81:103856. doi: 10.1016/j.foodqual.2019.103856.
  • Kringelbach, M. L., J. O'Doherty, E. T. Rolls, and C. Andrews. 2003. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cerebral Cortex (New York, N.Y. : 1991) 13 (10):1064–71. doi: 10.1093/cercor/13.10.1064.
  • Kurihara, K. 2009. Glutamate: From discovery as a food flavor to role as a basic taste (umami). The American Journal of Clinical Nutrition 90 (3):719S–22S. doi: 10.3945/ajcn.2009.27462D.
  • Kusuhara, Y., R. Yoshida, T. Ohkuri, K. Yasumatsu, A. Voigt, S. Hübner, K. Maeda, U. Boehm, W. Meyerhof, and Y. Ninomiya. 2013. Taste responses in mice lacking taste receptor subunit T1R1. The Journal of Physiology 591 (7):1967–85. doi: 10.1113/jphysiol.2012.236604.
  • Lee, R. J., and N. A. Cohen. 2015. Taste receptors in innate immunity. Cellular and Molecular Life Sciences : CMLS 72 (2):217–36. doi: 10.1007/s00018-014-1736-7.
  • Li, X. D. 2009. T1R receptors mediate mammalian sweet and umami taste. The American Journal of Clinical Nutrition 90 (3):733S–7s. doi: 10.3945/ajcn.2009.27462G.
  • Lindemann, B. 2001. Receptors and transduction in taste. Nature 413 (6852):219–25. doi: 10.1038/35093032.
  • Li, X. D., L. Staszewski, H. Xu, K. Durick, M. Zoller, and E. Adler. 2002. Human receptors for sweet and umami taste. Proceedings of the National Academy of Sciences of the United States of America 99 (7):4692–6. doi: 10.1073/pnas.072090199.
  • Liu, K., S. Titus, N. Southall, P. Zhu, J. Inglese, C. P. Austin, and W. Zheng. 2008. Comparison on functional assays for Gq-coupled GPCRs by measuring inositol monophospate-1 and intracellular calcium in 1536-well plate format. Current chemical genomics 1:70–8. doi: 10.2174/1875397300801010070.
  • Lopez, S., N. Turle-Lorenzo, F. Acher, E. De Leonibus, A. Mele, and M. Amalric. 2007. Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson's disease. Journal of Neuroscience 27 (25):6701–11. doi: 10.1523/JNEUROSCI.0299-07.2007.
  • Lugaz, O., A. M. Pillias, and A. Faurion. 2002. A new specific ageusia: Some humans cannot taste L-glutamate. Chemical Senses 27 (2):105–15. doi: 10.1093/chemse/27.2.105.
  • Maruyama, Y., E. Pereira, R. F. Margolskee, N. Chaudhari, and S. D. Roper. 2006. Umami responses in mouse taste cells indicate more than one receptor. Journal of Neuroscience 26 (8):2227–34. doi: 10.1523/JNEUROSCI.4329-05.2006.
  • Masic, U., and M. R. Yeomans. 2014. Umami flavor enhances appetite but also increases satiety. The American Journal of Clinical Nutrition 100 (2):532–8. doi: 10.3945/ajcn.113.080929.
  • Mastorakou, D., A. Ruark, H. Weenen, B. Stahl, and M. Stieger. 2019. Sensory characteristics of human milk: Association between mothers' diet and milk for bitter taste. Journal of Dairy Science 102 (2):1116–30. doi: 10.3168/jds.2018-15339.
  • McGough, M. M., T. Sato, S. A. Rankin, and J. J. Sindelar. 2012. Reducing sodium levels in frankfurters using a natural flavor enhancer. Meat Science 91 (2):185–94. doi: 10.1016/j.meatsci.2012.01.018.
  • Meyer-Gerspach, A. C., C. Suenderhauf, L. Bereiter, D. Zanchi, C. Beglinger, S. Borgwardt, and B. K. Wölnerhanssen. 2016. Gut taste stimulants alter brain activity in areas related to working memory: a pilot study. Neuro-Signals 24 (1):59–70. doi: 10.1159/000442612.
