1,868
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Zinc nutrition and dietary zinc supplements

, , , , , ORCID Icon, & show all

References

  • Afrin, and B. Lawrence. 2010. Fatal copper deficiency from excessive use of zinc-based denture adhesive. The American Journal of the Medical Sciences 340 (2):164–8. doi: 10.1097/MAJ.0b013e3181e3648c.
  • Akbar, B., N. Niloufar, M. Abolfazl, S. Lofollah, K. Q. Ali, and V. Soheyla. 2013. Evaluation and comparison of zinc absorption level from 2-Alkyle 3-Hydroxy pyranon-zinc complexes and zinc sulfate in rat in vivo. Advanced Biomedical Research 2 (1):77. doi: 10.4103/2277-9175.116432.
  • Alker, W., and H. Haase. 2018. Zinc and sepsis. Nutrients 10 (8):976. doi: 10.3390/nu10080976.
  • Alker, W., T. Schwerdtle, L. Schomburg, and H. Haase. 2019. A Zinpyr-1-based fluorimetric microassay for free zinc in human serum. International Journal of Molecular Ences 20 (16):4006. doi: 10.3390/ijms20164006.
  • Allen, L. H. 1998. Zinc and micronutrient supplements for children. The American Journal of Clinical Nutrition 68 (2 Suppl):495S–8s. doi: 10.1093/ajcn/68.2.495S.
  • Andreini, C., L. Banci, I. Bertini, and A. Rosato. 2006. Counting the zinc-proteins encoded in the human genome. Journal of Proteome Research 5 (1):196–201. doi: 10.1021/pr050361j.
  • Andreini, C., and I. Bertini. 2012. A bioinformatics view of zinc enzymes. Journal of Inorganic Biochemistry 111:150–6. doi: 10.1016/j.jinorgbio.2011.11.020.
  • Athmouni, K., D. Belhaj, A. E. Feki, and H. Ayadi. 2018. Optimization, antioxidant properties and GC-MS analysis of Periploca angustifolia polysaccharides and chelation therapy on cadmium-induced toxicity in human HepG2 cells line and rat liver. International Journal of Biological Macromolecules 108:853–62. doi: 10.1016/j.ijbiomac.2017.10.175.
  • Bączkowicz, M., D. Wójtowicz, J. W. Anderegg, C. H. Schilling, and P. Tomasik. 2003. Starch complexes with bismuth (III) and (V). Carbohydrate Polymers 52 (3):263–8. doi: 10.1016/S0144-8617(02)00294-1.
  • Barwinska-Sendra, A., and K. J. Waldron. 2017. The role of intermetal competition and mis-metalation in metal toxicity. Advances in Microbial Physiology 70:315–79. doi: 10.1016/bs.ampbs.2017.01.003.
  • Baum, F., J. Ebner, and M. Pischetsrieder. 2013. Identification of multiphosphorylated peptides in milk. Journal of Agricultural and Food Chemistry 61 (38):9110–7. doi: 10.1021/jf401865q.
  • Bernadeta, S. 2013. Zinc homeostasis and neurodegenerative disorders. Frontiers in Aging Neuroence 5:33.
  • Bird, A. J., and S. Wilson. 2020. Zinc homeostasis in the secretory pathway in yeast. Current Opinion in Chemical Biology 55:145–50. doi: 10.1016/j.cbpa.2020.01.011.
  • Bodini, M. E., M. A. D. Valle, R. Tapia, F. Leighton, and P. Berrios. 2001. Zinc catechin complexes in aprotic medium. Redox chemistry and interaction with superoxide radical anion. Polyhedron 20 (9–10):1005–9. doi: 10.1016/S0277-5387(01)00762-8.
  • Boim, A. G. F., J. Wragg, S. G. Canniatti-Brazaca, and L. R. F. Alleoni. 2020. Human intestinal Caco-2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices. Environmental Geochemistry and Health 42 (2):601–15. doi: 10.1007/s10653-019-00394-4.
  • Borowska, S., M. Tomczyk, J. W. Strawa, and M. M. Brzóska. 2020. Estimation of the chelating ability of an extract from Aronia melanocarpa L. berries and its main polyphenolic ingredients towards ions of zinc and copper. Molecules 25 (7):1507. doi: 10.3390/molecules25071507.
  • Bravo, L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56 (11):317–33. doi: 10.1111/j.1753-4887.1998.tb01670.x.
  • Brittmarie, S., A. Annette, K. Barbro, and C. Ke. 1989. Effect of protein level and protein source on zinc absorption in humans. Journal of Nutrition 119 (1):48–53.
  • Brnic, M., R. Wegmuller, C. Zeder, G. Senti, and R. F. Hurrell. 2014. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide. The Journal of Nutrition 144 (9):1467–73. doi: 10.3945/jn.113.185322.
  • Brown, K. H., S. E. Wuehler, and J. M. Peerson. 2001. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food and Nutrition Bulletin 22 (2):113–25. doi: 10.1177/156482650102200201.
  • Buff, C. E., D. W. Bollinger, M. R. Ellersieck, W. A. Brommelsiek, and T. L. Veum. 2005. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. Journal of Animal Science 83 (10):2380–6. doi: 10.2527/2005.83102380x.
  • Butrimovitz, G. P., and W. C. Purdy. 1978. Zinc nutrition and growth in a childhood population. The American Journal of Clinical Nutrition 31 (8):1409–12. doi: 10.1093/ajcn/31.8.1409.
  • Caetano-Silva, M. E., F. M. Netto, M. T. Bertoldo-Pacheco, A. Alegría, and A. Cilla. 2021. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Critical Reviews in Food Science and Nutrition 61 (9):1470–20. doi: 10.1080/10408398.2020.1761770.
  • Cámara, F., and M. A. Amaro. 2003. Nutritional aspect of zinc availability. International Journal of Food Sciences and Nutrition 54 (2):143–51. doi: 10.1080/0963748031000084098.
  • Carlson, M. S., C. A. Boren, C. Wu, C. E. Huntington, D. W. Bollinger, and T. L. Veum. 2004. Evaluation of various inclusion rates of organic zinc either as polysaccharide or proteinate complex on the growth performance, plasma, and excretion of nursery pigs. Journal of Animal Science 82 (5):1359–66. doi: 10.2527/2004.8251359x.
