667
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Emerging electrochemical sensing and biosensing approaches for detection of Fumonisins in food samples

, , , , ORCID Icon &

References

  • Abd-Elmonsef Mahmoud, G., A. S. Zidan, A. A. Aly, H. K. Mosbah, and A. B. Ibrahim. 2019. Calcium and strontium anthranilato complexes as effective Fusarium moniliforme controlling agents. Applied Organometallic Chemistry 33 (2):e4740. doi: 10.1002/aoc.4740.
  • Abdul Kadir, M. K., and I. E. Tothill. 2010. Development of an electrochemical immunosensor for fumonisins detection in foods. Toxins 2 (4):382–98. doi: 10.3390/toxins2040382.
  • Alberts, J., J. Rheeder, W. Gelderblom, G. Shephard, and H.-M. Burger. 2019. Rural subsistence maize farming in South Africa: Risk assessment and intervention models for reduction of exposure to fumonisin mycotoxins. Toxins 11 (6):334. doi: 10.3390/toxins11060334.
  • Andrade, P. D., R. R. Dantas, T. L. d. S. de Moura, and E. D. Caldas. 2017. Determination of multi-mycotoxins in cereals and of total fumonisins in maize products using isotope labeled internal standard and liquid chromatography/tandem mass spectrometry with positive ionization. Journal of Chromatography. A 1490:138–47. doi: 10.1016/j.chroma.2017.02.027.
  • Chang, Y., M. Li, Z. Wu, Y. Zhuo, Y. Chai, Q. Xiao, and R. Yuan. 2018. Homogeneous entropy catalytic-driven DNA hydrogel as strong signal blocker for highly sensitive electrochemical detection of platelet-derived growth factor. Analytical Chemistry 90 (13):8241–7. doi: 10.1021/acs.analchem.8b01766.
  • Chenaghlou, S., A. Khataee, R. Jalili, M.-R. Rashidi, B. Khalilzadeh, and S. W. Joo. 2021. Gold nanostar-enhanced electrochemiluminescence immunosensor for highly sensitive detection of cancer stem cells using CD133 membrane biomarker. Bioelectrochemistry (Amsterdam, Netherlands) 137:107633. doi: 10.1016/j.bioelechem.2020.107633.
  • Chen, X., Y. Huang, X. Ma, F. Jia, X. Guo, and Z. Wang. 2015. Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Microchimica Acta 182 (9–10):1709–14. doi: 10.1007/s00604-015-1492-x.
  • Chen, C., R. T. Riley, and F. Wu. 2018. Dietary fumonisin and growth impairment in children and animals: A review. Comprehensive Reviews in Food Science and Food Safety 17 (6):1448–64. doi: 10.1111/1541-4337.12392.
  • Daiyan, R., X. Zhu, Z. Tong, L. Gong, A. Razmjou, R.-S. Liu, Z. Xia, X. Lu, L. Dai, and R. Amal. 2020. Transforming active sites in nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy 78:105213. doi: 10.1016/j.nanoen.2020.105213.
  • de Araújo Brêtas, A., and P. C. B. do Vale. 2019. Synergistic effects of Fumonisins B1 and B2 in Pigs: A. Journal of Agricultural Science and Technology A 9:201–6. doi: 10.17265/2161-6256/2019.04.001.
  • Di Nardo, F., E. Alladio, C. Baggiani, S. Cavalera, C. Giovannoli, G. Spano, and L. Anfossi. 2019. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line. Talanta 192:288–94. doi: 10.1016/j.talanta.2018.09.037.
  • Doustkhah, E., H. Mohtasham, M. Farajzadeh, S. Rostamnia, Y. Wang, H. Arandiyan, and M. H. N. Assadi. 2020. Organosiloxane tunability in mesoporous organosilica and punctuated Pd nanoparticles growth; theory and experiment. Microporous and Mesoporous Materials 293:109832. doi: 10.1016/j.micromeso.2019.109832.
