527
Views
5
CrossRef citations to date
0
Altmetric
Reviews

An out of box thinking: the changes of iron-porphyrin during meat processing and gastrointestinal tract and some methods for reducing its potential health hazard

, , , , &

References

  • Al-Shura, A. N. 2020. 5 - Hemoglobin. In Advanced hematology in integrated cardiovascular chinese medicine, ed. A. N. Al-Shura, 27–32. San Diego: Academic Press.
  • Amaral, A. B., M. V. d. Silva, and S. C. d. S. Lannes. 2018. Lipid oxidation in meat: Mechanisms and protective factors – A review. Food Science and Technology 38 (suppl 1):1–15. doi: 10.1590/fst.32518.
  • Anderson, C. P., M. Shen, R. S. Eisenstein, and E. A. Leibold. 2012. Mammalian iron metabolism and its control by iron regulatory proteins. Biochimica et Biophysica Acta 1823 (9):1468–83. doi: 10.1016/j.bbamcr.2012.05.010.
  • Baakdah, M. M., and A. Tsopmo. 2016. Identification of peptides, metal binding and lipid peroxidation activities of HPLC fractions of hydrolyzed oat bran proteins. Journal of Food Science and Technology 53 (9):3593–601. doi: 10.1007/s13197-016-2341-6.
  • Bao, X. L., Y. Lv, B. C. Yang, C. G. Ren, and S. T. Guo. 2008. A study of the soluble complexes formed during calcium binding by soybean protein hydrolysates. Journal of Food Science 73 (3):C117–121. doi: 10.1111/j.1750-3841.2008.00673.x.
  • Bao, Y., and P. Ertbjerg. 2019. Effects of protein oxidation on the texture and water-holding of meat: A review. Critical Reviews in Food Science and Nutrition 59 (22):3564–78. doi: 10.1080/10408398.2018.1498444.
  • Battistuzzi, G., C. A. Bortolotti, M. Bellei, G. Di Rocco, J. Salewski, P. Hildebrandt, and M. Sola. 2012. Role of Met80 and Tyr67 in the low-pH conformational equilibria of cytochrome c. Biochemistry 51 (30):5967–78. doi: 10.1021/bi3007302.
  • Baynes, J. W. 2007. Dietary advanced lipid oxidation endproducts are risk factors to human health. Molecular Nutrition & Food Research 51 (9):1102–6.
  • Bechaux, J., D. de La Pomelie, L. Theron, V. Sante-Lhoutellier, and P. Gatellier. 2018. Iron-catalysed chemistry in the gastrointestinal tract: Mechanisms, kinetics and consequences. A review. Food Chemistry 268:27–39. doi: 10.1016/j.foodchem.2018.06.018.
  • Belhaj, K., F. Mansouri, A. Ben Moumen, M. Sindic, M.-L. Fauconnier, M. Boukharta, H. Serghini Caid, and A. Elamrani. 2021. Proximate composition, amino acid profile, and mineral content of four sheep meats reared extensively in Morocco: A comparative study. The Scientific World Journal 2021:1–11. doi: 10.1155/2021/6633774.
  • Bellworthy, J., M. Gledhill, M. Esposito, and E. P. Achterberg. 2017. Abundance of the iron containing biomolecule, heme b, during the progression of a spring phytoplankton bloom in a mesocosm experiment. PLoS One 12 (4):e0176268. doi: 10.1371/journal.pone.0176268.
  • Bendary, E., R. Francis, H. Ali, M. Sarwat, and S. El Hady. 2013. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Sciences 58 (2):173–81. doi: 10.1016/j.aoas.2013.07.002.
  • Bhosale, P. B., S. E. Ha, P. Vetrivel, H. H. Kim, S. M. Kim, and G. S. Kim. 2020. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Translational Cancer Research 9 (12):7619–31. doi: 10.21037/tcr-20-2359.
  • Biesaga, M., K. Pyrzyńska, and M. Trojanowicz. 2000. Porphyrins in analytical chemistry. A review. Talanta 51 (2):209–24. doi: 10.1016/s0039-9140(99)00291-x.
  • Blanco-Rojo, R., and M. P. Vaquero. 2019. Iron bioavailability from food fortification to precision nutrition. Innovative Food Science & Emerging Technologies 51:126–38. doi: 10.1016/j.ifset.2018.04.015.
  • Blinder, S. M. 2021. Chapter 12 - Molecular orbital theory of diatomic molecules. In Introduction to quantum mechanics, ed. S. M. Blinder, 2nd ed., 199–211. San Diego: Academic Press.
  • Bragagnolo, N., B. Danielsen, and L. H. Skibsted. 2006. Combined effect of salt addition and high-pressure processing on formation of free radicals in chicken thigh and breast muscle. European Food Research and Technology 223 (5):669–73. doi: 10.1007/s00217-006-0251-y.
  • Budseekoad, S., C. T. Yupanqui, N. Sirinupong, A. M. Alashi, R. E. Aluko, and W. Youravong. 2018. Structural and functional characterization of calcium and iron-binding peptides from mung bean protein hydrolysate. Journal of Functional Foods 49:333–41. doi: 10.1016/j.jff.2018.07.041.
  • Busuioc, A. C., A.-V. D. Botezatu, B. Furdui, C. Vinatoru, F. Maggi, G. Caprioli, and R.-M. Dinica. 2020. Comparative study of the chemical compositions and antioxidant activities of fresh juices from Romanian cucurbitaceae varieties. Molecules 25 (22):5468. doi: 10.3390/molecules25225468.
  • Byrne, D. V., W. L. P. Bredie, D. S. Mottram, and M. Martens. 2002. Sensory and chemical investigations on the effect of oven cooking on warmed-over flavour development in chicken meat. Meat Science 61 (2):127–39. doi: 10.1016/s0309-1740(01)00171-1.
  • Cai, X., J. Lin, and S. Wang. 2016. Novel peptide with specific calcium-binding capacity from Schizochytrium sp. protein hydrolysates and calcium bioavailability in Caco-2 cells. Marine Drugs 15 (1). doi: 10.3390/md15010003.