  • Charlwood, P. A. 1979. The relative affinity of transferrin and albumin for zinc. Biochimica et Biophysica Acta 581 (2):260–5. doi: 10.1016/0005-2795(79)90245-9.
  • Cheng, Z., E. Tako, A. Yeung, R. M. Welch, and R. P. Glahn. 2012. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/Caco-2 cell culture model. Food & Function 3 (7):732–6. doi: 10.1039/c2fo10232c.
  • Chen, D., Z. Liu, W. Huang, Y. Zhao, S. Dong, and M. Zeng. 2013. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate. Journal of Functional Foods 5 (2):689–97. doi: 10.1016/j.jff.2013.01.012.
  • Chen, G., F. M. Mutie, Y. Xu, F. D. Saleri, and M. Guo. 2020. Antioxidant, anti-inflammatory activities and polyphenol profile of Rhamnus prinoides. Pharmaceuticals 13 (4):55. doi: 10.3390/ph13040055.
  • Chevalier, P., R. Sevilla, L. Zalles, E. Sejas, and G. Belmonte. 1996. Effect of zinc supplementation on nutritional immune deficiency. Nutrition Research 16 (3):369–79. doi: 10.1016/0271-5317(96)00018-8.
  • Clergeaud, G., H. Dabbagh-Bazarbachi, M. Ortiz, J. B. Fernández-Larrea, and C. K. O’Sullivan. 2016. A simple liposome assay for the screening of zinc ionophore activity of polyphenols. Food Chemistry 197 (Pt A):916–23. doi: 10.1016/j.foodchem.2015.11.057.
  • Cousins, R. J., and L. M. Lee-Ambrose. 1992. Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. The Journal of Nutrition 122 (1):56–64. doi: 10.1093/jn/122.1.56.
  • Cousins, R. J., J. P. Liuzzi, and L. A. Lichten. 2006. Mammalian zinc transport, trafficking, and signals. The Journal of Biological Chemistry 281 (34):24085–9. doi: 10.1074/jbc.R600011200.
  • de Almeida Brasiel, P. G. 2020. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clinical Nutrition ESPEN 38:65–6. doi: 10.1016/j.clnesp.2020.06.003.
  • Derwand, R., and M. Scholz. 2020. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today's battle against COVID-19? Medical Hypotheses 142:109815. doi: 10.1016/j.mehy.2020.109815.
  • Deshpande, J. D., M. M. Joshi, and P. A. Giri. 2013. Zinc: The trace element of major importance in human nutrition and health. International Journal of Medical Science and Public Health 2 (1):1. doi: 10.5455/ijmsph.2013.2.1-6.
  • Dissanayake, D., P. S. Wijesinghe, W. D. Ratnasooriya, and S. Wimalasena. 2009. Effects of zinc supplementation on sexual behavior of male rats. Journal of Human Reproductive Sciences 2 (2):57 doi:10.4103/0974-1208.57223.
  • Donangelo, C. M., C. L. Zapata, L. R. Woodhouse, D. M. Shames, R. Mukherjea, and J. C. King. 2005. Zinc absorption and kinetics during pregnancy and lactation in Brazilian women. The American Journal of Clinical Nutrition 82 (1):118–24. doi: 10.1093/ajcn/82.1.118.
  • Dufner-Beattie, J., F. Wang, Y. M. Kuo, J. Gitschier, D. Eide, and G. K. Andrews. 2003. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. The Journal of Biological Chemistry 278 (35):33474–81. doi: 10.1074/jbc.M305000200.
  • Duncan, F. E., E. L. Que, N. Zhang, E. C. Feinberg, T. V. O’Halloran, and T. K. Woodruff. 2016. The zinc spark is an inorganic signature of human egg activation. Scientific Reports 6:24737. doi: 10.1038/srep24737.
  • Eckert, E., F. Bamdad, and L. Y. Chen. 2014. Metal solubility enhancing peptides derived from barley protein. Food Chemistry 159:498–506. doi: 10.1016/j.foodchem.2014.03.061.
  • Eide, D. J. 2006. Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta 1763 (7):711–22. doi: 10.1016/j.bbamcr.2006.03.005.
  • Ellen, K., J. Mikael, S. Per, S. S. Srensen, and S. Brittmarie. 1995. Zinc absorption estimated by fecal monitoring of zinc stable isotopes validated by comparison with whole-body retention of zinc radioisotopes in humans. Journal of Nutrition 125 (5):1274–82.
  • Evans, G. W., P. F. Majors, and W. E. Cornatzer. 1970. Induction of ceruloplasmin synthesis by copper. Biochemical and Biophysical Research Communications 41 (5):1120–5. doi:10.1016/0006-291X(70)90201-9.
  • Fahmida, U., J. S. P. Rumawas, B. Utomo, S. Patmonodewo, and W. Schultink. 2007. Zinc-iron, but not zinc-alone supplementation, increased linear growth of stunted infants with low haemoglobin. Asia Pacific Journal of Clinical Nutrition 16 (2):301–9. 17468087
  • Fallah, A., A. Mohammad-Hasani, and A. H. Colagar. 2018. Zinc is an essential element for male fertility: A review of Zn roles in men's health, germination, sperm quality, and fertilization. Journal of Reproduction & Infertility 19 (2):69–81.
  • Fasano, M., S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso, S. Notari, and P. Ascenzi. 2005. The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57 (12):787–96. doi: 10.1080/15216540500404093.
  • Favier, A. E. 1992. The role of zinc in reproduction. Hormonal mechanisms. Biological Trace Element Research 32:363–82. doi: 10.1007/BF02784623.
  • Fischer, P. W., A. Giroux, and M. R. L’Abbé. 1981. The effect of dietary zinc on intestinal copper absorption. The American Journal of Clinical Nutrition 34 (9):1670–5. doi: 10.1093/ajcn/34.9.1670.
  • Forbes, R. M., and H. M. Parker. 1977. Biological availability of zinc in and as influenced by whole fat soy flour in rat diets. Nutrition Reports International 15 (6):681–8.
  • Forbes, R. M., K. E. Weingartner, H. M. Parker, R. R. Bell, and J. W. Erdman, Jr. 1979. Bioavailability to rats of zinc, magnesium and calcium in casein-, egg- and soy protein-containing diets. The Journal of Nutrition 109 (9):1652–60. doi: 10.1093/jn/109.9.1652.