  • Eivazzadeh-Keihan, R., P. Pashazadeh-Panahi, B. Baradaran, M. de la Guardia, M. Hejazi, H. Sohrabi, A. Mokhtarzadeh, and A. Maleki. 2018. Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. TrAC Trends in Analytical Chemistry 103:184–97. doi: 10.1016/j.trac.2018.03.019.
  • Evtugyn, G., V. Subjakova, S. Melikishvili, and T. Hianik. 2018. Affinity biosensors for detection of mycotoxins in food. Advances in Food and Nutrition Research 85:263–310. doi: 10.1016/bs.afnr.2018.03.003.
  • Ezquerra, A., J. C. Vidal, L. Bonel, and J. R. Castillo. 2015. A validated multi-channel electrochemical immunoassay for rapid fumonisin B1 determination in cereal samples. Analytical Methods 7 (9):3742–9. doi: 10.1039/C4AY02897J.
  • Fang, D., B. Zeng, S. Zhang, H. Dai, and Y. Lin. 2020. A self-enhanced electrochemiluminescent ratiometric zearalenone immunoassay based on the use of helical carbon nanotubes. Microchimica Acta 187 (5):9. doi: 10.1007/s00604-020-04278-8.
  • Felix, F. S., and L. Angnes. 2018. Electrochemical immunosensors - A powerful tool for analytical applications. Biosensors & Bioelectronics 102:470–8. doi: 10.1016/j.bios.2017.11.029.
  • Fouladgar, M., H. Karimi-Maleh, F. Opoku, and P. P. Govender. 2020. Electrochemical anticancer drug sensor for determination of raloxifene in the presence of tamoxifen using graphene-CuO-polypyrrole nanocomposite structure modified pencil graphite electrode: Theoretical and experimental investigation. Journal of Molecular Liquids 311:113314. doi: 10.1016/j.molliq.2020.113314.
  • Gelderblom, W., S. Abel, C. M. Smuts, J. Marnewick, W. Marasas, E. R. Lemmer, and D. Ramljak. 2001. Fumonisin-induced hepatocarcinogenesis: Mechanisms related to cancer initiation and promotion. Environmental Health Perspectives 109:291–300. doi: 10.1289/ehp.01109s2291.
  • Gelderblom, W., K. Jaskiewicz, W. Marasas, P. Thiel, R. Horak, R. Vleggaar, and N. Kriek. 1988.Fumonisins–novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied and Environmental Microbiology 54 (7):1806–11. doi: 10.1128/AEM.54.7.1806-1811.1988.
  • Goud, K. Y., S. K. Kailasa, V. Kumar, Y. F. Tsang, S. E. Lee, K. V. Gobi, and K.-H. Kim. 2018. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosensors & Bioelectronics 121:205–22. doi: 10.1016/j.bios.2018.08.029.
  • Goud, K. Y., V. S. Kumar, A. Hayat, K. V. Gobi, H. Song, K.-H. Kim, and J. L. Marty. 2019. A highly sensitive electrochemical immunosensor for zearalenone using screen-printed disposable electrodes. Journal of Electroanalytical Chemistry 832:336–42. doi: 10.1016/j.jelechem.2018.10.058.
  • Goud, K. Y., K. K. Reddy, M. Satyanarayana, S. Kummari, and K. V. Gobi. 2020. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Microchimica Acta 187 (1):32. doi: 10.1007/s00604-019-4034-0.
  • Gruber-Dorninger, C., B. Novak, V. Nagl, and F. Berthiller. 2017. Emerging mycotoxins: Beyond traditionally determined food contaminants. Journal of Agricultural and Food Chemistry 65 (33):7052–70. doi: 10.1021/acs.jafc.6b03413.
  • Hassanzadeh, J., and A. Khataee. 2018. Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta 178:992–1000. doi: 10.1016/j.talanta.2017.08.107.
  • Hassanzadeh, J., A. Khataee, and Y. Orooji. 2019. A Chemiluminescent method for the detection of H2O2 and glucose based on intrinsic peroxidase-like activity of WS2 quantum dots. Molecules (Basel, Switzerland) 24:689. doi: 10.3390/molecules24040689.