  • Campos-Escamilla, C. 2021. Chapter Seven - The role of transferrins and iron-related proteins in brain iron transport: Applications to neurological diseases. In Advances in protein chemistry and structural biology, ed. R. Donev, Vol. 123, 133–62. San Diego: Academic Press.
  • Carlsson, M. L. R., S. Kanagarajan, L. Bulow, and L. H. Zhu. 2020. Plant based production of myoglobin - A novel source of the muscle heme-protein. Scientific Reports 10 (1):920. doi: 10.1038/s41598-020-57565-y.
  • Chen, H. L., X. Z. Lan, Y. Y. Wu, Y. W. Ou, T. C. Chen, and W.-T. Wu. 2017. The antioxidant activity and nitric oxide production of extracts obtained from the leaves of Chenopodium quinoa Willd. BioMedicine 7 (4):24. doi: 10.1051/bmdcn/2017070424.
  • Chen, M. L., P. Ning, Y. Jiao, Z. Xu, and Y. H. Cheng. 2021. Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chemistry 337:128069. doi: 10.1016/j.foodchem.2020.128069.
  • Cheng, J., T. Xu, C. Xun, H. Guo, R. Cao, S. Gao, and W. Sheng. 2021. Carnosic acid protects against ferroptosis in PC12 cells exposed to erastin through activation of Nrf2 pathway. Life Sciences 266:118905. doi: 10.1016/j.lfs.2020.118905.
  • Chiang, V. S., and S. Y. Quek. 2017. The relationship of red meat with cancer: Effects of thermal processing and related physiological mechanisms. Critical Reviews in Food Science and Nutrition 57 (6):1153–73. doi: 10.1080/10408398.2014.967833.
  • Constante, M., G. Fragoso, A. Calve, M. Samba-Mondonga, and M. M. Santos. 2017. Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice. Frontiers in Microbiology 8:1809. doi: 10.3389/fmicb.2017.01809.
  • Cross, A. J., J. M. Harnly, L. M. Ferrucci, A. Risch, S. T. Mayne, and R. Sinha. 2012. Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food and Nutrition Sciences 03 (07):905–13. doi: 10.4236/fns.2012.37120.
  • Cui, X., J. Gong, H. Han, L. He, Y. Teng, T. Tetley, R. Sinharay, K. F. Chung, T. Islam, F. Gilliland, et al. 2018. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. Journal of Thoracic Disease 10 (5):3088–97. doi: 10.21037/jtd.2018.05.92.
  • Czerwonka, M., and A. Tokarz. 2017. Iron in red meat-friend or foe. Meat Science 123:157–65. doi: 10.1016/j.meatsci.2016.09.012.
  • Davies, M. J. 2016. Protein oxidation and peroxidation. The Biochemical Journal 473 (7):805–25. doi: 10.1042/BJ20151227.
  • Dayangac, A., and B. Erdem. 2017. The metabolic relationships between probiotics and fatty acids. Acta Physica Polonica A 132 (3-II):816–18. doi: 10.12693/APhysPolA.132.816.
  • de Oliveira, C. F., A. P. Correa, D. Coletto, D. J. Daroit, F. Cladera-Olivera, and A. Brandelli. 2015. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. Journal of Food Science and Technology 52 (5):2668–78. doi: 10.1007/s13197-014-1317-7.
  • de Vogel, J., D. S. Jonker-Termont, E. M. van Lieshout, M. B. Katan, and R. van der Meer. 2005. Green vegetables, red meat and colon cancer: Chlorophyll prevents the cytotoxic and hyperproliferative effects of haem in rat colon. Carcinogenesis 26 (2):387–93. doi: 10.1093/carcin/bgh331.
  • Domenico, J. D., A. Machado-Lunkes, N. V. Prado, C. I. Weber, and L. Lucchetta. 2021. Reduction of sodium content in pork coppa: Physicochemical, microbiological and sensory evaluation. Scientia Agricola 78 (6):e20200153. doi: 10.1590/1678-992x-2020-0153.
  • Du Toit, A., M. de Wit, G. Osthoff, and A. Hugo. 2018. Relationship and correlation between antioxidant content and capacity, processing method and fruit colour of cactus pear fruit. Food and Bioprocess Technology 11 (8):1527–35. doi: 10.1007/s11947-018-2120-7.
  • Eckert, E., L. Lu, L. D. Unsworth, L. Chen, J. Xie, and R. Xu. 2016. Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. Journal of Functional Foods 25:291–301. doi: 10.1016/j.jff.2016.06.011.
  • Ekmekcioglu, C., P. Wallner, M. Kundi, U. Weisz, W. Haas, and H. P. Hutter. 2018. Red meat, diseases, and healthy alternatives: A critical review. Critical Reviews in Food Science and Nutrition 58 (2):247–61. doi: 10.1080/10408398.2016.1158148.
  • Emerit, J., C. Beaumont, and F. Trivin. 2001. Iron metabolism, free radicals, and oxidative injury. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 55 (6):333–9. doi: 10.1016/s0753-3322(01)00068-3.
  • Estevez, M. 2011. Protein carbonyls in meat systems: A review. Meat Science 89 (3):259–79.
  • Estevez, M., and M. Heinonen. 2010. Effect of phenolic compounds on the formation of alpha-aminoadipic and gamma-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin. Journal of Agricultural and Food Chemistry 58 (7):4448–55. doi: 10.1021/jf903757h.
  • Estevez, M., S. Ventanas, M. Heinonen, and E. Puolanne. 2011. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: Effect of muscle type, premincing, and packaging. Journal of Agricultural and Food Chemistry 59 (10):5435–43. doi: 10.1021/jf104995j.
  • Evcan, E., and S. Gulec. 2020. The development of lentil derived protein-iron complexes and their effects on iron deficiency anemia in vitro. Food & Function 11 (5):4185–92. doi: 10.1039/d0fo00384k.