  • Fraker, P. J., L. E. King, T. Laakko, and T. L. Vollmer. 2000. The dynamic link between the integrity of the immune system and zinc status. The Journal of Nutrition 130 (5S Suppl):1399S–406S. doi: 10.1093/jn/130.5.1399S.
  • Frederickson, C. J., J. Y. Koh, and A. I. Bush. 2005. The neurobiology of zinc in health and disease. Nature Reviews Neuroscience 6 (6):449–62. doi: 10.1038/nrn1671.
  • Gammoh, N. Z., and L. Rink. 2017. Zinc in infection and inflammation. Nutrients 9 (6):624. doi: 10.3390/nu9060624.
  • Gao, W., Y. Huang, R. He, and X. Zeng. 2018. Synthesis and characterization of a new soluble soybean polysaccharide-iron(III) complex using ion exchange column. International Journal of Biological Macromolecules 108:1242–7. doi: 10.1016/j.ijbiomac.2017.11.038.
  • García-Nebot, M. J., R. Barberá, and A. Alegría. 2013. Iron and zinc bioavailability in Caco-2 cells: Influence of caseinophosphopeptides. Food Chemistry 138 (2–3):1298–303. doi: 10.1016/j.foodchem.2012.10.113.
  • Gasmi, A., T. Tippairote, P. K. Mujawdiya, M. Peana, A. Menzel, M. Dadar, A. G. Benahmed, and G. Bjørklund. 2020. Micronutrients as immunomodulatory tools for COVID-19 management. Clinical Immunology (Orlando, FL) 220:108545. doi: 10.1016/j.clim.2020.108545.
  • Gibson, R. S. 2012. Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant and Soil 361 (1-2):291–9. doi:10.1007/s11104-012-1209-4.
  • Giroux, E. L. 1975. Determination of zinc distribution between albumin and α2-macroglobulin in human serum. Biochemical Medicine 12 (3):258–66. doi: 10.1016/0006-2944(75)90127-1.
  • Giroux, E. L., and R. I. Henkin. 1972. Competition for zinc among serum albumin and amino acids. Biochimica et Biophysica Acta 273 (1):64–72. doi: 10.1016/0304-4165(72)90191-2.
  • Goethe, E., K. Laarmann, J. Lührs, M. Jarek, J. Meens, A. Lewin, and R. Goethe. 2020. Critical role of Zur and SmtB in zinc homeostasis of Mycobacterium smegmatis. mSystems 5 (2):e00880-19. doi: 10.1128/mSystems.00880-19.
  • Gromova, O. A., I. Y. Torshin, A. V. Pronin, and M. A. Kilchevsky. 2019. Synergistic Application of Zinc and Vitamin C to Support Memory and Attention and to Decrease the Risk of Developing Nervous System Diseases. Neuroscience and Behavioral Physiology 49 (3):357–64. doi:10.1007/s11055-019-00740-0.
  • Guo, L., P. A. Harnedy, B. Li, H. Hou, Z. Zhang, X. Zhao, and R. J. FitzGerald. 2014. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science & Technology 37 (2):92–105. doi: 10.1016/j.tifs.2014.02.007.
  • Gustafsson, J. E. 1976. Improved specificity of serum albumin determination and estimation of 'Acute phase reactants' by use of bromcresol green reaction. Clinical Chemistry 22 (5):616–22. doi: 10.1093/clinchem/22.5.616.
  • Haase, H., E. Mocchegiani, and L. Rink. 2006. Correlation between zinc status and immune function in the elderly. Biogerontology 7 (5–6):421–8. doi: 10.1007/s10522-006-9057-3.
  • Haase, H., and L. Rink. 2014. Multiple impacts of zinc on immune function. Metallomics: Integrated Biometal Science 6 (7):1175–80. doi: 10.1039/c3mt00353a.
  • Hambidge, K. M., N. F. Krebs, and L. V. Miller. 2016. Zinc: Physiology and health effects. In Encyclopedia of food and health, ed. Benjamin Caballero, Paul M. Finglas, and Fidel Toldrá. Oxford: Academic Press.
  • Hamer, D. H. 1986. Metallothionein. Annual Review of Biochemistry 55 (55):913–51. doi: 10.1146/annurev.bi.55.070186.004405.
  • Handing, K. B., I. G. Shabalin, O. Kassaar, S. Khazaipoul, C. A. Blindauer, A. J. Stewart, M. Chruszcz, and W. Minor. 2016. Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins. Chemical Science 7 (11):6635–48. doi: 10.1039/c6sc02267g.
  • Hansen, M., B. Sandström, and B. Lönnerdal. 1996. The effect of casein phosphopeptides on zinc and calcium absorption from high phytate infant diets assessed in rat pups and Caco-2 cells. Pediatric Research 40 (4):547–52. doi: 10.1203/00006450-199610000-00006.
  • Hashimoto, A., K. Ohkura, M. Takahashi, K. Kizu, H. Narita, S. Enomoto, Y. Miyamae, S. Masuda, M. Nagao, K. Irie, et al. 2015. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: A potential novel strategy to enhance zinc absorption by ZIP4 targeting. The Biochemical Journal 472 (2):183–93. doi: 10.1042/BJ20150862.
  • Henderson, L. M., G. J. Brewer, J. B. Dressman, S. Z. Swidan, D. J. DuRoss, C. H. Adair, J. L. Barnett, and R. R. Berardi. 1995. Effect of intragastric pH on the absorption of oral zinc acetate and zinc oxide in young healthy volunteers. Journal of Parenteral and Enteral Nutrition 19 (5):393–7. doi: 10.1177/0148607195019005393.
  • Hernández-Camacho, J. D., C. Vicente-García, D. S. Parsons, and I. Navas-Enamorado. 2020. Zinc at the crossroads of exercise and proteostasis. Redox Biology 35:101529. doi: 10.1016/j.redox.2020.101529.
  • Hess, S. Y., J. M. Peerson, J. C. King, and K. H. Brown. 2007. Use of serum zinc concentration as an indicator of population zinc status. Food and Nutrition Bulletin 28 (3 Suppl):S403–S29. doi: 10.1177/15648265070283S303.
  • Hider, R. C., Z. D. Liu, and H. H. Khodr. 2001. Metal chelation of polyphenols. Methods in Enzymology 335:190–203. doi: 10.1016/s0076-6879(01)35243-6.