  • Nakamura, Y., T. K. Goto, K. Tokumori, T. Yoshiura, K. Kobayashi, Y. Nakamura, H. Honda, Y. Ninomiya, and K. Yoshiura. 2011. Localization of brain activation by umami taste in humans. Brain Research 1406:18–29. doi: 10.1016/j.brainres.2011.06.029.
  • Nelson, G., J. Chandrashekar, M. A. Hoon, L. Feng, G. Zhao, N. J. P. Ryba, and C. S. Zuker. 2002. An amino-acid taste receptor. Nature 416 (6877):199–202. doi: 10.1038/nature726.
  • Nelson, G., M. A. Hoon, J. Chandrashekar, Y. F. Zhang, N. J. P. Ryba, and C. S. Zuker. 2001. Mammalian sweet taste receptors. Cell 106 (3):381–90. doi: 10.1016/s0092-8674(01)00451-2.
  • Neugebauer, V. 2008. Group III metabotropci Glutamate receptors (mGluR4 6 7 8. ). In The Receptors: The Glutamate Receptors, eds. R. W. Gereau, & G. T. Swanson, 489–508. Totowa, NJ: Human Press.
  • Nicholson, J., S. Isherwood, T. W. Robbins, J. W. Dalley, and A. Pekcec. 2017. Investigation of modulation of mGluR4 as a novel pharmacological approach to the treatment of maladaptive impulsivity. Biological Psychiatry 81 (10):S265–S265. doi: 10.1016/j.biopsych.2017.02.1063.
  • Nicholson, J. K., J. C. Lindon, and E. Holmes. 1999. ` Metabonomics ’: understanding the metabolic responses of living systems to pathophysiological stimuli viamultivariate statistical analysis of biological NMR spectroscopic data. XENOBIOTICA 29 (11):1181–9. doi: 10.1080/004982599238047.
  • Ninomiya, Y., and M. Funakoshi. 1989. Behavioural discrimination between glutamate and the four basic taste substances in mice. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology 92:365–70.
  • Ninomiya, Y., K. Nakashima, A. Fukuda, H. Nishino, T. Sugimura, A. Hino, V. Danilova, and G. Hellekant. 2000. Responses to umami substances in taste bud cells innervated by the chorda tympani and glossopharyngeal nerves. The Journal of Nutrition 130 (4S Suppl):950S–3S. doi: 10.1093/jn/130.4.950S.
  • Nunez-Salces, M., H. Li, C. Feinle-Bisset, R. L. Young, and A. J. Page. 2020. Nutrient-sensing components of the mouse stomach and the gastric ghrelin cell. Neurogastroenterology & Motility 0:e13944.
  • Ogawa, S., T. M. Lee, A. R. Kay, and D. W. Tank. 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87, 9868–72.
  • O-Uchi, J., B. S. Jhun, J. Mishra, and S.-S. Sheu. 2018. 7 - Organellar Ion Channels and Transporters. In Cardiac Electrophysiology: From Cell to Bedside, eds. J. Jalife & W. G. Stevenson, 66–79. Elsevier.
  • Prinster, A., E. Cantone, V. Verlezza, M. Magliulo, G. Sarnelli, M. Iengo, R. Cuomo, F. Di Salle, and F. Esposito. 2017. Cortical representation of different taste modalities on the gustatory cortex: A pilot study. Plos One 12 (12):e0190164. doi: 10.1371/journal.pone.0190164.
  • Puputti, S., H. Aisala, U. Hoppu, and M. Sandell. 2018. Multidimensional measurement of individual differences in taste perception. Food Quality and Preference 65:10–7. doi: 10.1016/j.foodqual.2017.12.006.
  • Puputti, S., H. Aisala, U. Hoppu, and M. Sandell. 2019. Factors explaining individual differences in taste sensitivity and taste modality recognition among Finnish adults. Journal of Sensory Studies :e12506.
  • Raliou, M., A. Wiencis, A.-M. Pillias, A. Planchais, C. Eloit, Y. Boucher, D. Trotier, J.-P. Montmayeur, and A. Faurion. 2009. Nonsynonymous single nucleotide polymorphisms in human tas1r1, tas1r3, and mGluR1 and individual taste sensitivity to glutamate. The American Journal of Clinical Nutrition 90 (3):789S–99S. doi: 10.3945/ajcn.2009.27462P.