  • Fan, T., B. Grimm, and G. Layer. 2019. Chapter Four - Porphyrin and heme synthesis. In Advances in botanical research, ed. B. Grimm, Vol. 91, 89–131. San Diego: Academic Press.
  • Farvin, K. H. S., L. L. Andersen, H. H. Nielsen, C. Jacobsen, G. Jakobsen, I. Johansson, and F. Jessen. 2014. Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chemistry 149:326–34. doi: 10.1016/j.foodchem.2013.03.075.
  • Farvin, K. H. S., A. Surendraraj, A. Al-Ghunaim, and F. Al-Yamani. 2019. Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast. Journal of Applied Phycology 31 (4):2653–68. doi: 10.1007/s10811-019-1739-8.
  • Fiorito, V., D. Chiabrando, S. Petrillo, F. Bertino, and E. Tolosano. 2019. The multifaceted role of heme in cancer. Frontiers in Oncology 9 (15):1540. doi: 10.3389/fonc.2019.01540.
  • Floresta, G., A. N. Fallica, G. Romeo, V. Sorrenti, L. Salerno, A. Rescifina, and V. Pittala. 2020. Identification of a potent heme oxygenase-2 (HO-2) inhibitor by targeting the secondary hydrophobic pocket of the HO-2 western region. Bioorganic Chemistry 104:104310. doi: 10.1016/j.bioorg.2020.104310.
  • Foong, L. C., M. U. Imam, and M. Ismail. 2015. Iron-binding capacity of defatted rice bran hydrolysate and bioavailability of iron in Caco-2 cells. Journal of Agricultural and Food Chemistry 63 (41):9029–36. doi: 10.1021/acs.jafc.5b03420.
  • Fruge, A. D., K. S. Smith, A. J. Riviere, W. Demark-Wahnefried, A. E. Arthur, W. M. Murrah, C. D. Morrow, R. D. Arnold, and K. Braxton-Lloyd. 2019. Primary outcomes of a randomized controlled crossover trial to explore the effects of a high chlorophyll dietary intervention to reduce colon cancer risk in adults: The meat and three greens (M3G) feasibility trial. Nutrients 11 (10):2349. doi: 10.3390/nu11102349.
  • Gamage, S. M. K., L. Dissabandara, A. K. Lam, and V. Gopalan. 2018. The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Critical Reviews in Oncology/Hematology 126:121–28. doi: 10.1016/j.critrevonc.2018.03.025.
  • Gan, X., H. Li, Z. Wang, A. M. Emara, D. Zhang, and Z. He. 2019. Does protein oxidation affect proteolysis in low sodium Chinese traditional bacon processing? Meat Science 150:14–22. doi: 10.1016/j.meatsci.2018.10.007.
  • Georgieff, M. K. 2020. Iron deficiency in pregnancy. American Journal of Obstetrics and Gynecology 223 (4):516–24. doi: 10.1016/j.ajog.2020.03.006.
  • Ghisalberti, C. A., E. Falletta, C. Lammi, G. Facchetti, R. Bucci, E. Erba, and S. Pellegrino. 2020. Nonabsorbable iron (III) binding polymers: Synthesis and evaluation of the chelating properties. Polymer Testing 90:106693. doi: 10.1016/j.polymertesting.2020.106693.
  • Gilsing, A. M., F. Fransen, T. M. de Kok, A. R. Goldbohm, L. J. Schouten, A. P. de Bruine, M. van Engeland, P. A. van den Brandt, A. F. de Goeij, and M. P. Weijenberg. 2013. Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis 34 (12):2757–66. doi: 10.1093/carcin/bgt290.
  • Gonzalez, N., M. Marques, M. Nadal, and J. L. Domingo. 2020. Meat consumption: Which are the current global risks? A review of recent (2010-2020) evidences. Food Research International 137:109341. doi: 10.1016/j.foodres.2020.109341.
  • Gorelsky, S. I. 2019. Chapter Six - Quantitative descriptors of electronic structure in the framework of molecular orbital theory. In Advances in inorganic chemistry, ed. R. van Eldik and R. Puchta, Vol. 73, 191–219. San Diego: Academic Press.
  • Gottschalg, E., G. B. Scott, P. A. Burns, and D. E. Shuker. 2006. Potassium diazoacetate-induced p53 mutations in vitro in relation to formation of O6-carboxymethyl- and O6-methyl-2'-deoxyguanosine DNA adducts: Relevance for gastrointestinal cancer. Carcinogenesis 28 (2):356–62. doi: 10.1093/carcin/bgl150.
  • Gueraud, F., S. Tache, J. P. Steghens, L. Milkovic, S. Borovic-Sunjic, N. Zarkovic, E. Gaultier, N. Naud, C. Helies-Toussaint, F. Pierre, et al. 2015. Dietary polyunsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats. Free Radical Biology and Medicine 83:192–200. doi: 10.1016/j.freeradbiomed.2015.02.023.
  • Guo, L., P. A. Harnedy, B. Li, H. Hou, Z. Zhang, X. Zhao, and R. J. FitzGerald. 2014. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science & Technology 37 (2):92–105. doi: 10.1016/j.tifs.2014.02.007.
  • Habeebullah, S. F. K., S. Alagarsamy, Z. Sattari, S. Al-Haddad, S. Fakhraldeen, A. Al-Ghunaim, and F. Al-Yamani. 2021. Effect of enzymatic hydrolysis on the antioxidant activity of red and green seaweeds and characterization of the active extracts. Journal of the American Oil Chemists' Society 98 (2):185–200. doi: 10.1002/aocs.12463.
  • Haschka, D., A. Hoffmann, and G. Weiss. 2021. Iron in immune cell function and host defense. Seminars in Cell & Developmental Biology 115:27–36. doi: 10.1016/j.semcdb.2020.12.005.
  • He, Y. J., X. Y. Liu, L. Xing, X. Wan, X. Chang, and H. L. Jiang. 2020. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials 241:119911. doi: 10.1016/j.biomaterials.2020.119911.