  • Hoeger, J., T. P. Simon, S. Doemming, C. Thiele, G. Marx, T. Schuerholz, and H. Haase. 2015. Alterations in zinc binding capacity, free zinc levels and total serum zinc in a porcine model of sepsis. BioMetals 28 (4):693–700. doi: 10.1007/s10534-015-9858-4.
  • Holen, J. P., L. J. Johnston, P. E. Urriola, J. E. Garrett, and G. C. Shurson. 2020. Comparative digestibility of polysaccharide-complexed zinc and zinc sulfate in diets for gestating and lactating sows. Journal of Animal Science 98 (Suppl_3):171. doi: 10.1093/jas/skaa079.
  • Hood, M. I., and E. P. Skaar. 2012. Nutritional immunity: Transition metals at the pathogen-host interface. Nature Reviews Microbiology 10 (8):525–37. doi: 10.1038/nrmicro2836.
  • Huang, G. L., J. J. Ma, S. Y. Sui, and Y. N. Wang. 2020. Optimization of extraction of loquat flowers polyphenolics and its antioxidant and anti-polyphenol oxidase properties. Bioengineered 11 (1):281–90. doi: 10.1080/21655979.2020.1735604.
  • Huang, T., G. Yan, and M. Guan. 2020. Zinc homeostasis in bone: Zinc transporters and bone diseases. International Journal of Molecular Sciences 21 (4):1236. doi: 10.3390/ijms21041236.
  • Hunt, J. R. 2003. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. The American Journal of Clinical Nutrition 78 (3 Suppl):633S–39S. doi: 10.1093/ajcn/78.3.633S.
  • Ibs, K. H., and L. Rink. 2003. Zinc-altered immune function. The Journal of Nutrition 133 (5 Suppl 1):1452S–6s. doi: 10.1093/jn/133.5.1452S.
  • Jeong, J., and D. J. Eide. 2013. The SLC39 family of zinc transporters. Molecular Aspects of Medicine 34 (2–3):612–19. doi: 10.1016/j.mam.2012.05.011.
  • Jones, M. M., J. E. Schoenheit, and A. D. Weaver. 1979. Pretreatment and heavy metal LD50 values. Toxicology and Applied Pharmacology 49 (1):41–4. doi: 10.1016/0041-008X(79)90274-6.
  • Kägi, J. H. 1991. Overview of metallothionein. Methods in Enzymology 205:613–26. doi: 10.1016/0076-6879(91)05145-l.
  • Kasana, S., J. Din, and W. Maret. 2015. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: Acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. Journal of Trace Elements in Medicine and Biology 29:47–62. doi: 10.1016/j.jtemb.2014.10.003.
  • Khouya, T., M. Ramchoun, S. Amrani, H. Harnafi, M. Rouis, D. Couchie, T. Simmet, and C. Alem. 2020. Anti-inflammatory and anticoagulant effects of polyphenol-rich extracts from Thymus atlanticus: An in vitro and in vivo study. Journal of Ethnopharmacology 252:112475. doi: 10.1016/j.jep.2019.112475.
  • Kiilerich, S., and C. Christiansen. 1986. Distribution of serum zinc between albumin and α2-macroglobulin in patients with different zinc metabolic disorders. Clinica Chimica Acta 154 (1):1–6. doi: 10.1016/0009-8981(86)90082-3.
  • Kim, J. 2013. Dietary zinc intake is inversely associated with systolic blood pressure in young obese women. Nutrition Research and Practice 7 (5):380–84. doi: 10.4162/nrp.2013.7.5.380.
  • Kim, E. Y., T. K. Pai, and O. Han. 2011. Effect of bioactive dietary polyphenols on zinc transport across the intestinal Caco-2 cell monolayers. Journal of Agricultural and Food Chemistry 59 (8):3606–12. doi: 10.1021/jf104260j.
  • Kimura, T., and T. Kambe. 2016. The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. International Journal of Molecular Sciences 17 (3):336. doi: 10.3390/ijms17030336.
  • Kjaergaard, K., M. A. Schembri, and P. Klemm. 2001. Novel Zn(2+)-chelating peptides selected from a fimbria-displayed random peptide library. Applied and Environmental Microbiology 67 (12):5467–73. doi: 10.1128/AEM.67.12.5467-5473.2001.
  • Kondo, T., M. Takahashi, S. Watanabe, M. Ebina, D. Mizu, K. Ariyoshi, M. Asano, Y. Nagasaki, and Y. Ueno. 2016. An autopsy case of zinc chloride poisoning. Legal Medicine (Tokyo, Japan) 21:11–14. doi: 10.1016/j.legalmed.2016.05.002.
  • Kumar, A., Y. Kubota, M. Chernov, and H. Kasuya. 2020. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Medical Hypotheses 144:109848. doi: 10.1016/j.mehy.2020.109848.
  • Küry, S., B. Dréno, S. Bézieau, S. Giraudet, M. Kharfi, R. Kamoun, and J. P. Moisan. 2002. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nature Genetics 31 (3):239–40. doi: 10.1038/ng913.
  • Lansdown, A. B., U. Mirastschijski, N. Stubbs, E. Scanlon, and M. S. Agren. 2007. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair and Regeneration 15 (1):2–16. doi: 10.1111/j.1524-475X.2006.00179.x.
  • Lease, J. G. 1968. Effect of a soluble fraction of oil seed meals on uptake of 65Zn from Ca.Mg.65Zn. phytate complexes by the chick. The Journal of Nutrition 96 (1):126–38. doi: 10.1093/jn/96.1.126.
  • Ledochowski, M., B. Widner, C. Murr, and D. Fuchs. 2001. Decreased serum zinc in fructose malabsorbers. Clinical Chemistry 47 (4):745–747. doi: 10.1093/clinchem/47.4.745.
  • Lee, H. H., A. S. Prasad, G. J. Brewer, and C. Owyang. 1989. Zinc absorption in human small intestine. The American Journal of Physiology 256 (1 Pt 1):G87–91. doi: 10.1152/ajpgi.1989.256.1.G87.
  • Li, C., G. Bu, F. Chen, and T. Li. 2020. Preparation and structural characterization of peanut peptide–zinc chelate. CyTA - Journal of Food 18 (1):409–16. doi: 10.1080/19476337.2020.1767695.
  • Li, J., C. Gong, Z. Wang, R. Gao, J. Ren, X. Zhou, H. Wang, H. Xu, F. Xiao, Y. Cao, et al. 2019. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc. Marine Drugs 17 (6):341. doi: 10.3390/md17060341.