  • Rhyu, M.-R., A.-Y. Song, E.-Y. Kim, H.-J. Son, Y. Kim, S. Mummalaneni, J. Qian, J. R. Grider, and V. Lyall. 2020. Kokumi Taste Active Peptides Modulate Salt and Umami Taste. Nutrients 12 (4):1198–19. doi: 10.3390/nu12041198.
  • Rolls, E. T. 2000. The Representation of Umami Taste in the Taste Cortex. The Journal of Nutrition 130 (4S Suppl):960S–5s. doi: 10.1093/jn/130.4.960S.
  • Rolls, E. T. 2009. Functional neuroimaging of umami taste: What makes umami pleasant? The American Journal of Clinical Nutrition 90 (3):804S–13S. doi: 10.3945/ajcn.2009.27462R.
  • Rolls, E. T., H. D. Critchley, E. A. Wakeman, and R. Mason. 1996. Responses of neurons in the primate taste cortex to the glutamate ion and to inosine 5'-monophosphate. Physiology & behavior 59 (4-5):991–1000. doi: 10.1016/0031-9384(95)02178-7.
  • Roper, S. D., and N. Chaudhari. 2017. Taste buds: Cells, signals and synapses. Nature Reviews. Neuroscience 18 (8):485–97. doi: 10.1038/nrn.2017.68.
  • San Gabriel, A., T. Maekawa, H. Uneyama, and K. Torii. 2009. Metabotropic glutamate receptor type 1 in taste tissue. The American Journal of Clinical Nutrition 90 (3):743S–6S. doi: 10.3945/ajcn.2009.27462I.
  • Satoh-Kuriwada, S.,. M. Kawai, M. Iikubo, Y. Sekine-Hayakawa, N. Shoji, H. Uneyama, and T. Sasano. 2014. Development of an umami taste sensitivity test and its clinical use. Plos One 9 (4):e95177 doi: 10.1371/journal.pone.0095177.
  • Shigemura, N., S. Shirosaki, T. Ohkuri, K. Sanematsu, A. A. S. Islam, Y. Ogiwara, M. Kawai, R. Yoshida, and Y. Ninomiya. 2009. Variation in umami perception and in candidate genes for the umami receptor in mice and humans. The American journal of clinical nutrition 90 (3):764S–9S. doi: 10.3945/ajcn.2009.27462M.
  • Shigemura, N., S. Shirosaki, K. Sanematsu, R. Yoshida, and Y. Ninomiya. 2009. Genetic and molecular basis of individual differences in human umami taste perception. Plos One 4 (8):e6717–7. doi: 10.1371/journal.pone.0006717.
  • Yamaguchi, S., and C. Takahashi. 2006. Interactions of monosodium glutamate and sodium chloride on saltiness and palatability of a clear soup. Journal of Food Science 49:82–5.
  • Simmons, S., and Z. Estes. 2008. Individual differences in the perception of similarity and difference. Cognition 108 (3):781–95. doi: 10.1016/j.cognition.2008.07.003.
  • Simon, S. A., I. E. de Araujo, R. Gutierrez, and M. A. L. Nicolelis. 2006. The neural mechanisms of gustation: A distributed processing code. Nature Reviews. Neuroscience 7 (11):890–901. doi: 10.1038/nrn2006.
  • Sinesio, F., M. Peparaio, E. Moneta, and F. J. Comendador. 2010. Perceptive maps of dishes varying in glutamate content with professional and naive subjects. Food Quality and Preference 21 (8):1034–41. doi: 10.1016/j.foodqual.2010.06.002.
  • Singh, P. B., B. Schuster, and H. S. Seo. 2010. Variation in umami taste perception in the German and Norwegian population. European Journal of Clinical Nutrition 64 (10):1248–50. doi: 10.1038/ejcn.2010.133.
  • Thomsen, C. 1997. Review The L-AP4 Receptor. General Pharmacology 29 (2):151–8. doi: 10.1016/S0306-3623(96)00417-X.
  • Tomchik, S. M., S. Berg, J. W. Kim, N. Chaudhari, and S. D. Roper. 2007. Breadth of tuning and taste coding in mammalian taste buds. Journal of Neuroscience 27 (40):10840–8. doi: 10.1523/JNEUROSCI.1863-07.2007.