  • Hebelstrup, K. H., A. U. Igamberdiev, and R. D. Hill. 2007. Metabolic effects of hemoglobin gene expression in plants. Gene 398 (1–2):86–93. doi: 10.1016/j.gene.2007.01.039.
  • Hellwig, M. 2019. The chemistry of protein oxidation in food. Angewandte Chemie (International ed. in English) 58 (47):16742–63. doi: 10.1002/anie.201814144.
  • Honikel, K. O. 2008. The use and control of nitrate and nitrite for the processing of meat products. Meat Science 78 (1–2):68–76. doi: 10.1016/j.meatsci.2007.05.030.
  • Hooda, J., A. Shah, and L. Zhang. 2014. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients 6 (3):1080–102. doi: 10.3390/nu6031080.
  • Huang, J., D. Jones, B. Luo, M. Sanderson, J. Soto, E. D. Abel, R. C. Cooksey, and D. A. McClain. 2011. Iron overload and diabetes risk: A shift from glucose to fatty acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes 60 (1):80–7. doi: 10.2337/db10-0593.
  • Huang, Y., N. He, Q. Kang, D. Shen, X. Wang, Y. Wang, and L. Chen. 2019. A carbon dot-based fluorescent nanoprobe for the associated detection of iron ions and the determination of the fluctuation of ascorbic acid induced by hypoxia in cells and in vivo. The Analyst 144 (22):6609–16. doi: 10.1039/c9an01694e.
  • Hughes, R., A. Cross, J. Pollock, and S. Bingham. 2001. Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 22 (1):199–202. doi: 10.1093/carcin/22.1.199.
  • Hur, S. J., Y. Yoon, C. Jo, J. Y. Jeong, and K. T. Lee. 2019. Effect of dietary red meat on colorectal cancer risk-A review. Comprehensive Reviews in Food Science and Food Safety 18 (6):1812–24. doi: 10.1111/1541-4337.12501.
  • Ismail, I., K. Al-Busadah, and S. El-Bahr. 2013. Oxidative stress biomarkers and biochemical profile in broilers chicken fed zinc bacitracin and ascorbic acid under hot climate. American Journal of Biochemistry and Molecular Biology 3 (2):202–14. doi: 10.3923/ajbmb.2013.202.214.
  • Ito, H., H. Kurokawa, and H. Matsui. 2021. Mitochondrial reactive oxygen species and heme, non-heme iron metabolism. Archives of Biochemistry and Biophysics 700:108695. doi: 10.1016/j.abb.2020.108695.
  • Jaiswal, A., R. Bajaj, B. Mann, and K. Lata. 2015. Iron (II)-chelating activity of buffalo αS-casein hydrolysed by corolase PP, alcalase and flavourzyme. Journal of Food Science and Technology 52 (6):3911–18. doi: 10.1007/s13197-014-1626-x.
  • Jiang, H., W. Zhang, F. Chen, J. Zou, W. Chen, and G. Huang. 2019. Purification of an iron-binding peptide from scad (Decapterus maruadsi) processing by-products and its effects on iron absorption by Caco-2 cells. Journal of Food Biochemistry 43 (7):e12876. doi: 10.1111/jfbc.12876.
  • Judkins, T. C., D. L. Archer, D. C. Kramer, and R. J. Solch. 2020. Probiotics, nutrition, and the small intestine. Current Gastroenterology Reports 22 (1):2. doi: 10.1007/s11894-019-0740-3.
  • Keller, J., S. Chevolleau, M.-H. Noguer-Meireles, E. Pujos-Guillot, M. Delosiere, C. Chantelauze, C. Joly, F. Blas-y-Estrada, I. Jouanin, D. Durand, et al. 2020. Heme-iron-induced production of 4-hydroxynonenal in intestinal lumen may have extra-intestinal consequences through protein-adduct formation. Antioxidants 9 (12):1293. doi: 10.3390/antiox9121293.
  • Kristensen, L., and P. P. Purslow. 2001. The effect of processing temperature and addition of mono- and di-valent salts on the heme- nonheme-iron ratio in meat. Food Chemistry 73 (4):433–9. doi: 10.1016/S0308-8146(00)00319-8.
  • Land, E. T. 1990. Free radicals in biology and medicine. International Journal of Radiation Biology 58 (4):725. doi: 10.1080/09553009014552071.
  • Lebrun, F., A. Bazus, P. Dhulster, and D. Guillochon. 1998. Solubility of heme in heme-iron enriched bovine hemoglobin hydrolysates. Journal of Agricultural and Food Chemistry 46 (12):5017–25. doi: 10.1021/jf9805698.
  • Liang, J. Y., L. Han, S. G. Liu, Y. J. Ju, X. Gao, N. B. Li, and H. Q. Luo. 2019. Green fluorescent carbon quantum dots as a label-free probe for rapid and sensitive detection of hematin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 212:167–72. doi: 10.1016/j.saa.2019.01.001.
  • Lieu, P. T., M. Heiskala, P. A. Peterson, and Y. Yang. 2001. The roles of iron in health and disease. Molecular Aspects of Medicine 22 (1–2):1–87. doi: 10.1016/s0098-2997(00)00006-6.
  • Lim, K., K. L. Beck, P. R. Von Hurst, K. J. Rutherfurd-Markwick, and C. E. Badenhorst. 2020. Iron deficiency and risk factors in pre-menopausal females living in Auckland, New Zealand. Asia Pacific Journal of Clinical Nutrition 29 (3):638–47.
  • Lin, Y. J., C. J. Cheng, J. W. Chen, and Z. Lin. 2020. Incorporating exogenous and endogenous exposures into dietary risk assessment of nitrates and nitrites in vegetables: A probabilistic integrated toxicokinetic modeling approach. Journal of Agricultural and Food Chemistry 68 (4):1079–90. doi: 10.1021/acs.jafc.9b06720.
  • Lin, Y. W., and J. Wang. 2013. Structure and function of heme proteins in non-native states: A mini-review. Journal of Inorganic Biochemistry 129:162–71. doi: 10.1016/j.jinorgbio.2013.07.023.
