2,695
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends

, , &

References

  • Acevedo, N. C., and A. G. Marangoni. 2010. Characterization of the nanoscale in triacylglycerol crystal networks. Crystal Growth & Design 10 (8):3327–33. doi: 10.1021/cg100468e.
  • Balcaen, M., J. Steyls, A. Schoeppe, V. Nelis, and P. Van der Meeren. 2021. Phosphatidylcholine-depleted lecithin: A clean-label low-HLB emulsifier to replace PGPR in w/o and w/o/w emulsions. Journal of Colloid and Interface Science 581 (Pt B):836–46. doi: 10.1016/j.jcis.2020.07.149.
  • Barden, L., and E. A. Decker. 2016. Lipid oxidation in low-moisture food: A review. Critical Reviews in Food Science and Nutrition 56 (15):2467–82. doi: 10.1080/10408398.2013.848833.
  • Bari, V. D., W. Macnaughtan, J. Norton, A. Sullo, and I. Norton. 2017. Crystallisation in water-in-cocoa butter emulsions: Role of the dispersed phase on fat crystallisation and polymorphic transition. Food Structure 12:82–93. doi: 10.1016/j.foostr.2016.10.001.
  • Berton-Carabin, C. C., M.-H. Ropers, and C. Genot. 2014. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety 13 (5):945–77. doi: 10.1111/1541-4337.12097.
  • Berton-Carabin, C. C., L. Sagis, and K. Schroen. 2018. Formation, structure, and functionality of interfacial layers in food emulsions. Annual Review of Food Science and Technology 9:551–87. doi: 10.1146/annurev-food-030117-012405.
  • Berton-Carabin, C. C., and K. Schroen. 2015. Pickering emulsions for food applications: Background, trends, and challenges. Annual Review of Food Science and Technology 6 (1):263–97. doi: 10.1146/annurev-food-081114-110822.
  • Bhatti, H. S., N. Khalid, K. Uemura, M. Nakajima, and I. Kobayashi. 2017. Formulation and characterization of food grade water-in-oil emulsions encapsulating mixture of essential amino acids. European Journal of Lipid Science and Technology 119 (6):1600202. doi: 10.1002/ejlt.201600202.
  • Cai, Z.-z., H.-f. Wang, W.-z. Li, W. J. Lee, W. Li, Y. Wang, and Y. Wang. 2020. Preparation of l-α-glyceryl phosphorylcholine by hydrolysis of soy lecithin using phospholipase A1 in a novel solvent-free water in oil system. LWT 129:109562. doi: 10.1016/j.lwt.2020.109562.
  • Cao, Y. P., and R. Mezzenga. 2020. Design principles of food gels. Nature Food 1 (2):106–18. doi: 10.1038/s43016-019-0009-x.
  • Chen, B. C., D. J. McClements, and E. A. Decker. 2011. Minor components in food oils: A critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions. Critical Reviews in Food Science and Nutrition 51 (10):901–16. doi: 10.1080/10408398.2011.606379.
  • Chen, B. C., D. J. McClements, and E. A. Decker. 2013. CHAPTER 3 - Oxidation in different food matrices: How physical structure impacts lipid oxidation in oil-in-water emulsions and bulk oils. In Lipid oxidation: Challenges in food systems, ed. A. Logan, U. Nienaber, and X. Pan, 129–54. Amsterdam: Elsevier Science.
  • Chen, J. S., and J. R. Stokes. 2012. Rheology and tribology: Two distinctive regimes of food texture sensation. Trends in Food Science & Technology 25 (1):4–12. doi: 10.1016/j.tifs.2011.11.006.
  • Costa, M., J. Freiria-Gandara, S. Losada-Barreiro, F. Paiva-Martins, and C. Bravo-Diaz. 2020. Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. Journal of Colloid and Interface Science 562:352–62. doi: 10.1016/j.jcis.2019.12.011.
  • Costa, C., B. Medronho, A. Filipe, I. Mira, B. Lindman, H. Edlund, and M. Norgren. 2019. Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers 11 (10):1570. doi: 10.3390/polym11101570.
  • da Silva, T. L. T., D. B. Arellano, and S. Martini. 2019. Effect of water addition on physical properties of emulsion gels. Food Biophysics 14 (1):30–40. doi: 10.1007/s11483-018-9554-3.
  • da Silva, T. L. T., K. F. Chaves, G. D. Fernandes, J. B. Rodrigues, H. M. A. Bolini, and D. B. Arellano. 2018. Sensory and technological evaluation of margarines with reduced saturated fatty acid contents using oleogel technology. Journal of the American Oil Chemists' Society 95 (6):673–85. doi: 10.1002/aocs.12074.
  • Decker, E. A., D. J. McClements, C. Bourlieu-Lacanal, E. Durand, M. C. Figueroa-Espinoza, J. Lecomte, and P. Villeneuve. 2017. Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Trends in Food Science & Technology 67:183–94. doi: 10.1016/j.tifs.2017.07.001.
  • Degner, B. M., C. Chung, V. Schlegel, R. Hutkins, and D. J. McClements. 2014. Factors influencing the freeze-thaw stability of emulsion-based foods. Comprehensive Reviews in Food Science and Food Safety 13 (2):98–113. doi: 10.1111/1541-4337.12050.
  • Dridi, W., W. Essafi, M. Gargouri, F. Leal-Calderon, and M. Cansell. 2016. Influence of formulation on the oxidative stability of water-in-oil emulsions. Food Chemistry 202:205–11. doi: 10.1016/j.foodchem.2016.01.145.
  • Duffus, L. J., J. E. Norton, P. Smith, I. T. Norton, and F. Spyropoulos. 2016. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions. Journal of Colloid and Interface Science 473:9–21. doi: 10.1016/j.jcis.2016.03.060.