  • Li, C., Q. Huang, J. Xiao, X. Fu, L. You, and R. H. Liu. 2016. Preparation of Prunella vulgaris polysaccharide-zinc complex and its antiproliferative activity in HepG2 cells. International Journal of Biological Macromolecules 91:671–79. doi: 10.1016/j.ijbiomac.2016.06.012.
  • Li, Y. J., M. Li, X. B. Liu, T. X. Ren, W. D. Li, C. Yang, M. Wu, L. L. Yang, Y. X. Ma, J. Wang, et al. 2017. Zinc absorption from representative diet in a Chinese elderly population using stable isotope technique. Biomedical and Environmental Sciences 30 (6):391–97.
  • Lichten, L. A., and R. J. Cousins. 2009. Mammalian zinc transporters: Nutritional and physiologic regulation. Annual Review of Nutrition 29:153–76. doi: 10.1146/annurev-nutr-033009-083312.
  • Liu, X., Z. Wang, J. Zhang, L. Song, D. Li, Z. Wu, B. Zhu, Y. Nakamura, F. Shahidi, C. Yu, et al. 2019. Isolation and identification of zinc-chelating peptides from sea cucumber (Stichopus japonicus) protein hydrolysate. Journal of the Science of Food and Agriculture 99 (14):6400–407. doi: 10.1002/jsfa.9919.
  • Liuzzi, J. P., J. A. Bobo, L. Cui, R. J. Mcmahon, and R. J. Cousins. 2003. Zinc transporters 1, 2 and 4 are differentially expressed and localized in rats during pregnancy and lactation. The Journal of Nutrition 133 (2):342–51. doi: 10.1093/jn/133.2.342.
  • Lonnerdal, B. 2000. Dietary factors influencing zinc absorption. Journal of Nutrition 130 (5S Suppl):1378S–83S.
  • Lu, J., A. J. Stewart, P. J. Sadler, T. J. T. Pinheiro, and C. A. Blindauer. 2008. Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochemical Society Transactions 36 (Pt 6):1317–21. doi: 10.1042/BST0361317.
  • Luo, Z., W. Cheng, H. Chen, X. Fu, X. Peng, F. Luo, and L. Nie. 2013. Preparation and properties of enzyme-modified cassava starch-zinc complexes. Journal of Agricultural and Food Chemistry 61 (19):4631–8. doi: 10.1021/jf4016015.
  • Ma, Y., Q. Huang, M. Lv, Z. Wu, Z. Xie, X. Han, and Y. Wang. 2014. Chitosan-Zn chelate increases antioxidant enzyme activity and improves immune function in weaned piglets. Biological Trace Element Research 158 (1):45–50. doi: 10.1007/s12011-014-9910-1.
  • Maares, M., and H. Haase. 2016. Zinc and immunity: An essential interrelation. Archives of Biochemistry and Biophysics 611:58–65. doi: 10.1016/j.abb.2016.03.022.
  • Mangels, A. R., V. Messina, and V. Melina. 2003. Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets. Journal of the American Dietetic Association 103 (6):748–65.
  • Mao, X., B. E. Kim, F. Wang, D. J. Eide, and M. J. Petris. 2007. A histidine-rich cluster mediates the ubiquitination and degradation of the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. The Journal of Biological Chemistry 282 (10):6992–7000. doi: 10.1074/jbc.M610552200.
  • Maret, W., and A. Krezel. 2007. Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Molecular Medicine (Cambridge, MA) 13 (7–8):371–75. doi: 10.2119/2007–00036.Maret.
  • Maret, W., and H. H. Sandstead. 2006. Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology 20 (1):3–18. doi: 10.1016/j.jtemb.2006.01.006.
  • Masina, N., Y. E. Choonara, P. Kumar, L. C. Du Toit, M. Govender, S. Indermun, and V. Pillay. 2017. A review of the chemical modification techniques of starch. Carbohydrate Polymers 157:1226–36. doi: 10.1016/j.carbpol.2016.09.094.
  • Maxfield, L., and J. S. Crane. 2020. Zinc deficiency. StatPearls.
  • McDonald, C. M., P. S. Suchdev, N. F. Krebs, S. Y. Hess, K. R. Wessells, S. Ismaily, S. Rahman, F. T. Wieringa, A. M. Williams, K. H. Brown, et al. 2020. Adjusting plasma or serum zinc concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. The American Journal of Clinical Nutrition 111 (4):927–37. doi: 10.1093/ajcn/nqz304.
  • McMillan, E. M., and D. J. F. Rowe. 1982. Plasma zinc-serum albumin correlation: Relevance to assessment of zinc status in humans. Clinical and Experimental Dermatology 7 (6):599–604. doi: 10.1111/j.1365-2230.1982.tb02483.x.
  • McPherson, S. W., J. E. Keunen, A. C. Bird, E. Y. Chew, and F. J. van Kuijk. 2020. Investigate oral zinc as a prophylactic treatment for those at risk for COVID-19. American Journal of Ophthalmology 216:A5–A6. doi: 10.1016/j.ajo.2020.04.028.
  • Miquel, E., J. Á. Gómez, A. Alegría, R. Barberá, R. Farré, and I. Recio. 2005. Identification of casein phosphopeptides released after simulated digestion of milk-based infant formulas. Journal of Agricultural and Food Chemistry 53 (9):3426–33. doi: 10.1021/jf0482111.
  • Młyniec, K., B. Budziszewska, W. Reczyński, M. Sowa-Kućma, and G. Nowak. 2013. The role of the GPR39 receptor in zinc deficient-animal model of depression. Behavioural Brain Research 238 (1):30–35. doi: 10.1016/j.bbr.2012.10.020.
  • Momcilović, B., B. Belonje, A. Giroux, and B. G. Shah. 1976. Bioavailability of zinc in milk and soy protein-based infant formulas. The Journal of Nutrition 106 (7):913–7. doi: 10.1093/jn/106.7.913.
  • Netanel, L. G., G. Ochbaum, S. M. Arad, and R. Bitton. 2016. The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions. Carbohydrate Polymers 152:658–64. doi: 10.1016/j.carbpol.2016.07.025.
  • Nissar, J., T. Ahad, H. R. Naik, and S. Z. Hussain. 2017. A review phytic acid: As antinutrient or nutraceutical. Journal of Pharmacognosy and Phytochemistry 6 (6):1554–60.