  • Lombardi-Boccia, G., B. Martinez-Dominguez, and A. Aguzzi. 2002. Total heme and non-heme iron in raw and cooked meats. Journal of Food Science 67 (5):1738–41. doi: 10.1111/j.1365-2621.2002.tb08715.x.
  • Lopez, M. A., and F. C. Martos. 2004. Iron availability: An updated review. International Journal of Food Sciences and Nutrition 55 (8):597–606. doi: 10.1080/09637480500085820.
  • Loreal, O., C. Pigeon, Y. Deugnier, and P. Brissot. 2000. Iron metabolism. Gastroenterologie Clinique et Biologique 24 (5 Pt 2):B56–61.
  • Lv, Y., K. Wei, X. Meng, Y. Huang, T. Zhang, and Z. Li. 2017. Separation and identification of iron-chelating peptides from defatted walnut flake by nanoLC-ESI–MS/MS and de novo sequencing. Process Biochemistry 59:223–8. doi: 10.1016/j.procbio.2017.05.010.
  • Ma, G., Z. Wang, H. Chen, Q. Yu, and L. Han. 2021. Effect of low-dose sodium nitrite treatment on the endogenous antioxidant capacity of yak meat during wet curing: Pros and cons. LWT 141:110879. doi: 10.1016/j.lwt.2021.110879.
  • Macho-Gonzalez, A., A. Garcimartin, M. E. Lopez-Oliva, S. Bastida, J. Benedi, G. Ros, G. Nieto, and F. J. Sanchez-Muniz. 2020. Can meat and meat-products induce oxidative stress? Antioxidants (Basel) 9 (7):638. doi: 10.3390/antiox9070638.
  • Mancini, R. A., and R. Ramanathan. 2020. Molecular basis of meat color. In Meat quality analysis, ed. A. K. Biswas and P. K. Mandal, 117–29. San Diego: Academic Press.
  • Mariutti, L. R. B., and N. Bragagnolo. 2017. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Research International (Ottawa, Ont.) 94:90–100. doi: 10.1016/j.foodres.2017.02.003.
  • Mendili, M., M. Bannour, M. E. M. Araujo, M. R. D. Seaward, and A. Khadhri. 2021. Lichenochemical screening and antioxidant capacity of four Tunisian lichen species. Chemistry & Biodiversity 18 (2):e2000735. doi: 10.1002/cbdv.202000735.
  • Min, B., J. C. Cordray, and D. U. Ahn. 2010. Effect of NaCl, myoglobin, Fe(II), and Fe(III) on lipid oxidation of raw and cooked chicken breast and beef loin. Journal of Agricultural and Food Chemistry 58 (1):600–5. doi: 10.1021/jf9029404.
  • Mon, E. E., F.-Y. Wei, R. N. R. Ahmad, T. Yamamoto, T. Moroishi, and K. Tomizawa. 2019. Regulation of mitochondrial iron homeostasis by sideroflexin 2. The Journal of Physiological Sciences: JPS 69 (2):359–73. doi: 10.1007/s12576-018-0652-2.
  • Mozuraityte, R., V. Kristinova, T. Rustad, and I. Storrø. 2016. The role of iron in peroxidation of PUFA: Effect of pH and chelators. European Journal of Lipid Science and Technology 118 (4):658–68. doi: 10.1002/ejlt.201400590.
  • Munekata, P. E. S., M. Pateiro, M. López-Pedrouso, M. Gagaoua, and J. M. Lorenzo. 2021. Foodomics in meat quality. Current Opinion in Food Science 38:79–85. doi: 10.1016/j.cofs.2020.10.003.
  • Ijssennagger, N., M. Derrien, G. M. van Doorn, A. Rijnierse, B. van den Bogert, M. Müller, J. Dekker, M. Kleerebezem, and R. van der Meer. 2012. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLoS One 7 (12):e49868. doi: 10.1371/journal.pone.0049868.
  • Nachtigall, F. M., V. A. S. Vidal, R. D. Pyarasani, R. Dominguez, J. M. Lorenzo, M. A. R. Pollonio, and L. S. Santos. 2019. Substitution effects of NaCl by KCl and CaCl2 on lipolysis of salted meat. Foods 8 (12):595. doi: 10.3390/foods8120595.
  • Nagababu, E., and J. M. Rifkind. 2004. Heme degradation by reactive oxygen species. Antioxidants & Redox Signaling 6 (6):967–78. doi: 10.1089/ars.2004.6.967.
  • Nakamura, M. 2006. Electronic structures of highly deformed iron(III) porphyrin complexes. Coordination Chemistry Reviews 250 (17–18):2271–94. doi: 10.1016/j.ccr.2006.03.001.
  • Nyaisaba, B. M., X. Liu, S. Zhu, X. Fan, L. Sun, S. Hatab, W. Miao, M. Chen, and S. Deng. 2019. Effect of hydroxyl-radical on the biochemical properties and structure of myofibrillar protein from Alaska pollock (Theragra chalcogramma). LWT 106:15–21. doi: 10.1016/j.lwt.2019.02.045.
  • O’Brien, T. X. 2011. Iron metabolism, anemia, and heart failure. Journal of the American College of Cardiology 58 (12):1252–3.
  • O’Connor, L. E., and W. W. Campbell. 2017. Red meat and health. Nutrition Today 52 (4):167–73. doi: 10.1097/NT.0000000000000225.
  • Palika, R., P. C. Mashurabad, M. K. Nair, G. B. Reddy, and R. Pullakhandam. 2015. Characterization of iron-binding phosphopeptide released by gastrointestinal digestion of egg white. Food Research International 67:308–14. doi: 10.1016/j.foodres.2014.11.049.
  • Paliogiannis, P., A. G. Fois, S. Sotgia, A. A. Mangoni, E. Zinellu, P. Pirina, C. Carru, and A. Zinellu. 2018. Circulating malondialdehyde concentrations in patients with stable chronic obstructive pulmonary disease: A systematic review and meta-analysis. Biomarkers in Medicine 12 (7):771–81. doi: 10.2217/bmm-2017-0420.