  • Elmotasem, H., H. K. Farag, and A. A. A. Salama. 2018. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula - Containing wheat germ oil and stabilized by magnesium oxide nanoparticles. International Journal of Pharmaceutics 547 (1–2):83–96. doi: 10.1016/j.ijpharm.2018.05.038.
  • Finkle, P., H. D. Draper, and J. H. Hildebrand. 1923. The theory of emulsification1. Journal of the American Chemical Society 45 (12):2780–8. doi: 10.1021/ja01665a002.
  • Frankel, E. N., S.-W. Huang, J. Kanner, and J. B. German. 1994. Interfacial phenomena in the evaluation of antioxidants: Bulk oils vs emulsions. Journal of Agricultural and Food Chemistry 42 (5):1054–9. doi: 10.1021/jf00041a001.
  • Frasch-Melnik, S., I. T. Norton, and F. Spyropoulos. 2010. Fat-crystal stabilised w/o emulsions for controlled salt release. Journal of Food Engineering 98 (4):437–42. doi: 10.1016/j.jfoodeng.2010.01.025.
  • Frasch-Melnik, S., F. Spyropoulos, and I. T. Norton. 2010. W1/O/W2 double emulsions stabilised by fat crystals-formulation, stability and salt release. Journal of Colloid and Interface Science 350 (1):178–85. doi: 10.1016/j.jcis.2010.06.039.
  • Fredrick, E., P. Walstra, and K. Dewettinck. 2010. Factors governing partial coalescence in oil-in-water emulsions. Advances in Colloid and Interface Science 153 (1–2):30–42. doi: 10.1016/j.cis.2009.10.003.
  • Fritsch, C. W. 1994. Lipid oxidation - the other dimensions. Inform 5 (4):423–36.
  • Ghosh, S., and D. Rousseau. 2009. Freeze-thaw stability of water-in-oil emulsions. Journal of Colloid and Interface Science 339 (1):91–102. doi: 10.1016/j.jcis.2009.07.047.
  • Ghosh, S., and D. Rousseau. 2011. Fat crystals and water-in-oil emulsion stability. Current Opinion in Colloid & Interface Science 16 (5):421–31. doi: 10.1016/j.cocis.2011.06.006.
  • Ghosh, S., and D. Rousseau. 2012. Triacylglycerol interfacial crystallization and shear structuring in water-in-oil emulsions. Crystal Growth & Design 12 (10):4944–54. doi: 10.1021/cg300872m.
  • Ghosh, S., T. Tran, and D. Rousseau. 2011. Comparison of Pickering and network stabilization in water-in-oil emulsions. Langmuir 27 (11):6589–97. doi: 10.1021/la200065y.
  • Goibier, L., C. Pillement, J. Monteil, C. Faure, and F. Leal-Calderon. 2020. Preparation of multiple water-in-oil-in-water emulsions without any added oil-soluble surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 590:124492. doi: 10.1016/j.colsurfa.2020.124492.
  • Gomes, A., A. L. R. Costa, F. D. Perrechil, and R. L. da Cunha. 2016. Role of the phases composition on the incorporation of gallic acid in O/W and W/O emulsions. Journal of Food Engineering 168:205–14. doi: 10.1016/j.jfoodeng.2015.07.041.
  • Gómez-Estaca, J., A. M. Herrero, B. Herranz, M. D. Álvarez, F. Jiménez-Colmenero, and S. Cofrades. 2019. Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocolloids 87:960–9. doi: 10.1016/j.foodhyd.2018.09.029.
  • Gülseren, I., and M. Corredig. 2012. Interactions at the interface between hydrophobic and hydrophilic emulsifiers: Polyglycerol polyricinoleate (PGPR) and milk proteins, studied by drop shape tensiometry. Food Hydrocolloids 29 (1):193–8. doi: 10.1016/j.foodhyd.2012.03.010.
  • Gülseren, I., and M. Corredig. 2014. Interactions between polyglycerol polyricinoleate (PGPR) and pectins at the oil-water interface and their influence on the stability of water-in-oil emulsions. Food Hydrocolloids 34 (1):154–60. doi: 10.1016/j.foodhyd.2012.11.015.
  • Guzun-Cojocaru, T., C. Koev, M. Yordanov, T. Karbowiak, E. Cases, and P. Cayot. 2011. Oxidative stability of oil-in-water emulsions containing iron chelates: Transfer of iron from chelates to milk proteins at interface. Food Chemistry 125 (2):326–33. doi: 10.1016/j.foodchem.2010.08.004.
  • He, W., Y. N. Tan, Z. Q. Tian, L. Y. Chen, F. Q. Hu, and W. Wu. 2011. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: Preparation, in vitro characterization, and pharmacokinetics in rats. International Journal of Nanomedicine 6:521–33. doi: 10.2147/ijn.S17282.
  • Hopia, A. I., S. W. Huang, K. Schwarz, J. B. German, and E. N. Frankel. 1996. Effect of different lipid systems on antioxidant activity of rosemary constituents carnosol and carnosic acid with and without α-tocopherol. Journal of Agricultural and Food Chemistry 44 (8):2030–6. doi: 10.1021/jf950777p.
  • Iqbal, S., G. Hameed, M. K. Baloch, and D. J. McClements. 2012. Formation of semi-solid lipid phases by aggregation of protein microspheres in water-in-oil emulsions. Food Research International 48 (2):544–50. doi: 10.1016/j.foodres.2012.04.020.
  • Iqbal, S., G. Hameed, M. K. Baloch, and D. J. McClements. 2013a. Structuring lipids by aggregation of acidic protein microspheres in W/O emulsions. LWT - Food Science and Technology 51 (1):16–22. doi: 10.1016/j.lwt.2012.10.014.