  • He, Y., F. Tian, J. Zhou, and B. Jiao. 2019. A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold. Microchimica Acta 186 (3):1–7. doi: 10.1007/s00604-019-3314-z.
  • He, D., Z. Wu, B. Cui, Z. Jin, and E. Xu. 2020. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B 1 making use of gold nanorods and upconversion nanoparticles. Microchimica Acta 187 (4): 254.doi: 10.1007/s00604-020-04236-4.
  • Idili, A., C. Parolo, G. Ortega, and K. W. Plaxco. 2019. Calibration-free measurement of phenylalanine levels in the blood using an electrochemical aptamer-based sensor suitable for point-of-care applications. ACS Sensors 4 (12):3227–33. doi: 10.1021/acssensors.9b01703.
  • Jackson, L. S., and D. Ryu. 2017. Summary of the ACS symposium on public health perspectives of mycotoxins in Food. Journal of Agricultural and Food Chemistry 65 (33):7017–7020 doi: 10.1021/acs.jafc.7b02909.
  • Jayarajavarma, B., A. Kamalakannan, and V. Paranidharan. 2019. Occurrence of fumonisin B1 in maize kernels, poultry and livestock feeds in Tamil Nadu, India. International Journal of Current Microbiology and Applied Sciences 8 (6):1792–7. doi: 10.20546/ijcmas.2019.806.214.
  • Jodra, A., M. Á. López, and A. Escarpa. 2015. Disposable and reliable electrochemical magnetoimmunosensor for Fumonisins simplified determination in maize-based foodstuffs. Biosensors & Bioelectronics 64:633–8. doi: 10.1016/j.bios.2014.09.054.
  • Kamle, M., D. K. Mahato, S. Devi, K. E. Lee, S. G. Kang, and P. Kumar. 2019. Fumonisins: Impact on agriculture, food, and human health and their management strategies. Toxins 11 (6):328. 3390/toxins11060328 doi: 10.3390/toxins11060328.
  • Kesici, E., and A. Erdem. 2019. Impedimetric detection of Fumonisin B1 and its biointeraction with fsDNA. International Journal of Biological Macromolecules 139:1117–22. doi: 10.1016/j.ijbiomac.2019.08.024.
  • Khataee, A., H. Sohrabi, O. Arbabzadeh, P. Khaaki, and M. R. Majidi. 2021. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 149:112030. doi: 10.1016/j.fct.2021.112030.
  • Kowalska, A., I. Hajok, and A. Piekut. 2017. Assessment of the contamination level by Fumonisins B 1 and B 2 of the corn food products available on Polish consumer market. Polish Journal of Environmental Studies 26 (6):2595–601. doi: 10.15244/pjoes/70386.
  • Kumar, N., and V. C. Srivastava. 2018. Simple synthesis of large graphene oxide sheets via electrochemical method coupled with oxidation process. ACS Omega 3 (8):10233–42. doi: 10.1021/acsomega.8b01283.
  • Lee, H. J., and D. Ryu. 2017. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry 65 (33):7034–51. doi: 10.1021/acs.jafc.6b04847.
  • Levasseur-Garcia, C. 2018. Updated overview of infrared spectroscopy methods for detecting mycotoxins on cereals (corn, wheat, and barley). Toxins 10 (1):38. doi: 10.3390/toxins10010038.
  • Li, X., N. Falcone, M. N. Hossain, H.-B. Kraatz, X. Chen, and H. Huang. 2021. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of ochratoxin A. Talanta 226:122183. doi: 10.1016/j.talanta.2021.122183.
  • Liu, Y., Y. Jiang, R. Li, M. Pang, Y. Liu, and J. Dong. 2017b. Natural occurrence of fumonisins B1 and B2 in maize from eight provinces of China in 2014. Food Additives & Contaminants: Part B 10 (2):113–7. doi: 10.1080/19393210.2017.1280541.