  • Papanikolaou, G., and K. Pantopoulos. 2005. Iron metabolism and toxicity. Toxicology and Applied Pharmacology 202 (2):199–211. doi: 10.1016/j.taap.2004.06.021.
  • Papuc, C., G. V. Goran, C. N. Predescu, and V. Nicorescu. 2017. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Comprehensive Reviews in Food Science and Food Safety 16 (1):96–123. doi: 10.1111/1541-4337.12241.
  • Philpott, C. C., and S. Jadhav. 2019. The ins and outs of iron: Escorting iron through the mammalian cytosol. Free Radical Biology & Medicine 133:112–7. doi: 10.1016/j.freeradbiomed.2018.10.411.
  • Philpott, C. C., S. J. Patel, and O. Protchenko. 2020. Management versus miscues in the cytosolic labile iron pool: The varied functions of iron chaperones. Biochimica et Biophysica Acta. Molecular Cell Research 1867 (11):118830. doi: 10.1016/j.bbamcr.2020.118830.
  • Phuriyakorn, S., V. Seechamnanturakit, and S. Wichienchot. 2019. Antioxidant and prebiotic gut-microbiota effects of dietary phenolic compounds in Etlingera elatior extracts. International Food Research Journal 26 (6):1751–61.
  • Pisoschi, A. M., A. Pop, F. Iordache, L. Stanca, G. Predoi, and A. I. Serban. 2021. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry 209:112891. doi: 10.1016/j.ejmech.2020.112891.
  • Pizarro, F., M. Olivares, C. Valenzuela, A. Brito, V. Weinborn, S. Flores, and M. Arredondo. 2016. The effect of proteins from animal source foods on heme iron bioavailability in humans. Food Chemistry 196:733–8. doi: 10.1016/j.foodchem.2015.10.012.
  • Ponka, P. 1999. Cell biology of heme. The American Journal of the Medical Sciences 318 (4):241–56. doi: 10.1097/00000441-199910000-00004.
  • Pourkhalili, A., M. Mirlohi, and E. Rahimi. 2013. Heme iron content in lamb meat is differentially altered upon boiling, grilling, or frying as assessed by four distinct analytical methods. TheScientificWorldJournal 2013:374030. doi: 10.1155/2013/374030.
  • Przybyszewska, J., and E. Zekanowska. 2014. The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Przeglad Gastroenterologiczny 9 (4):208–13. doi: 10.5114/pg.2014.45102.
  • Purchas, R. W., J. R. Busboom, and B. H. Wilkinson. 2006. Changes in the forms of iron and in concentrations of taurine, carnosine, coenzyme Q(10), and creatine in beef longissimus muscle with cooking and simulated stomach and duodenal digestion. Meat Science 74 (3):443–9. doi: 10.1016/j.meatsci.2006.03.015.
  • Qian, J., B. P. Sullivan, S. J. Peterson, and C. Berkland. 2017. Nonabsorbable iron binding polymers prevent dietary iron absorption for the treatment of iron overload. ACS Macro Letters 6 (4):350–3. doi: 10.1021/acsmacrolett.6b00945.
  • Quintero-Gutierrez, A. G., G. Gonzalez-Rosendo, J. Sanchez-Munoz, J. Polo-Pozo, and J. J. Rodriguez-Jerez. 2008. Bioavailability of heme iron in biscuit filling using piglets as an animal model for humans. International Journal of Biological Sciences 4 (1):58–62.
  • Ramanathan, R., S. P. Suman, and C. Faustman. 2020. Biomolecular interactions governing fresh meat color in post-mortem skeletal muscle: A review. Journal of Agricultural and Food Chemistry 68 (46):12779–87. doi: 10.1021/acs.jafc.9b08098.
  • Rashidinejad, A., A. Bahrami, A. Rehman, A. Rezaei, A. Babazadeh, H. Singh, and S. M. Jafari. 2020. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition 60:1–25.
  • Rovira, C., K. Kunc, J. Hutter, P. Ballone, and M. Parrinello. 1997. Equilibrium geometries and electronic structure of iron − porphyrin complexes: A density functional study. The Journal of Physical Chemistry A 101 (47):8914–25. doi: 10.1021/jp9722115.
  • Roy, U., and D. Kornitzer. 2019. Heme-iron acquisition in fungi. Current Opinion in Microbiology 52:77–83. doi: 10.1016/j.mib.2019.05.006.
  • Santé-Lhoutellier, V., T. Astruc, P. Marinova, E. Greve, and P. Gatellier. 2008. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. Journal of Agricultural and Food Chemistry 56 (4):1488–94. doi: 10.1021/jf072999g.
  • Scherbinina, S. P., E. A. Romanova, A. A. Levina, Y. I. Mamukova, and M. M. Tsibulskaya. 2005. Diagnostic value of a complex study of iron metabolism in clinical practice. Gematologiya I Transfuziologiya 50 (5):23–8.
  • Seiwert, N., D. Heylmann, S. Hasselwander, and J. Fahrer. 2020. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochimica et Biophysica Acta. Reviews on Cancer 1873 (1):188334. doi: 10.1016/j.bbcan.2019.188334.
  • Serai, S. D., H. J. Otero, and J. L. Kwiatkowski. 2020. Chapter 26 - Physical and physiological properties of iron. In Advances in magnetic resonance technology and applications, ed. N. Seiberlich, V. Gulani, F. Calamante, A. Campbell-Washburn, M. Doneva, H. H. Hu, and S. Sourbron, Vol. 1, 681–93. San Diego: Academic Press.
  • Shubham, K., T. Anukiruthika, S. Dutta, A. V. Kashyap, J. A. Moses, and C. Anandharamakrishnan. 2020. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science & Technology 99:58–75. doi: 10.1016/j.tifs.2020.02.021.
  • Smirnoff, N. 2018. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radical Biology & Medicine 122:116–29. doi: 10.1016/j.freeradbiomed.2018.03.033.