  • Iqbal, S., G. Hameed, M. K. Baloch, and D. J. McClements. 2013b. Structuring of lipid phases using controlled heteroaggregation of protein microspheres in water-in-oil emulsions. Journal of Food Engineering 115 (3):314–21. doi: 10.1016/j.jfoodeng.2012.10.044.
  • Iqbal, S., Z. C. Xu, H. Huang, and X. D. Chen. 2019a. Controlling the rheological properties of oil phases using controlled protein-polysaccharide aggregation and heteroaggregation in water-in-oil emulsions. Food Hydrocolloids 96:278–87. doi: 10.1016/j.foodhyd.2019.05.028.
  • Iqbal, S., Z. C. Xu, H. Huang, and X. D. Chen. 2019b. Structuring of water-in-oil emulsions using controlled aggregation of polysaccharide in aqueous phases. Journal of Food Engineering 258:34–44. doi: 10.1016/j.jfoodeng.2019.04.008.
  • Kargar, M., K. Fayazmanesh, M. Alavi, F. Spyropoulos, and I. T. Norton. 2012. Investigation into the potential ability of Pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. Journal of Colloid and Interface Science 366 (1):209–15. doi: 10.1016/j.jcis.2011.09.073.
  • Kellerby, S. S., D. J. McClements, and E. A. Decker. 2006. Role of proteins in oil-in-water emulsions on the stability of lipid hydroperoxides. Journal of Agricultural and Food Chemistry 54 (20):7879–84. doi: 10.1021/jf061340s.
  • Kim, T. S., E. A. Decker, and J. Lee. 2012. Antioxidant capacities of α-tocopherol, trolox, ascorbic acid, and ascorbyl palmitate in riboflavin photosensitized oil-in-water emulsions. Food Chemistry 133 (1):68–75. doi: 10.1016/j.foodchem.2011.12.069.
  • Klibanov, A. M. 2001. Improving enzymes by using them in organic solvents. Nature 409 (6817):241–6. doi: 10.1038/35051719.
  • Klojdová, I., Y. Troshchynska, and J. Štětina. 2018. Influence of carrageenan on the preparation and stability of w/o/w double milk emulsions. International Dairy Journal 87:54–9. doi: 10.1016/j.idairyj.2018.06.001.
  • Kumar, H., and V. Kumar. 2018. Preparation of water-in-diesel oil nano-emulsion using nonionic surfactants with enhanced stability and flow properties. Journal of Dispersion Science and Technology 39 (4):560–70. doi: 10.1080/01932691.2017.1336451.
  • Kundu, P., K. Arora, Y. Gu, V. Kumar, and I. M. Mishra. 2019. Formation and stability of water-in-oil nano-emulsions with mixed surfactant using in-situ combined condensation-dispersion method. The Canadian Journal of Chemical Engineering 97 (7):2039–49. doi: 10.1002/cjce.23481.
  • Laguerre, M., C. Bayrasy, A. Panya, J. Weiss, D. J. McClements, J. Lecomte, E. A. Decker, and P. Villeneuve. 2015. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Critical Reviews in Food Science and Nutrition 55 (2):183–201. doi: 10.1080/10408398.2011.650335.
  • Laguerre, M., A. Bily, M. Roller, and S. Birtic. 2017. Mass transport phenomena in lipid oxidation and antioxidation. Annual Review of Food Science and Technology 8 (1):391–411. doi: 10.1146/annurev-food-030216-025812.
  • Laguerre, M., B. Chen, J. Lecomte, P. Villeneuve, D. J. McClements, and E. A. Decker. 2011. Antioxidant properties of chlorogenic acid and its alkyl esters in stripped corn oil in combination with phospholipids and/or water. Journal of Agricultural and Food Chemistry 59 (18):10361–6. doi: 10.1021/jf2026742.
  • Laguerre, M., L. J. Lopez Giraldo, J. Lecomte, M. C. Figueroa-Espinoza, B. Baréa, J. Weiss, E. A. Decker, and P. Villeneuve. 2010. Relationship between hydrophobicity and antioxidant ability of "phenolipids" in emulsion: A parabolic effect of the chain length of rosmarinate esters. Journal of Agricultural and Food Chemistry 58 (5):2869–76. doi: 10.1021/jf904119v.
  • Lee, K. Y., J. J. Blaker, R. Murakami, J. Y. Heng, and A. Bismarck. 2014. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir 30 (2):452–60. doi: 10.1021/la4032514.
  • Lee, M. C., C. Tan, R. Ravanfar, and A. Abbaspourrad. 2019. Ultrastable water-in-oil high internal phase emulsions featuring interfacial and biphasic network stabilization. ACS Applied Materials & Interfaces 11 (29):26433–41. doi: 10.1021/acsami.9b05089.
  • Lee, S. J., S. J. Choi, Y. Li, E. A. Decker, and D. J. McClements. 2011. Protein-stabilized nanoemulsions and emulsions: Comparison of physicochemical stability, lipid oxidation, and lipase digestibility. Journal of Agricultural and Food Chemistry 59 (1):415–27. doi: 10.1021/jf103511v.
  • Li, J. L., Z. H. Qiao, E. Tatsumi, M. Saito, Y. Q. Cheng, and L. J. Yin. 2013. A novel approach to improving the quality of bittern-solidified tofu by W/O controlled-release coagulant. 1: Preparation of W/O bittern coagulant and its controlled-release property. Food and Bioprocess Technology 6 (7):1790–800. doi: 10.1007/s11947-012-0896-4.