  • Liu, N., D. Nie, Y. Tan, Z. Zhao, Y. Liao, H. Wang, C. Sun, and A. Wu. 2017a. An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchimica Acta 184 (1):147–53. doi: 10.1007/s00604-016-1996-z.
  • Lu, L., R. Seenivasan, Y.-C. Wang, J.-H. Yu, and S. Gunasekaran. 2016. An electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochimica Acta 213:89–97. doi: 10.1016/j.electacta.2016.07.096.
  • Maduraiveeran, G., M. Sasidharan, and V. Ganesan. 2018. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors & Bioelectronics 103:113–29. doi: 10.1016/j.bios.2017.12.031.
  • Mansoorianfar, M., A. Khataee, Z. Riahi, K. Shahin, M. Asadnia, A. Razmjou, A. Hojjati-Najafabadi, C. Mei, Y. Orooji, and D. Li. 2020. Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications. Ultrasonics Sonochemistry 64:104783. doi: 10.1016/j.ultsonch.2019.104783.
  • Mansouri, M., F. Fathi, R. Jalili, S. Shoeibie, S. Dastmalchi, A. Khataee, and M.-R. Rashidi. 2020. SPR enhanced DNA biosensor for sensitive detection of donkey meat adulteration. Food chemistry 331:127163. doi: 10.1016/j.foodchem.2020.127163.
  • Mao, L., K. Ji, L. Yao, X. Xue, W. Wen, X. Zhang, and S. Wang. 2019. Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction. Biosensors & Bioelectronics 127:57–63. doi: 10.1016/j.bios.2018.11.040.
  • Marshall, H., J. P. Meneely, B. Quinn, Y. Zhao, P. Bourke, B. F. Gilmore, G. Zhang, and C. T. Elliott. 2020. Novel decontamination approaches and their potential application for post-harvest aflatoxin control. Trends in Food Science & Technology 106:489–96. doi: 10.1016/j.tifs.2020.11.001.
  • Masikini, M., A. Williams, C. Sunday, T. Waryo, E. Nxusani, L. Wilson, S. Qakala, M. Bilibana, S. Douman, A. Jonnas, et al. 2016. Label free poly (2, 5-dimethoxyaniline)–multi-walled carbon nanotubes impedimetric immunosensor for fumonisin B1 detection. Materials 9 (4):273. doi: 10.3390/ma9040273.
  • Mikušová, P., M. Caboň, A. Melichárková, M. Urík, A. Ritieni, and M. Slovák. 2020. Genetic diversity, Ochratoxin A and fumonisin profiles of strains of Aspergillus Section Nigri isolated from dried vine fruits. Toxins 12 (9):592. doi: 10.3390/toxins12090592.
  • Mirasoli, M., A. Buragina, L. S. Dolci, P. Simoni, L. Anfossi, G. Giraudi, and A. Roda. 2012. Chemiluminescence-based biosensor for fumonisins quantitative detection in maize samples. Biosensors & Bioelectronics 32 (1):283–7. doi: 10.1016/j.bios.2011.11.039.
  • Moschini, R., M. Borsarelli, M. Martinez, D. Presello, F. Ferraguti, D. Cristos, and D. Rojas. 2020. Analysis of preharvest meteorological conditions in relation to concentration of fumonisins in kernels of two genetically different maize hybrids. Australasian Plant Pathology 49 (6):665–77. doi: 10.1007/s13313-020-00742-4.
  • Munawar, H., A. Garcia-Cruz, M. Majewska, K. Karim, W. Kutner, and S. A. Piletsky. 2020. Electrochemical determination of fumonisin B1 using a chemosensor with a recognition unit comprising molecularly imprinted polymer nanoparticles. Sensors and Actuators B: Chemical 321:128552. doi: 10.1016/j.snb.2020.128552.
  • Nakagawa, H., R. Hashimoto, Y. Matsuo, Y. Sago, K. Yokoyama, and H. Takahashi. 2020. Detection and determination of Fumonisins B 1, B 2, and B 3 contaminating Japanese domestic wine by liquid chromatography coupled to Tandem Mass Spectrometry (LC–MS/MS). Current Microbiology 77 (10):3057–64. doi: 10.1007/s00284-020-02113-0.