  • Smith, K. S., S. V. Raney, M. W. Greene, and A. D. Fruge. 2019. Development and validation of the dietary habits and colon cancer beliefs survey (DHCCBS): An instrument assessing health beliefs related to red meat and green leafy vegetable consumption. Journal of Oncology 2019:2326808. doi: 10.1155/2019/2326808.
  • Soglia, F., G. Baldi, and M. Petracci. 2020. Effect of the exposure to oxidation and malondialdehyde on turkey and rabbit meat protein oxidative stability. Journal of Food Science 85 (10):3229–36. doi: 10.1111/1750-3841.15403.
  • Soladoye, O. P., M. L. Juarez, J. L. Aalhus, P. Shand, and M. Estevez. 2015. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comprehensive Reviews in Food Science and Food Safety 14 (2):106–22. doi: 10.1111/1541-4337.12127.
  • Souza, M. A., J. V. Visentainer, R. H. Carvalho, F. Garcia, E. I. Ida, and M. Shimokomaki. 2013. Lipid and protein oxidation in charqui meat and jerked beef. Brazilian Archives of Biology and Technology 56 (1):107–12. doi: 10.1590/S1516-89132013000100014.
  • Span, K., J. J. F. Verhoef, H. Hunt, C. F. van Nostrum, V. Brinks, H. Schellekens, and W. E. Hennink. 2016. A novel oral iron-complex formulation: Encapsulation of hemin in polymeric micelles and its in vitro absorption. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 108:226–34. doi: 10.1016/j.ejpb.2016.09.002.
  • Staroń, R., P. Lipiński, M. Lenartowicz, A. Bednarz, A. Gajowiak, E. Smuda, W. Krzeptowski, M. Pieszka, T. Korolonek, I. Hamza, et al. 2017. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption. PLoS One 12 (7):e0181117. doi: 10.1371/journal.pone.0181117.
  • Stephanos, J. J., and A. W. Addison. 2017. Chapter 6 - Molecular orbital theory. In Electrons, atoms, and molecules in inorganic, ed. J. J. Stephanos and A. W. Addison, 331–401. San Diego: Academic Press.
  • Sui, M., F. Li, and S. Wang. 2021. Study on antioxidation mechanism of biodiesel ionic liquid antioxidant MI C6H2(OH)(3)COO. Renewable Energy. 165:565–72. doi: 10.1016/j.renene.2020.10.098.
  • Suman, S. P., and P. Joseph. 2013. Myoglobin chemistry and meat color. Annual Review of Food Science and Technology 4:79–99. doi: 10.1146/annurev-food-030212-182623.
  • Sun, N., P. Cui, Z. Jin, H. Wu, Y. Wang, and S. Lin. 2017. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chemistry 230:627–36. doi: 10.1016/j.foodchem.2017.03.077.
  • Sun, N., P. Cui, S. Lin, C. Yu, Y. Tang, Y. Wei, Y. Xiong, and H. Wu. 2017. Characterization of sea cucumber (Stichopus japonicus) ovum hydrolysates: Calcium chelation, solubility and absorption into intestinal epithelial cells. Journal of the Science of Food and Agriculture 97 (13):4604–11. doi: 10.1002/jsfa.8330.
  • Sun, Y., P. Sun, and W. Guo. 2021. Fluorescent probes for iron, heme, and related enzymes. Coordination Chemistry Reviews 429:213645.
  • Tan, B., B. Sun, N. Sun, C. Li, J. Zhang, and W. Yang. 2021. Structure, functional properties and iron bioavailability of Pneumatophorus japonicus myoglobin and its glycosylation products. International Journal of Biological Macromolecules 173:524–31. doi: 10.1016/j.ijbiomac.2021.01.138.
  • Terpou, A., A. Papadaki, I. K. Lappa, V. Kachrimanidou, L. A. Bosnea, and N. Kopsahelis. 2019. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11 (7):1591. doi: 10.3390/nu11071591.
  • Thøgersen, R., and H. C. Bertram. 2021. Reformulation of processed meat to attenuate potential harmful effects in the gastrointestinal tract – A review of current knowledge and evidence of health prospects. Trends in Food Science & Technology 108:111–8. doi: 10.1016/j.tifs.2020.12.015.
  • Timoshnikov, V. A., T. V. Kobzeva, N. E. Polyakov, and G. J. Kontoghiorghes. 2020. Redox interactions of vitamin C and iron: Inhibition of the pro-oxidant activity by deferiprone. International Journal of Molecular Sciences 21 (11):3967. doi: 10.3390/ijms21113967.
  • Tipsuwan, W., and W. Chaiwangyen. 2018. Preventive effects of polyphenol-rich perilla leaves on oxidative stress and haemolysis. ScienceAsia 44 (3):162–9. doi: 10.2306/scienceasia1513-1874.2018.44.162.
  • Tomasello, G., A. Sorce, P. Damiani, E. Sinagra, and F. Carini. 2017. The importance of intestinal microbial flora (microbiota) and role of diet. Progress in Nutrition 19 (3):342–4.
  • Torti, S. V., and F. M. Torti. 2020. Iron: The cancer connection. Molecular Aspects of Medicine 75:100860. doi: 10.1016/j.mam.2020.100860.
  • Tsikas, D. 2017. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry 524:13–30. doi: 10.1016/j.ab.2016.10.021.
  • Turhan, S., N. S. Ustun, and T. B. Altunkaynak. 2004. Effect of cooking methods on total and heme iron contents of anchovy (Engraulis encrasicholus). Food Chemistry 88 (2):169–72. doi: 10.1016/j.foodchem.2004.01.026.
  • Utrera, M., M. Armenteros, S. Ventanas, F. Solano, and M. Estevez. 2012. Pre-freezing raw hams affects quality traits in cooked hams: Potential influence of protein oxidation. Meat Science 92 (4):596–603. doi: 10.1016/j.meatsci.2012.06.005.
  • Utrera, M., V. Parra, and M. Estevez. 2014. Protein oxidation during frozen storage and subsequent processing of different beef muscles. Meat Science 96 (2 Pt A):812–20. doi: 10.1016/j.meatsci.2013.09.006.