  • Liu, J., Y. S. Guo, X. Z. Li, T. L. Si, D. J. McClements, and C. G. Ma. 2019. Effects of chelating agents and salts on interfacial properties and lipid oxidation in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 67 (49):13718–27. doi: 10.1021/acs.jafc.8b05867.
  • Lucassen-Reynders, E. H., and M. V. D. Tempel. 1963. Stabilization of water-in-oil emulsions by solid particles. The Journal of Physical Chemistry 67 (4):731–4. doi: 10.1021/j100798a002.
  • Luo, S. Z., X. F. Hu, L. H. Pan, Z. Zheng, Y. Y. Zhao, L. L. Cao, M. Pang, Z. G. Hou, and S. T. Jiang. 2019. Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chemistry 276:209–17. doi: 10.1016/j.foodchem.2018.09.161.
  • Luo, Z. J., B. S. Murray, A. Yusoff, M. R. A. Morgan, M. J. W. Povey, and A. J. Day. 2011. Particle-stabilizing effects of flavonoids at the oil-water interface. Journal of Agricultural and Food Chemistry 59 (6):2636–45. doi: 10.1021/jf1041855.
  • Lv, P. F., D. Wang, Y. L. Chen, S. X. Zhu, J. B. Zhang, L. K. Mao, Y. X. Gao, and F. Yuan. 2020. Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan: Fabrication, characterization and encapsulation. Food Hydrocolloids 108:105992. doi: 10.1016/j.foodhyd.2020.105992.
  • Machado, A. H. E., D. Lundberg, A. J. Ribeiro, F. J. Veiga, B. Lindman, M. G. Miguel, and U. Olsson. 2012. Preparation of calcium alginate nanoparticles using water-in-oil (W/O). Langmuir 28 (9):4131–41. doi: 10.1021/la204944j.
  • Marquez, A. L., A. Medrano, L. A. Panizzolo, and J. R. Wagner. 2010. Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate. Journal of Colloid and Interface Science 341 (1):101–8. doi: 10.1016/j.jcis.2009.09.020.
  • Martins, A. J., A. A. Vicente, L. M. Pastrana, and M. A. Cerqueira. 2020. Oleogels for development of health-promoting food products. Food Science and Human Wellness 9 (1):31–9. doi: 10.1016/j.fshw.2019.12.001.
  • McClements, D. J. 2007. Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition 47 (7):611–49. doi: 10.1080/10408390701289292.
  • McClements, D. J., L. Bai, and C. Chung. 2017. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annual Review of Food Science and Technology 8:205–36. doi: 10.1146/annurev-food-030216-030154.
  • McClements, D. J., and E. A. Decker. 2000. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science 65 (8):1270–82. doi: 10.1111/j.1365-2621.2000.tb10596.x.
  • McClements, D. J., and S. M. Jafari. 2018. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251:55–79. doi: 10.1016/j.cis.2017.12.001.
  • Mehrnia, M.-A., S.-M. Jafari, B. S. Makhmal-Zadeh, and Y. Maghsoudlou. 2017. Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein. Food Hydrocolloids 66:259–67. doi: 10.1016/j.foodhyd.2016.11.033.
  • Mosca, M., A. Ceglie, and L. Ambrosone. 2010. Lipid oxidation in water-in-olive oil emulsions initiated by a lipophilic radical source. The Journal of Physical Chemistry B 114 (10):3550–8. doi: 10.1021/jp911288e.
  • Mosca, M., F. Cuomo, F. Lopez, and A. Ceglie. 2013. Role of emulsifier layer, antioxidants and radical initiators in the oxidation of olive oil-in-water emulsions. Food Research International 50 (1):377–83. doi: 10.1016/j.foodres.2012.10.046.
  • Mun, S., Y. Choi, J. Y. Shim, K. H. Park, and Y. R. Kim. 2011. Effects of enzymatically modified starch on the encapsulation efficiency and stability of water-in-oil-in-water emulsions. Food Chemistry 128 (2):266–75. doi: 10.1016/j.foodchem.2011.03.014.
  • Nadin, M., D. Rousseau, and S. Ghosh. 2014. Fat crystal-stabilized water-in-oil emulsions as controlled release systems. LWT - Food Science and Technology 56 (2):248–55. doi: 10.1016/j.lwt.2013.10.044.
  • Negrini, N. C., M. V. Lipreri, M. C. Tanzi, and S. Fare. 2020. In vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion. Journal of Materials Science. Materials in Medicine 31 (3):26. doi: 10.1007/s10856-020-6363-2.
  • Nelis, V., A. Declerck, L. De Neve, K. Moens, K. Dewettinck, and P. Van der Meeren. 2019. Fat crystallization and melting in W/O/W double emulsions: Comparison between bulk and emulsified state. Colloids and Surfaces A: Physicochemical and Engineering Aspects 566:196–206. doi: 10.1016/j.colsurfa.2019.01.019.
  • Nollet, M., E. Laurichesse, S. Besse, O. Soubabere, and V. Schmitt. 2018. Determination of formulation conditions allowing double emulsions stabilized by PGPR and sodium caseinate to be used as capsules. Langmuir 34 (8):2823–33. doi: 10.1021/acs.langmuir.7b04085.
  • Noon, J., T. B. Mills, and I. T. Norton. 2020. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. Journal of Food Engineering 281:110006. doi: 10.1016/j.jfoodeng.2020.110006.
  • Nuchi, C. D., P. Hernandez, D. J. McClements, and E. A. Decker. 2002. Ability of lipid hydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions. Journal of Agricultural and Food Chemistry 50 (19):5445–9. doi: 10.1021/jf020095j.