  • Nayak, S., U. Dhua, A. Chhotaray, S. Samanta, and C. Sengupta. 2018. Genetic diversity of fumonisin producing Fusarium isolates from rice using PCR-RFLP of IGS-rDNA region. Biodiversitas Journal of Biological Diversity 19 (2):571–6. doi: 10.13057/biodiv/d190233.
  • Niazi, S., I. M. Khan, Y. Yu, I. Pasha, M. Shoaib, A. Mohsin, B. S. Mushtaq, W. Akhtar, and Z. Wang. 2019. A “turnon” aptasensor for simultaneous and time-resolved fluorometric determination of zearalenone, trichothecenes A and aflatoxin B 1 using WS 2 as a quencher. Microchimica Acta 186 (8):1–10. doi: 10.1007/s00604-019-3570-y.
  • Orooji, Y., M. H. Irani-Nezhad, R. Hassandoost, A. Khataee, S. R. Pouran, and S. W. Joo. 2020. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 234:118272. doi: 10.1016/j.saa.2020.118272.
  • Orooji, Y., H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran, A. Mokhtarzadeh, M. Mohaghegh, and H. Karimi-Maleh. 2021. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Letters 13 (1):30. doi: 10.1007/s40820-020-00533-y.
  • Pal, S., N. Singh, and K. M. Ansari. 2017. Toxicological effects of patulin mycotoxin on the mammalian system: An overview. Toxicology Research 6 (6):764–71. doi: 10.1039/c7tx00138j.
  • Peltomaa, R., F. Amaro-Torres, S. Carrasco, G. Orellana, E. Benito-Peña, and M. C. Moreno-Bondi. 2018. Homogeneous quenching immunoassay for fumonisin B1 based on gold nanoparticles and an epitope-mimicking yellow fluorescent protein. ACS Nano 12 (11):11333–42. doi: 10.1021/acsnano.8b06094.
  • Peltomaa, R., E. Benito-Peña, R. Barderas, U. Sauer, M. González Andrade, and M. C. Moreno-Bondi. 2017. Microarray-based immunoassay with synthetic mimotopes for the detection of fumonisin B1. Analytical Chemistry 89 (11):6216–23. doi: 10.1021/acs.analchem.7b01178.
  • Ponce-García, N., S. O. Serna-Saldivar, and S. Garcia-Lara. 2018. Fumonisins and their analogues in contaminated corn and its processed foods–a review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 35 (11):2183–203. doi: 10.1080/19440049.2018.1502476.
  • Righetti, L., L. Lucini, P. Giorni, S. Locatelli, C. Dall'Asta, and P. Battilani. 2019. Lipids as key markers in maize response to fumonisin accumulation. Journal of Agricultural and Food Chemistry 67 (14):4064–70. doi: 10.1021/acs.jafc.8b06316.
  • Rudyk, H., E. Tomaszewska, I. Kotsyumbas, S. Muszyński, A. Tomczyk-Warunek, S. Szymańczyk, P. Dobrowolski, D. Wiącek, D. Kamiński, and O. Brezvyn. 2019. Bone homeostasis in experimental fumonisins intoxication of rats. Annals of Animal Science 19 (2):403–19. doi: 10.2478/aoas-2019-0003.
  • Saleh, T. A., G. Fadillah, and O. A. Saputra. 2019. Nanoparticles as components of electrochemical sensing platforms for the detection of petroleum pollutants: A review. TrAC Trends in Analytical Chemistry 118:194–206. doi: 10.1016/j.trac.2019.05.045.
  • Schwartz-Zimmermann, H. E., D. Hartinger, B. Doupovec, C. Gruber-Dorninger, M. Aleschko, S. Schaumberger, V. Nagl, I. Hahn, F. Berthiller, D. Schatzmayr, et al. 2018. Application of biomarker methods to investigate FUMzyme mediated gastrointestinal hydrolysis of fumonisins in pigs. World Mycotoxin Journal 11 (2):201–14. doi: 10.3920/WMJ2017.2265.