  • Opoka, W., M. Sowa-Kućma, K. Stachowicz, B. Ostachowicz, M. Szlósarczyk, A. Stypuła, K. Młyniec, A. Maślanka, B. Baś, M. Lankosz, et al. 2010. Early lifetime zinc supplementation protects zinc-deficient diet-induced alterations. Pharmacological Reports 62 (6):1211–17. doi: 10.1016/S1734-1140(10)70384-4.
  • Pang, Z., H. Deeth, and N. Bansal. 2015. Effect of polysaccharides with different ionic charge on the rheological, microstructural and textural properties of acid milk gels. Food Research International 72:62–73. doi: 10.1016/j.foodres.2015.02.009.
  • Perkins, D. J. 1961. Studies on the interaction of zinc, cadmium and mercuric ions with native and chemically modified human serum albumin. The Biochemical Journal 80 (3):668–72. doi: 10.1042/bj0800668.
  • Plum, L. M., L. Rink, and H. Haase. 2010. The essential toxin: Impact of zinc on human health. International Journal of Environmental Research and Public Health 7 (4):1342–65. doi: 10.3390/ijerph7041342.
  • Prasad, A. S. 1995. Zinc: An overview. Nutrition (Burbank, Los Angeles County, CA) 11 (1 Suppl):93–9.
  • Prasad, A. S. 2014. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. Journal of Trace Elements in Medicine and Biology 28 (4):364–71. doi: 10.1016/j.jtemb.2014.07.019.
  • Prasad, A. S., F. Beck, and J. Nowak. 1993. Comparison of absorption of five zinc preparations in humans using oral zinc tolerance test. Journal of Trace Elements in Experimental Medicine 6:109–15.
  • Qin, Y. 1993. The chelating properties of chitosan fibers. Journal of Applied Polymer Science 49 (4):727–31. doi: 10.1002/app.1993.070490418.
  • Qu, X., H. Yang, Z. Yu, B. Jia, H. Qiao, Y. Zheng, and K. Dai. 2020. Serum zinc levels and multiple health outcomes: Implications for zinc-based biomaterials. Bioactive Materials 5 (2):410–22. doi: 10.1016/j.bioactmat.2020.03.006.
  • Rahman, M. M., M. A. Wahed, G. J. Fuchs, A. H. Baqui, and J. O. Alvarez. 2002. Synergistic effect of zinc and vitamin A on the biochemical indexes of vitamin A nutrition in children. The American Journal of Clinical Nutrition 75 (1):92–8. doi:10.1093/ajcn/75.1.92.
  • Rahman, M. T. 2020. Potential benefits of combination of Nigella sativa and Zn supplements to treat COVID-19. Journal of Herbal Medicine 23:100382. doi: 10.1016/j.hermed.2020.100382.
  • Rahman, M. T., and M. M. Karim. 2018. Metallothionein: A potential link in the regulation of zinc in nutritional immunity. Biological Trace Element Research 182 (1):1–13. doi: 10.1007/s12011-017-1061-8.
  • Raúl, E. C., S. R. Drago, D. M. De Greef, R. L. Torres, and R. J. González. 2010. Iron and zinc availability and some physical characteristics from extruded products with added concentrate and hydrolysates from bovine hemoglobin. International Journal of Food Sciences and Nutrition 61 (6):573–82. doi: 10.3109/09637481003649075.
  • Read, S. A., S. Obeid, C. Ahlenstiel, and G. Ahlenstiel. 2019. The role of zinc in antiviral immunity. Advances in Nutrition (Bethesda, MD) 10 (4):696–710. doi: 10.1093/advances/nmz013.
  • Reeves, P. G. 1995. Adaptation responses in rats to long-term feeding of high-zinc diets: Emphasis on intestinal metallothionein. The Journal of Nutritional Biochemistry 6 (1):48–54. doi: 10.1016/0955-2863(94)00008-A.
  • Regmi, D., N. Gautam, A. Shahi, S. Bohara, S. Subedi, and A. Jayan. 2019. Status of serum zinc level in hypothyroid patients with normal serum albumin level: A case control study. Journal of Universal College of Medical Sciences 7 (2):34–38. doi: 10.3126/jucms.v7i2.27135.
  • Richards, M. P. 1989. Recent developments in trace element metabolism and function: Role of metallothionein in copper and zinc metabolism. The Journal of Nutrition 119 (7):1062–70. doi: 10.1093/jn/119.7.1062.
  • Rios-Lugo, M. J., C. Madrigal-Arellano, D. Gaytán-Hernández, H. Hernández-Mendoza, and E. T. Romero-Guzmán. 2020. Association of serum zinc levels in overweight and obesity. Biological Trace Element Research 198 (1):51–7. doi: 10.1007/s12011-020-02060-8.
  • Sajayan, A., G. S. Kiran, S. Priyadharshini, N. Poulose, and J. Selvin. 2017. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environmental Pollution (Barking, Essex: 1987) 228:118–27. doi: 10.1016/j.envpol.2017.05.020.
  • Sandstead, H. H., and J. H. Freeland-Graves. 2014. Dietary phytate, zinc and hidden zinc deficiency. Journal of Trace Elements in Medicine and Biology 28 (4):414–41. doi: 10.1016/j.jtemb.2014.08.011.
  • Sandström, B., and A. Cederblad. 1980. Zinc absorption from composite meals. II. Influence of the main protein source. The American Journal of Clinical Nutrition 33 (8):1778–83. doi: 10.1093/ajcn/33.8.1778.
  • Sauer, A. K., H. Vela, G. Vela, P. Stark, E. Barrera-Juarez, and A. M. Grabrucker. 2020. Zinc deficiency in men over 50 and its implications in prostate disorders. Frontiers in Oncology 10:1293. doi: 10.3389/fonc.2020.01293.
  • Scott, B. J., and A. R. Bradwell. 1983. Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clinical Chemistry 29 (4):629–33. doi: 10.1093/clinchem/29.4.629.
  • Seong, K. M., K. C. Woo, and K. S. Seok. 2013. Analysis of serum zinc and copper concentrations in hair loss. Annals of Dermatology 25 (4):405–9.
  • Sheng, X. Y., K. M. Hambidge, L. V. Miller, J. E. Westcott, S. Lei, and N. F. Krebs. 2009. Measurement of zinc absorption from meals: Comparison of extrinsic zinc labeling and independent measurements of dietary zinc absorption. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition 79 (4):230–37. doi: 10.1024/0300-9831.79.4.230.