  • Öğütcü, M., N. Arifoğlu, and E. Yılmaz. 2015. Preparation and characterization of virgin olive oil-beeswax oleogel emulsion products. Journal of the American Oil Chemists' Society 92 (4):459–71. doi: 10.1007/s11746-015-2615-6.
  • Ojeda-Serna, I. E., N. E. Rocha-Guzmán, J. A. Gallegos-Infante, M. H. Cháirez-Ramírez, W. Rosas-Flores, J. D. Pérez-Martínez, M. R. Moreno-Jiménez, and R. F. González-Laredo. 2019. Water-in-oil organogel based emulsions as a tool for increasing bioaccessibility and cell permeability of poorly water-soluble nutraceuticals. Food Research International (Ottawa, ON) 120:415–24. doi: 10.1016/j.foodres.2019.03.011.
  • Okuro, P. K., A. Gomes, A. L. R. Costa, M. A. Adame, and R. L. Cunha. 2019. Formation and stability of W/O-high internal phase emulsions (HIPEs) and derived O/W emulsions stabilized by PGPR and lecithin. Food Research International (Ottawa, ON) 122:252–62. doi: 10.1016/j.foodres.2019.04.028.
  • Oppermann, A. K. L., M. Renssen, A. Schuch, M. Stieger, and E. Scholten. 2015. Effect of gelation of inner dispersed phase on stability of (w(1)/o/w(2)) multiple emulsions. Food Hydrocolloids 48:17–26. doi: 10.1016/j.foodhyd.2015.01.027.
  • Pandolsook, S., and S. Kupongsak. 2017. Influence of bleached rice bran wax on the physicochemical properties of organogels and water-in-oil emulsions. Journal of Food Engineering 214:182–92. doi: 10.1016/j.jfoodeng.2017.06.030.
  • Pandolsook, S., and S. Kupongsak. 2019. Storage stability of bleached rice bran wax organogels and water-in-oil emulsions. Journal of Food Measurement and Characterization 13 (1):431–43. doi: 10.1007/s11694-018-9957-3.
  • Pang, B., H. Liu, P. W. Liu, X. W. Peng, and K. Zhang. 2018. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose. Journal of Colloid and Interface Science 513:629–37. doi: 10.1016/j.jcis.2017.11.079.
  • Panya, A., M. Laguerre, C. Bayrasy, J. Lecomte, P. Villeneuve, D. J. McClements, and E. A. Decker. 2012. An investigation of the versatile antioxidant mechanisms of action of rosmarinate alkyl esters in oil-in-water emulsions. Journal of Agricultural and Food Chemistry 60 (10):2692–700. doi: 10.1021/jf204848b.
  • Patel, A. R., and K. Dewettinck. 2015. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European Journal of Lipid Science and Technology: EJLST 117 (11):1772–81. doi: 10.1002/ejlt.201400553.
  • Patel, A. R., P. S. Rajarethinem, A. Grędowska, O. Turhan, A. Lesaffer, W. H. De Vos, D. Van de Walle, and K. Dewettinck. 2014. Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food & Function 5 (4):645–52. doi: 10.1039/C4FO00034J.
  • Patel, A. R., Y. Rodriguez, A. Lesaffer, and K. Dewettinck. 2014. High internal phase emulsion gels (HIPE-gels) prepared using food-grade components. RSC Advances 4 (35):18136–40. doi: 10.1039/C4RA02119C.
  • Patel, A. R., D. Schatteman, W. H. De Vos, and K. Dewettinck. 2013a. Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Advances 3 (16):5324–7. doi: 10.1039/c3ra40934a.
  • Patel, A. R., D. Schatteman, W. H. De Vos, A. Lesaffer, and K. Dewettinck. 2013b. Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science 411:114–21. doi: 10.1016/j.jcis.2013.08.039.
  • Pehlivanoğlu, H., M. Demirci, O. S. Toker, N. Konar, S. Karasu, and O. Sagdic. 2018. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition 58 (8):1330–41. doi: 10.1080/10408398.2016.1256866.
  • Phan, A. D. T., G. Netzel, D. J. Wang, B. M. Flanagan, B. R. D’Arcy, and M. J. Gidley. 2015. Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chemistry 171:388–96. doi: 10.1016/j.foodchem.2014.08.118.
  • Pickering, S. U. 1907. CXCVI.—Emulsions. Journal of the Chemical Society, Transactions 91:2001–21. doi: 10.1039/CT9079102001.
  • Picone, C. S. F., A. C. Bueno, M. Michelon, and R. L. Cunha. 2017. Development of a probiotic delivery system based on gelation of water-in-oil emulsions. LWT 86:62–8. doi: 10.1016/j.lwt.2017.07.045.
  • Polavarapu, S., C. M. Oliver, S. Ajlouni, and M. A. Augustin. 2012. Impact of Extra virgin olive oil and ethylenediaminetetraacetic acid (EDTA) on the oxidative stability of fish oil emulsions and spray-dried microcapsules stabilized by sugar beet pectin. Journal of Agricultural and Food Chemistry 60 (1):444–50. doi: 10.1021/jf2034785.
  • Porter, W. L., E. D. Black, and A. M. Drolet. 1989. Use of polyamide oxidative fluorescence test on lipid emulsions: Contrast in relative effectiveness of antioxidants in bulk versus dispersed systems. Journal of Agricultural and Food Chemistry 37 (3):615–24. doi: 10.1021/jf00087a009.
  • Prichapan, N., D. J. McClements, and U. Klinkesorn. 2017. Influence of rice bran stearin on stability, properties and encapsulation efficiency of polyglycerol polyricinoleate (PGPR)-stabilized water-in-rice bran oil emulsions. Food Research International (Ottawa, ON) 93:26–32. doi: 10.1016/j.foodres.2017.01.007.