  • Şenocak, A., A. Khataee, E. Demirbas, and E. Doustkhah. 2020. Ultrasensitive detection of rutin antioxidant through a magnetic micro-mesoporous graphitized carbon wrapped Co nanoarchitecture. Sensors and Actuators B: Chemical 312:127939. doi: 10.1016/j.snb.2020.127939.
  • Shi, Z. Y., Y. T. Zheng, H. B. Zhang, C. H. He, W. D. Wu, and H. B. Zhang. 2015. DNA electrochemical aptasensor for detecting fumonisins B1 based on graphene and thionine nanocomposite. Electroanalysis 27 (5):1097–103. doi: 10.1002/elan.201400504.
  • Smith, G. W. 2018. Fumonisins, Veterinary toxicology (pp. 1003–1018). Academic Press. doi: 10.1016/B978-0-12-811410-0.00071-4.
  • Smith, L. L., K. A. Francis, J. T. Johnson, and C. L. Gaskill. 2017. Quantitation of fumonisin B1 and B2 in feed using FMOC pre-column derivatization with HPLC and fluorescence detection. Food Chemistry 234:174–9. doi: 10.1016/j.foodchem.2017.04.142.
  • Sohrabi, H., H. Kholafazad Kordasht, P. Pashazadeh-Panahi, P. Nezhad-Mokhtari, M. Hashemzaei, M. R. Majidi, J. Mosafer, F. Oroojalian, A. Mokhtarzadeh, and M. de la Guardia. 2020. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchemical Journal 158:105287. doi: 10.1016/j.microc.2020.105287.
  • Sohrabi, H., M. R. Majidi, F. Nami, K. Asadpour-Zeynali, A. Khataee, and A. Mokhtarzadeh. 2021. A novel engineered label-free Zn-based MOF/CMC/AuNPs electrochemical genosensor for highly sensitive determination of Haemophilus Influenzae in human plasma samples. Mikrochimica Acta 188 (3):100–16. doi: 10.1007/s00604-021-04757-6.
  • Thanushree, M., D. Sailendri, K. Yoha, J. Moses, and C. Anandharamakrishnan. 2019. Mycotoxin contamination in food: An exposition on spices. Trends in Food Science & Technology 93:69–80. doi: 10.1016/j.tifs.2019.08.010.
  • Theobald, J., A. Ghanem, P. Wallisch, A. A. Banaeiyan, M. A. Andrade-Navarro, K. Taškova, M. Haltmeier, A. Kurtz, H. Becker, S. Reuter, et al. 2018. Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomaterials Science & Engineering 4 (1):78–89. doi: 10.1021/acsbiomaterials.7b00417.
  • Tonti, S., M. Mandrioli, P. Nipoti, A. Pisi, T. G. Toschi, and A. Prodi. 2017. Detection of fumonisins in fresh and dehydrated commercial garlic. Journal of Agricultural and Food Chemistry 65 (32):7000–5. doi: 10.1021/acs.jafc.7b02758.
  • Tran, T. V., B. N. Do, T. P. T. Nguyen, T. T. Tran, S. C. Tran, B. Van Nguyen, C. Van Nguyen, and H. Q. Le. 2019. Development of an IgY-based lateral flow immunoassay for detection of fumonisin B in maize. F1000Research 8:1042. doi: 10.12688/f1000research.19643.2.
  • Wall-Martínez, H. A., A. Ramírez-Martínez, N. Wesolek, C. Brabet, N. Durand, G. C. Rodríguez-Jimenes, M. A. García-Alvarado, M. A. Salgado-Cervantes, V. J. Robles-Olvera, and A. C. Roudot. 2019. Risk assessment of exposure to mycotoxins (aflatoxins and fumonisins) through corn tortilla intake in Veracruz City (Mexico). Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 36 (6):929–39. doi: 10.1080/19440049.2019.1588997.