  • Sian, L., X. Mingyan, L. V. Miller, L. Tong, N. F. Krebs, and K. M. Hambidge. 1996. Zinc absorption and intestinal losses of endogenous zinc in young Chinese women with marginal zinc intakes. The American Journal of Clinical Nutrition 63 (3):348–53. doi: 10.1093/ajcn/63.3.348.
  • Sigel, H., and R. B. Martin. 2004. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chemical Reviews 82 (4):2089–92.
  • Smith, K. T., M. L. Failla, and R. J. Cousins. 1979. Identification of albumin as the plasma carrier for zinc absorption by perfused rat intestine. The Biochemical Journal 184 (3):627–33. doi: 10.1042/bj1840627.
  • Solomons, N. W. 1979. On the assessment of zinc and copper nutriture in man. The American Journal of Clinical Nutrition 32 (4):856–71. doi: 10.1093/ajcn/32.4.856.
  • Solomons, N. W., R. A. Jacob, O. Pineda, and F. E. Viteri. 1979. Studies on the bioavailability of zinc in man. II. Absorption of zinc from organic and inorganic sources. The Journal of Laboratory and Clinical Medicine 94 (2):335–43.
  • Solomons, N. W., R. L. Rosenfield, R. A. Jacob, and H. H. Sandstead. 1976. Growth retardation and zinc nutrition. Pediatric Research 10 (11):923–7. doi: 10.1203/00006450-197611000-00004.
  • Sonja, S. 2014. Zinc and gastrointestinal disease. World Journal of Gastrointestinal Pathophysiology 5 (4):496–513.
  • Starcher, B. C., C. H. Hill, and J. G. Madaras. 1980. Effect of zinc deficiency on bone collagenase and collagen turnover. The Journal of Nutrition 110 (10):2095–2102. doi: 10.1093/jn/110.10.2095.
  • Stork, M., J. Grijpstra, M. P. Bos, C. Mañas Torres, N. Devos, J. T. Poolman, W. J. Chazin, and J. Tommassen. 2013. Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLoS Pathogens 9 (10):e1003733. doi: 10.1371/journal.ppat.1003733.
  • Suliburska, J., K. Skrypnik, M. Szulińska, J. Kupsz, and P. Bogdański. 2018. Effect of hypotensive therapy combined with modified diet or zinc supplementation on biochemical parameters and mineral status in hypertensive patients. Journal of Trace Elements in Medicine and Biology 47:140–8. doi: 10.1016/j.jtemb.2018.02.016.
  • Szczurek, E. I., C. S. Bjornsson, and C. G. Taylor. 2001. Dietary zinc deficiency and repletion modulate metallothionein immunolocalization and concentration in small intestine and liver of rats. The Journal of Nutrition 131 (8):2132–8. doi: 10.1093/jn/131.8.2132.
  • Taneja, S. K., M. Jain, R. Mandal, and K. Megha. 2012. Excessive zinc in diet induces leptin resistance in Wistar rat through increased uptake of nutrients at intestinal level. Journal of Trace Elements in Medicine and Biology 26 (4):267–72. doi: 10.1016/j.jtemb.2012.03.002.
  • Tang, N., and L. H. Skibsted. 2016. Zinc bioavailability from whey. Enthalpy-entropy compensation in protein binding. Food Research International 89 (Pt 1):749–55. doi: 10.1016/j.foodres.2016.10.002.
  • Tapiero, H., D. M. Townsend, and K. D. Tew. 2003. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomedicine & Pharmacotherapy 57 (9):386–98. doi: 10.1016/S0753-3322(03)00012-X.
  • Tezvergil-Mutluay, A., R. M. Carvalho, and D. H. Pashley. 2010. Pashley. Hyperzincemia from ingestion of denture adhesives. The Journal of Prosthetic Dentistry 103 (6):380–383. doi: 10.1016/S0022-3913(10)60081-9.
  • Tibaduiza, E. C., and D. J. Bobilya. 1996. Zinc transport across an endothelium includes vesicular cotransport with albumin. Journal of Cellular Physiology 167 (3):539–47. doi: 10.1002/(SICI)1097-4652(199606)167:3<539::AID-JCP17>3.0.CO;2-Z.
  • Udechukwu, M. C., S. A. Collins, and C. C. Udenigwe. 2016. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food & Function 7 (10):4137–44. doi: 10.1039/c6fo00706f.
  • Udechukwu, M. C., B. Downey, and C. C. Udenigwe. 2018. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chemistry 240:1227–32. doi: 10.1016/j.foodchem.2017.08.063.
  • Udechukwu, M. C., A. Tsopmo, H. Mawhinney, R. He, P. C. Kienesberger, and C. C. Udenigwe. 2017. Inhibition of ADAM17/TACE activity by zinc-chelating rye secalin-derived tripeptides and analogues. RSC Advances 7 (42):26361–9. doi: 10.1039/C6RA26678A.
  • Uriu-Adams, J. Y., and C. L. Keen. 2010. Zinc and reproduction: Effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Research, Part B. Developmental and Reproductive Toxicology 89 (4):313–25. doi: 10.1002/bdrb.20264.
  • Vallee, B. L., and K. H. Falchuk. 1993. The biochemical basis of zinc physiology. Physiological Reviews 73 (1):79–118. doi: 10.1152/physrev.1993.73.1.79.
  • Vegarud, G. E., T. Langsrud, and C. Svenning. 2000. Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. British Journal of Nutrition 84 (S1):91–98. doi: 10.1017/S0007114500002300.
  • Wang, P. P., Q. Huang, C. Chen, L. J. You, R. H. Liu, Z. G. Luo, M. M. Zhao, and X. Fu. 2019. The chemical structure and biological activities of a novel polysaccharide obtained from Fructus Mori and its zinc derivative. Journal of Functional Foods 54:64–73. doi: 10.1016/j.jff.2019.01.008.
  • Wang, L., and X. Li. 2019. Preparation, physicochemical property and in vitro antioxidant activity of zinc-Hohenbuehelia serotina polysaccharides complex. International Journal of Biological Macromolecules 121:862–9. doi: 10.1016/j.ijbiomac.2018.10.118.
  • Wang, C., B. Li, and J. Ao. 2012. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC-MS/MS. Food Chemistry 134 (2):1231–38. doi: 10.1016/j.foodchem.2012.02.204.