  • Prichapan, N., D. J. McClements, and U. Klinkesorn. 2018. Iron encapsulation in water-in-oil emulsions: Effect of ferrous sulfate concentration and fat crystal formation on oxidative stability. Journal of Food Science 83 (2):309–17. doi: 10.1111/1750-3841.14034.
  • Pușcaș, A., V. Mureșan, C. Socaciu, and S. Muste. 2020. Oleogels in food: A review of current and potential applications. Foods 9 (1):70. doi: 10.3390/foods9010070.
  • Qi, L., Z. G. Luo, and X. X. Lu. 2019. Modulation of starch nanoparticles surface characteristics for facile construction of recycling Pickering interfacial enzymatic catalysis. Green Chemistry 21 (9):2412–27. doi: 10.1039/C9GC00779B.
  • Rabelo, C. A. S., N. Taarji, N. Khalid, I. Kobayashi, M. Nakajima, and M. A. Neves. 2018. Formulation and characterization of water-in-oil nanoemulsions loaded with açaí berry anthocyanins: Insights of degradation kinetics and stability evaluation of anthocyanins and nanoemulsions. Food Research International (Ottawa, ON) 106:542–8. doi: 10.1016/j.foodres.2018.01.017.
  • Rafanan, R., and D. Rousseau. 2017. Dispersed droplets as active fillers in fat-crystal network-stabilized water-in-oil emulsions . Food Research International (Ottawa, ON) 99 (Pt 1):355–62. doi: 10.1016/j.foodres.2017.04.008.
  • Ramsden, W. 1903. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). – Preliminary Account. Proceedings of the Royal Society of London 72:156–64. doi: 10.1098/rspl.1903.0034.
  • Raviadaran, R., M. H. Ng, S. Manickam, and D. Chandran. 2019. Ultrasound-assisted water-in-palm oil nano-emulsion: Influence of polyglycerol polyricinoleate and NaCl on its stability. Ultrasonics Sonochemistry 52:353–63. doi: 10.1016/j.ultsonch.2018.12.012.
  • Rietberg, M. R., D. Rousseau, and L. Duizer. 2012. Sensory evaluation of sodium chloride-containing water-in-oil emulsions. Journal of Agricultural and Food Chemistry 60 (16):4005–11. doi: 10.1021/jf2051625.
  • Rivas, J. C. M., Y. Schneider, and H. Rohm. 2016. Effect of emulsifier type on physicochemical properties of water-in-oil emulsions for confectionery applications. International Journal of Food Science & Technology 51 (4):1026–33. doi: 10.1111/ijfs.13063.
  • Rohr, M. W., C. A. Narasimhulu, T. A. Rudeski-Rohr, and S. Parthasarathy. 2020. Negative effects of a high-fat diet on intestinal permeability: A review. Advances in Nutrition (Bethesda, MD) 11 (1):77–91. doi: 10.1093/advances/nmz061.
  • Rousseau, D. 2013. Trends in structuring edible emulsions with Pickering fat crystals. Current Opinion in Colloid & Interface Science 18 (4):283–91. doi: 10.1016/j.cocis.2013.04.009.
  • Rousseau, D., S. Ghosh, and H. Park. 2009. Comparison of the dispersed phase coalescence mechanisms in different tablespreads. Journal of Food Science 74 (1):E1–7. doi: 10.1111/j.1750-3841.2008.00978.x.
  • Rutkevicius, M., S. Allred, O. D. Velev, and K. P. Velikov. 2018. Stabilization of oil continuous emulsions with colloidal particles from water-insoluble plant proteins. Food Hydrocolloids 82:89–95. doi: 10.1016/j.foodhyd.2018.04.004.
  • Scarlett, A. J., W. L. Morgan, and J. H. Hildebrand. 1927. Emulsification by solid powders. The Journal of Physical Chemistry 31 (10):1566–71. doi: 10.1021/j150280a010.
  • Schwarz, K., S.-W. Huang, J. B. German, B. Tiersch, J. Hartmann, and E. N. Frankel. 2000. Activities of antioxidants are affected by colloidal properties of oil-in-water and water-in-oil emulsions and bulk oils. Journal of Agricultural and Food Chemistry 48 (10):4874–82. doi: 10.1021/jf991289a.
  • Skelhon, T. S., P. K. Olsson, A. R. Morgan, and S. A. Bon. 2013. High internal phase agar hydrogel dispersions in cocoa butter and chocolate as a route towards reducing fat content. Food & Function 4 (9):1314–21. doi: 10.1039/c3fo60122f.
  • Soleimanian, Y., S. A. H. Goli, A. Shirvani, A. Elmizadeh, and A. G. Marangoni. 2020. Wax-based delivery systems: Preparation, characterization, and food applications. Comprehensive Reviews in Food Science and Food Safety 19 (6):2994–3030. doi: 10.1111/1541-4337.12614.
  • Sørensen, A.-D. M., C. P. Baron, M. B. Let, D. A. Brüggemann, L. R. L. Pedersen, and C. Jacobsen. 2007. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: Oxidation linked to changes in protein composition at the oil-water interface. Journal of Agricultural and Food Chemistry 55 (5):1781–9. doi: 10.1021/jf0623900.
  • Stöckmann, H., K. Schwarz, and T. Huynh-Ba. 2000. The influence of various emulsifiers on the partitioning and antioxidant activity of hydroxybenzoic acids and their derivatives in oil-in-water emulsions. Journal of the American Oil Chemists' Society 77 (5):535–42. doi: 10.1007/s11746-000-0085-6.
  • Su, J. H., J. Flanagan, Y. Hemar, and H. Singh. 2006. Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water–oil–water emulsions. Food Hydrocolloids 20 (2–3):261–8. doi: 10.1016/j.foodhyd.2004.03.010.