  • Wang, C., L. Liu, and Q. Zhao. 2020. Low temperature greatly enhancing responses of aptamer electrochemical sensor for Aflatoxin B1 using aptamer with short stem. ACS Sensors 5 (10):3246–53. doi: 10.1021/acssensors.0c01572.
  • Wangia, R. N., D. P. Githanga, K. S. Xue, L. Tang, O. A. Anzala, and J.-S. Wang. 2019. Validation of urinary sphingolipid metabolites as biomarker of effect for fumonisins exposure in Kenyan children. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals 24 (4):379–88. doi: 10.1080/1354750X.2019.1587510.
  • Wangia-Dixon, R. N., and K. Nishimwe. 2021. Molecular toxicology and carcinogenesis of fumonisins: A review. Journal of Environmental Science and Health, Part C 39 (1):44–67. doi: 10.1080/26896583.2020.189.
  • Wei, M., F. Zhao, S. Feng, and H. Jin. 2019. A novel electrochemical aptasensor for fumonisin B 1 determination using DNA and exonuclease-I as signal amplification strategy. BMC Chemistry 13 (1):6. doi: 10.1186/s13065-019-0646-z.
  • Wielogorska, E., M. Mooney, M. Eskola, C. N. Ezekiel, M. Stranska, R. Krska, and C. Elliott. 2019. Occurrence and human-health impacts of mycotoxins in Somalia. Journal of Agricultural and Food Chemistry 67 (7):2052–60. doi: 10.1021/acs.jafc.8b05141.
  • Xu, J., X. Qiao, Y. Wang, Q. Sheng, T. Yue, J. Zheng, and M. Zhou. 2019. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Microchimica Acta 186 (4):238. doi: 10.1007/s00604-019-3339-3.
  • Yang, X., X. Zhou, X. Zhang, Y. Qing, M. Luo, X. Liu, C. Li, Y. Li, H. Xia, and J. Qiu. 2015. A highly sensitive electrochemical immunosensor for fumonisin B1 detection in corn using single‐walled carbon nanotubes/chitosan. Electroanalysis 27 (11):2679–87. doi: 10.1002/elan.201500169.
  • Zhan, S., L. Zheng, Y. Zhou, K. Wu, H. Duan, X. Huang, and Y. Xiong. 2019. A gold growth-based plasmonic ELISA for the sensitive detection of fumonisin B1 in maize. Toxins 11 (6):323. doi: 10.3390/toxins11060323.
  • Zhang, L., Y. Sun, X. Liang, Y. Yang, X. Meng, Q. Zhang, P. Li, and Y. Zhou. 2020. Cysteamine triggered “turn-on” fluorescence sensor for total detection of fumonisin B1, B2 and B3. Food Chemistry 327:127058. doi: 10.1016/j.foodchem.2020.127058.
  • Zhang, C., J. Tang, L. Huang, Y. Li, and D. Tang. 2017a. In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Microchimica Acta 184 (7):2445–53. doi: 10.1007/s00604-017-2223-2.
  • Zhang, S., Q. Wu, L. Tang, Y. Hu, M. Wang, J. Zhao, M. Li, J. Han, X. Liu, and H. Wang. 2018. Individual high-quality N-doped carbon nanotubes embedded with nonprecious metal nanoparticles toward electrochemical reaction. ACS Applied Materials & Interfaces 10 (46):39757–67. doi: 10.1021/acsami.8b14536.
  • Zhang, W., H. Xiong, M. Chen, X. Zhang, and S. Wang. 2017b. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@ SiO2 for ultrasensitive detection of fumonisin B1. Biosensors & Bioelectronics 96:55–61. doi: 10.1016/j.bios.2017.04.035.
  • Zhou, J., Y. Zheng, J. Zhang, H. Karimi-Maleh, Y. Xu, Q. Zhou, L. Fu, and W. Wu. 2020. Characterization of the electrochemical profiles of lycoris seeds for species identification and infrageneric relationships. Analytical Letters 53 (15):2517–28. doi: 10.1080/00032719.2020.1746327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.