  • Vaghefi, N., F. Nedjaoum, D. Guillochon, F. Bureau, P. Arhan, and D. Bouglé. 2002. Influence of the extent of hemoglobin hydrolysis on the digestive absorption of heme iron. An in vitro study. Journal of Agricultural and Food Chemistry 50 (17):4969–73. doi: 10.1021/jf0109165.
  • Valenzuela, C., D. L. de Romana, M. Olivares, M. S. Morales, and F. Pizarro. 2009. Total iron and heme iron content and their distribution in beef meat and viscera. Biological Trace Element Research 132 (1–3):103–11. doi: 10.1007/s12011-009-8400-3.
  • van Maanen, J. M., A. A. van Geel, and J. C. Kleinjans. 1996. Modulation of nitrate-nitrite conversion in the oral cavity. Cancer Detection and Prevention 20 (6):590–96.
  • Volk, J., S. Gorelik, R. Granit, R. Kohen, and J. Kanner. 2009. The dual function of nitrite under stomach conditions is modulated by reducing compounds. Free Radical Biology & Medicine 47 (5):496–502. doi: 10.1016/j.freeradbiomed.2009.04.012.
  • Wagner, K. R., F. R. Sharp, T. D. Ardizzone, A. Lu, and J. F. Clark. 2003. Heme and iron metabolism: Role in cerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 23 (6):629–52. doi: 10.1097/01.WCB.0000073905.87928.6D.
  • Wakamatsu, J. I., H. Kawazoe, M. Ohya, T. Hayakawa, and H. Kumura. 2020. Improving the color of meat products without adding nitrite/nitrate using high zinc protoporphyrin IX-forming microorganisms. Meat Science 161:107989. doi: 10.1016/j.meatsci.2019.107989.
  • Walters, M. E., R. Esfandi, and A. Tsopmo. 2018. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods 7 (10):172. doi: 10.3390/foods7100172.
  • Wang, T., S. Lin, P. Cui, Z. Bao, K. Liu, P. Jiang, B. Zhu, and N. Sun. 2020. Antarctic krill derived peptide as a nanocarrier of iron through the gastrointestinal tract. Food Bioscience 36:100657. doi: 10.1016/j.fbio.2020.100657.
  • Wang, Z., N. Bergeron, B. S. Levison, X. S. Li, S. Chiu, X. Jia, R. A. Koeth, L. Li, Y. Wu, W. H. W. Tang, et al. 2019. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. European Heart Journal 40 (7):583–94. doi: 10.1093/eurheartj/ehy799.
  • Weinborn, V., C. Valenzuela, M. Olivares, M. Arredondo, R. Weill, and F. Pizarro. 2017. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans. Food & Function 8 (5):1994–9. doi: 10.1039/c6fo01833e.
  • Wu, W., Y. Yang, N. Sun, Z. Bao, and S. Lin. 2020. Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Research International (Ottawa, Ont.) 131:108976. doi: 10.1016/j.foodres.2020.108976.
  • Xiong, Y. L., S. P. Blanchard, T. Ooizumi, and Y. Ma. 2010. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein. Journal of Food Science 75 (2):C215–21. doi: 10.1111/j.1750-3841.2009.01511.x.
  • Xu, X., W. Hu, S. Zhou, C. Tu, X. Xia, J. Zhang, and M. Dong. 2019. Increased phenolic content and enhanced antioxidant activity in fermented glutinous rice supplemented with Fu Brick tea. Molecules 24 (4):671. doi: 10.3390/molecules24040671.
  • Yanatori, I., D. R. Richardson, S. Toyokuni, and F. Kishi. 2019. How iron is handled in the course of heme catabolism: Integration of heme oxygenase with intracellular iron transport mechanisms mediated by poly (rC)-binding protein-2. Archives of Biochemistry and Biophysics 672:108071. doi: 10.1016/j.abb.2019.108071.
  • Zhang, J., and I. Hamza. 2019. Zebrafish as a model system to delineate the role of heme and iron metabolism during erythropoiesis. Molecular Genetics and Metabolism 128 (3):204–12. doi: 10.1016/j.ymgme.2018.12.007.
  • Zhang, J., Y. Lu, Y. Wang, X. Ren, and J. Han. 2018. The impact of the intestinal microbiome on bone health. Intractable & Rare Diseases Research 7 (3):148–55. doi: 10.5582/irdr.2018.01055.
  • Zhang, L., Y. Wu, H. Xu, and Y. Yao. 2017. Effects of oxidized konjac glucomannan on the intestinal microbial flora and intestinal morphology of Schizothorax prenanti. Aquaculture International 25 (1):233–50. doi: 10.1007/s10499-016-0025-x.
  • Zhang, M., W. Yan, D. Wang, and W. Xu. 2021. Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat. Animal Bioscience 34 (8):1382–91. doi: 10.5713/ajas.20.0529.
  • Zhang, T., Y. Li, M. Miao, and B. Jiang. 2011. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chemistry 128 (1):28–33. doi: 10.1016/j.foodchem.2011.02.072.
  • Zhou, F., S. Jongberg, M. Zhao, W. Sun, and L. H. Skibsted. 2019. Antioxidant efficiency and mechanisms of green tea, rosemary or maté extracts in porcine Longissimus dorsi subjected to iron-induced oxidative stress. Food Chemistry 298:125030. doi: 10.1016/j.foodchem.2019.125030.
  • Zhou, S., H. Zou, G. Huang, and G. Chen. 2021. Preparations and antioxidant activities of sesamol and it's derivatives. Bioorganic & Medicinal Chemistry Letters 31:127716. doi: 10.1016/j.bmcl.2020.127716.
  • Zhu, D., Y. Ma, S. Ding, H. Jiang, and J. Fang. 2018. Effects of melatonin on intestinal microbiota and oxidative stress in colitis mice. BioMed Research International 2018:2607679. doi: 10.1155/2018/2607679.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.