  • Sui, X. N., S. Bi, B. K. Qi, Z. J. Wang, M. Zhang, Y. Li, and L. Z. Jiang. 2017. Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability. Food Hydrocolloids 63:727–34. doi: 10.1016/j.foodhyd.2016.10.024.
  • Tabibiazar, M., and H. Hamishehkar. 2015. Formulation of a food grade water-in-oil nanoemulsion: Factors affecting on stability. Pharmaceutical Sciences 21 (4):220–4. doi: 10.15171/PS.2015.40.
  • Tongcheng, X., J. Min, L. Xia, Q. Bin, Z. Yuan, L. Wei, Z. Aizhen, L. Lina, and D. Fangling. 2018. Intake of diacylglycerols and the fasting insulin and glucose concentrations: A meta-analysis of 5 randomized controlled studies. Journal of the American College of Nutrition 37 (7):598–604. doi: 10.1080/07315724.2018.1452168.
  • Toro-Vazquez, J. F., R. Mauricio-Pérez, M. M. González-Chávez, M. Sánchez-Becerril, J. d. J. Ornelas-Paz, and J. D. Pérez-Martínez. 2013. Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Research International 54 (2):1360–8. doi: 10.1016/j.foodres.2013.09.046.
  • Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2 (12):1231–46. doi: 10.3390/nu2121231.
  • Vélez-Erazo, E. M., K. Bosqui, R. S. Rabelo, L. E. Kurozawa, and M. D. Hubinger. 2020. High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids 105:105775. doi: 10.1016/j.foodhyd.2020.105775.
  • Wang, P. J., N. Cui, J. Luo, H. Zhang, H. Y. Guo, P. C. Wen, and F. Z. Ren. 2016. Stable water-in-oil emulsions formulated with polyglycerol polyricinoleate and glucono-δ-lactone-induced casein gels. Food Hydrocolloids 57:217–20. doi: 10.1016/j.foodhyd.2016.01.013.
  • Wang, J. H., R. L. Huang, W. Qi, R. X. Su, and Z. M. He. 2017. Oriented enzyme immobilization at the oil/water interface enhances catalytic activity and recyclability in a Pickering emulsion. Langmuir : The ACS Journal of Surfaces and Colloids 33 (43):12317–25. doi: 10.1021/acs.langmuir.7b02862.
  • Wang, J.-S., A.-B. Wang, X.-P. Zang, L. Tan, Y. Ge, X.-E. Lin, B.-Y. Xu, Z.-Q. Jin, and W.-H. Ma. 2018. Physical and oxidative stability of functional avocado oil high internal phase emulsions collaborative formulated using citrus nanofibers and tannic acid. Food Hydrocolloids 82:248–57. doi: 10.1016/j.foodhyd.2018.02.013.
  • Waraho, T., D. J. McClements, and E. A. Decker. 2011a. Impact of free fatty acid concentration and structure on lipid oxidation in oil-in-water emulsions. Food Chemistry 129 (3):854–9. doi: 10.1016/j.foodchem.2011.05.034.
  • Waraho, T., D. J. McClements, and E. A. Decker. 2011b. Mechanisms of lipid oxidation in food dispersions. Trends in Food Science & Technology 22 (1):3–13. doi: 10.1016/j.tifs.2010.11.003.
  • Wei, L. J., M. Zhang, X. M. Zhang, H. C. Xin, and H. Q. Yang. 2016. Pickering emulsion as an efficient platform for enzymatic reactions without stirring. ACS Sustainable Chemistry & Engineering 4 (12):6838–43. doi: 10.1021/acssuschemeng.6b01776.
  • Wenda, S., S. Illner, A. Mell, and U. Kragl. 2011. Industrial biotechnology—the future of green chemistry? Green Chemistry 13 (11):3007–47. doi: 10.1039/c1gc15579b.
  • Wijarnprecha, K., A. de Vries, P. Santiwattana, S. Sonwai, and D. Rousseau. 2019a. Microstructure and rheology of oleogel-stabilized water-in-oil emulsions containing crystal-stabilized droplets as active fillers. LWT 115:108058. doi: 10.1016/j.lwt.2019.04.059.
  • Wijarnprecha, K., A. de Vries, P. Santiwattana, S. Sonwai, and D. Rousseau. 2019b. Rheology and structure of oleogelled water-in-oil emulsions containing dispersed aqueous droplets as inactive fillers. LWT 115:108067. doi: 10.1016/j.lwt.2019.04.068.
  • Xiao, J., Y. Q. Li, and Q. R. Huang. 2016. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends in Food Science & Technology 55:48–60. doi: 10.1016/j.tifs.2016.05.010.
  • Yang, J., C. Qiu, G. Li, W. J. Lee, C. P. Tan, O. M. Lai, and Y. Wang. 2020. Effect of diacylglycerol interfacial crystallization on the physical stability of water-in-oil emulsions. Food Chemistry 327:127014. doi: 10.1016/j.foodchem.2020.127014.
  • Yang, X., Y. Wang, R. Bai, H. Ma, W. Wang, H. Sun, Y. Dong, F. Qu, Q. Tang, T. Guo, et al. 2019. Pickering emulsion-enhanced interfacial biocatalysis: Tailored alginate microparticles act as particulate emulsifier and enzyme carrier. Green Chemistry 21 (9):2229–33. doi: 10.1039/C8GC03573C.
  • Ye, Q. Z., T. Li, J. H. Li, L. Liu, X. H. Dou, and X. R. Zhang. 2020. Development and evaluation of tea polyphenols loaded water in oil emulsion with zein as stabilizer. Journal of Drug Delivery Science and Technology 56:101528. doi: 10.1016/j.jddst.2020.101528.