  • Wang, H., B. Liu, X. Yin, L. Guo, W. Jiang, H. Bi, and D. Guo. 2018. Excessive zinc chloride induces murine photoreceptor cell death via reactive oxygen species and mitochondrial signaling pathway. Journal of Inorganic Biochemistry 187:25–32. doi: 10.1016/j.jinorgbio.2018.07.004.
  • Wang, C., B. Li, B. Wang, and N. N. Xie. 2015. Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion. Food Chemistry 173:733–40. doi: 10.1016/j.foodchem.2014.10.066.
  • Wang, R. E., L. Tian, and Y. H. Chang. 2012. A homogeneous fluorescent sensor for human serum albumin. Journal of Pharmaceutical and Biomedical Analysis 63:165–9. doi: 10.1016/j.jpba.2011.12.035.
  • Wang, Y., E. Weisenhorn, C. W. MacDiarmid, C. Andreini, M. Bucci, J. Taggart, L. Banci, J. Russell, J. J. Coon, and D. J. Eide. 2018. The cellular economy of the Saccharomyces cerevisiae zinc proteome. Metallomics: Integrated Biometal Science 10 (12):1755–76. doi: 10.1039/c8mt00269j.
  • Wapnir, R. A. 2000. Zinc deficiency, malnutrition and the gastrointestinal tract. The Journal of Nutrition 130 (5S Suppl):1388S–92S. doi: 10.1093/jn/130.5.1388S.
  • Weaver, B. P., J. Dufner-Beattie, T. Kambe, and G. K. Andrews. 2007. Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biological Chemistry 388 (12):1301–12. doi: 10.1515/BC.2007.149.
  • Wei, Y., and M. Guo. 2014. Zinc-binding sites on selected flavonoids. Biological Trace Element Research 161 (2):223–30. doi: 10.1007/s12011-014-0099-0.
  • Wessells, K. R., J. M. Jorgensen, S. Y. Hess, L. R. Woodhouse, J. M. Peerson, and K. H. Brown. 2010. Plasma zinc concentration responds rapidly to the initiation and discontinuation of short-term zinc supplementation in healthy men. The Journal of Nutrition 140 (12):2128–33. doi: 10.3945/jn.110.122812.
  • Xie, N., J. Huang, B. Li, J. Cheng, Z. Wang, J. Yin, and X. Yan. 2015. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: Possible contribution of characteristic amino acid residues. Food Chemistry 173:210–7. doi: 10.1016/j.foodchem.2014.10.030.
  • Xie, Z., H. Wu, and J. Zhao. 2020. Multifunctional roles of zinc in Alzheimer's disease. NeuroToxicology 80:112–3. doi: 10.1016/j.neuro.2020.07.003.
  • Xue, J., A. Moyer, B. Peng, J. Wu, B. N. Hannafon, and W. Q. Ding. 2014. Chloroquine is a zinc ionophore. PLOS One 9 (10):e109180. doi: 10.1371/journal.pone.0109180.
  • Yadrick, M. K., M. A. Kenney, and E. A. Winterfeldt. 1989. Iron, copper, and zinc status: Response to supplementation with zinc or zinc and iron in adult females. The American Journal of Clinical Nutrition 49 (1):145–50. doi: 10.1093/ajcn/49.1.145.
  • Yasarawan, N., K. Thipyapong, S. Sirichai, and V. Ruangpornvisuti. 2013. Fundamental insights into conformational stability and orbital interactions of antioxidant (+)-catechin species and complexation of (+)-catechin with zinc(II) and oxovanadium(IV). Journal of Molecular Structure 1047 (5):344–57. doi: 10.1016/j.molstruc.2013.05.038.
  • Yonekura, L., and H. Suzuki. 2003. Some polysaccharides improve zinc bioavailability in rats fed a phytic acid-containing diet. Nutrition Research 23 (3):343–55. doi: 10.1016/S0271-5317(02)00538-9.
  • Zackular, J. P., and E. P. Skaar. 2018. The role of zinc and nutritional immunity in Clostridium difficile infection. Gut Microbes 9 (5):469–76. doi: 10.1080/19490976.2018.1448354.
  • Zaichick, V. Y., T. V. Sviridova, and S. V. Zaichick. 1997. Zinc in the human prostate gland: Normal, hyperplastic and cancerous. International Urology & Nephrology 29:565–574. doi: 10.1007/BF02552202.
  • Zhang, C., Z. Gao, C. Hu, J. Zhang, X. Sun, C. Rong, and L. Jia. 2017. Antioxidant, antibacterial and anti-aging activities of intracellular zinc polysaccharides from Grifola frondosa SH-05. International Journal of Biological Macromolecules 95:778–87. doi: 10.1016/j.ijbiomac.2016.12.003.
  • Zhang, J., Z. Ma, L. Zheng, G. Zhai, L. Wang, M. Jia, and L. Jia. 2014. Purification and antioxidant activities of intracellular zinc polysaccharides from Pleurotus cornucopiae SS-03. Carbohydrate Polymers 111:947–54. doi: 10.1016/j.carbpol.2014.04.074.
  • Zhang, M., H. Zhao, Y. Shen, Y. Wang, Z. Zhao, and Y. Zhang. 2020. Preparation, characterization and antioxidant activity evaluation in vitro of Fritillaria ussuriensis polysaccharide-zinc complex. International Journal of Biological Macromolecules 146:462–74. doi: 10.1016/j.ijbiomac.2020.01.002.
  • Zhang, T., E. Kuliyev, D. Sui, and J. Hu. 2019. The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport. The Biochemical Journal 476 (12):1791–1803. doi: 10.1042/BCJ20190108.
  • Zhang, T., D. Sui, and J. Hu. 2016. Structural insights of ZIP4 extracellular domain critical for optimal zinc transport. Nature Communications 7:11979. doi: 10.1038/ncomms11979.
  • Zhang, Y., M. Z. H. Khan, T. Yuan, Y. Zhang, X. Liu, Z. Du, and Y. Zhao. 2019. Preparation and characterization of D. opposita Thunb polysaccharide-zinc inclusion complex and evaluation of anti-diabetic activities. International Journal of Biological Macromolecules 121:1029–36. doi: 10.1016/j.ijbiomac.2018.10.068.
  • Zhu, K. X., X. P. Wang, and X. N. Guo. 2015. Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. Journal of Functional Foods 12:23–32. doi: 10.1016/j.jff.2014.10.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.