  • Ueda, Y., M. Sakaguchi, K. Hirayama, R. Miyajima, and A. Kimizuka. 1990. Characteristic flavor constituents in water extract of garlic. Agricultural and Biological Chemistry 54:163–9.
  • Van der Laan, L. N., D. T. De Ridder, M. A. Viergever, and P. A. M. Smeets. 2011. The first taste is always with the eyes: A meta-analysis on the neural correlates of processing visual food cues. Neuroimage 55 (1):296–303. doi: 10.1016/j.neuroimage.2010.11.055.
  • Wang, W. L., X. R. Zhou, and Y. Liu. 2020. Characterization and evaluation of umami taste: A review. Trac Trends in Analytical Chemistry 127:115876. doi: 10.1016/j.trac.2020.115876.
  • Yamaguchi, S., and K. Ninomiya. 2000. Umami and Food Palatability. The Journal of Nutrition 130 (4S Suppl):921S–6S. doi: 10.1093/jn/130.4.921S.
  • Yamamoto, T., R. Matsuo, and Y. Kawamura. 1980. Localization of cortical gustatory area in rats and its role in taste discrimination. Journal of Neurophysiology 44 (3):440–55. doi: 10.1152/jn.1980.44.3.440.
  • Yasumatsu, K., T. Manabe, R. Yoshida, K. Iwatsuki, H. Uneyama, I. Takahashi, and Y. Ninomiya. 2015. Involvement of multiple taste receptors in umami taste: Analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice. The Journal of Physiology 593 (4):1021–34. doi: 10.1113/jphysiol.2014.284703.
  • Yasumatsu, K., Y. Ogiwara, S. Takai, R. Yoshida, K. Iwatsuki, K. Torii, R. F. Margolskee, and Y. Ninomiya. 2012. Umami taste in mice uses multiple receptors and transduction pathways. The Journal of Physiology 590 (5):1155–70. doi: 10.1113/jphysiol.2011.211920.
  • Yeomans, M. R., N. J. Gould, S. Mobini, and J. Prescott. 2008. Acquired flavor acceptance and intake facilitated by monosodium glutamate in humans. Physiology & Behavior 93 (4-5):958–66. doi: 10.1016/j.physbeh.2007.12.009.
  • Yin, Y.,. M. Y. Wu, L. Zubcevic, W. F. Borschel, G. C. Lander, and S.-Y. Lee. 2018. Structure of the cold- and menthol-sensing ion channel TRPM8. Science (New York, N.Y.) 359 (6372):237–41. doi: 10.1126/science.aan4325.
  • Zhang, Y., M. A. Hoon, J. Chandrashekar, K. L. Mueller, B. Cook, D. Wu, C. S. Zuker, and N. J. P. Ryba. 2003. Coding of sweet, bitter, and umami tastes:different receptor cells sharing similar signaling pathways. Cell 112 (3):293–301. doi: 10.1016/S0092-8674(03)00071-0.
  • Zhang, F., B. Klebansky, R. M. Fine, H. Xu, A. Pronin, H. Liu, C. Tachdjian, and X. Li. 2008. Molecular mechanism for the umami taste synergism. Proceedings of the National Academy of Sciences of the United States of America 105 (52):20930–4. doi: 10.1073/pnas.0810174106.
  • Zhang, L. Y., and D. G. Peterson. 2018. Identification of a novel umami compound in potatoes and potato chips. Food Chemistry 240:1219–26. doi: 10.1016/j.foodchem.2017.08.043.
  • Zhang, J. N., D. X. Sun-Waterhouse, G. W. Su, and M. M. Zhao. 2019. New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: A review. Trends in Food Science & Technology 88:429–38. doi: 10.1016/j.tifs.2019.04.008.
  • Zhao, G. Q., Y. Zhang, M. A. Hoon, J. Chandrashekar, I. Erlenbach, N. J. P. Ryba, and C. S. Zuker. 2003. The receptors for mammalian sweet and umami taste. Cell 115 (3):255–66. doi: 10.1016/S0092-8674(03)00844-4.