  • Yi, J. H., W. B. Dong, Z. B. Zhu, N. Liu, Y. Ding, D. J. McClements, and E. A. Decker. 2015. Surfactant concentration, antioxidants, and chelators influencing oxidative stability of water-in-walnut oil emulsions. Journal of the American Oil Chemists' Society 92 (8):1093–102. doi: 10.1007/s11746-015-2675-7.
  • Yi, J. H., J. Q. Ning, Z. B. Zhu, L. Q. Cui, E. A. Decker, and D. J. McClements. 2019. Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: Competitive displacement of casein by surfactants. Food Hydrocolloids 87:20–8. doi: 10.1016/j.foodhyd.2018.07.025.
  • Yi, J. H., Z. B. Zhu, W. B. Dong, D. J. McClements, and E. A. Decker. 2013. Influence of free fatty acids on oxidative stability in water-in-walnut oil emulsions. European Journal of Lipid Science and Technology 115 (9):1013–20. doi: 10.1002/ejlt.201200438.
  • Yi, J. H., Z. B. Zhu, D. J. McClements, and E. A. Decker. 2014. Influence of aqueous phase emulsifiers on lipid oxidation in water-in-walnut oil emulsions. Journal of Agricultural and Food Chemistry 62 (9):2104–11. doi: 10.1021/jf404593f.
  • Zembyla, M., A. Lazidis, B. S. Murray, and A. Sarkar. 2019. Water-in-oil pickering emulsions stabilized by synergistic particle-particle interactions. Langmuir 35 (40):13078–89. doi: 10.1021/acs.langmuir.9b02026.
  • Zembyla, M., B. S. Murray, S. J. Radford, and A. Sarkar. 2019. Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein. Journal of Colloid and Interface Science 548:88–99. doi: 10.1016/j.jcis.2019.04.010.
  • Zembyla, M., B. S. Murray, and A. Sarkar. 2018. Water-in-oil pickering emulsions stabilized by water-insoluble polyphenol crystals. Langmuir 34 (34):10001–11. doi: 10.1021/acs.langmuir.8b01438.
  • Zembyla, M., B. S. Murray, and A. Sarkar. 2020. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends in Food Science & Technology 104:49–59. doi: 10.1016/j.tifs.2020.07.028.
  • Zhai, K. K., X. P. Pei, C. Wang, Y. K. Deng, Y. Tan, Y. G. Bai, B. C. Zhang, K. Xu, and P. X. Wang. 2019. Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier. International Journal of Biological Macromolecules 131:1032–7. doi: 10.1016/j.ijbiomac.2019.03.107.
  • Zhang, K. M., Z. J. Mao, Y. C. Huang, Y. Xu, C. D. Huang, Y. Guo, X. E. Ren, and C. Y. Liu. 2020. Ultrasonic assisted water-in-oil emulsions encapsulating macro-molecular polysaccharide chitosan: Influence of molecular properties, emulsion viscosity and their stability. Ultrasonics Sonochemistry 64:105018. doi: 10.1016/j.ultsonch.2020.105018.
  • Zhao, Q. L., F. Zaaboul, Y. F. Liu, and J. W. Li. 2020. Recent advances on protein-based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Comprehensive Reviews in Food Science and Food Safety 19 (4):1934–68. doi: 10.1111/1541-4337.12570.
  • Zheng, L., J. M. Regenstein, F. Teng, and Y. Li. 2020. Tofu products: A review of their raw materials, processing conditions, and packaging. Comprehensive Reviews in Food Science and Food Safety 19 (6):3683–714. doi: 10.1111/1541-4337.12640.
  • Zhu, Q. M., J. L. Li, H. J. Liu, M. Saito, E. Tatsumi, and L. J. Yin. 2015. Development of stable water-in-oil emulsions using polyglycerol polyricinoleate and whey protein isolate and the impact on the quality of bittern-tofu. Journal of Dispersion Science and Technology 36 (11):1548–55. doi: 10.1080/01932691.2014.964360.
  • Zhu, Q. M., S. Qiu, H. W. Zhang, Y. Q. Cheng, and L. J. Yin. 2018. Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (W/O/W) emulsions stabilized by porcine gelatin. Food Chemistry 253:63–70. doi: 10.1016/j.foodchem.2018.01.119.
  • Zhu, Q. M., C. Wang, N. Khalid, S. Qiu, and L. J. Yin. 2017. Effect of protein molecules and MgCl2 in the water phase on the dilational rheology of polyglycerol polyricinoleate molecules adsorbed at the soy oil-water interface. Food Hydrocolloids 73:194–202. doi: 10.1016/j.foodhyd.2017.06.030.
  • Zhu, Q. M., F. F. Wu, M. Saito, E. Tatsumi, and L. J. Yin. 2016. Effect of magnesium salt concentration in water-in-oil emulsions on the physical properties and microstructure of tofu. Food Chemistry 201:197–204. doi: 10.1016/j.foodchem.2016.01.065.
  • Zhu, Q. M., L. Zhao, H. Zhang, M. Saito, and L. J. Yin. 2017. Impact of the release rate of magnesium ions in multiple emulsions (water-in-oil-in-water) containing BSA on the resulting physical properties and microstructure of soy protein gel. Food Chemistry 220:452–9. doi: 10.1016/j.foodchem.2016.10.016.
  • Zhu, Z. B., J. H. Yi, W. B. Dong, J. L. Lu, and Y. Ding. 2015. Ionic strength, antioxidants and chelators affect whey protein isolates' antioxidantion in water-in-walnut oil emulsions. European Journal of Lipid Science and Technology 117 (5):620–9. doi: 10.1002/ejlt.201400447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.