1,356
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides

, , , &

References

  • Abdelhedi, O., and M. Nasri. 2019. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends in Food Science & Technology 88:543–57. doi: 10.1016/j.tifs.2019.04.002.
  • Abubakar, A., T. Saito, H. Kitazawa, Y. Kawai, and T. Itoh. 1998. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. Journal of Dairy Science 81 (12):3131–8. doi: 10.3168/jds.S0022-0302(98)75878-3.
  • Acquah, C., E. D. Stefano, and C. C. Udenigwe. 2018. Role of hydrophobicity in food peptide functionality and bioactivity. Journal of Food Bioactives 4:88–98. doi: 10.31665/JFB.20xx.000xx.
  • Adje, E. Y., R. Balti, M. Kouach, D. Guillochon, and N. Nedjar-Arroume. 2011. α 67–106 of bovine hemoglobin: A new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. European Food Research and Technology 232 (4):637–46. doi: 10.1007/s00217-011-1430-z.
  • Agyei, D., C. M. Ongkudon, C. Y. Wei, A. S. Chan, and M. K. Danquah. 2016. Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing 98:244–56. doi: 10.1016/j.fbp.2016.02.003.
  • Ahhmed, A. M., and M. Muguruma. 2010. A review of meat protein hydrolysates and hypertension. Meat Science 86 (1):110–8. doi: 10.1016/j.meatsci.2010.04.032.
  • Aiemratchanee, P., K. Panyawechamontri, P. Phaophu, O. Reamtong, and W. Panbangred. 2021. In vitro antihypertensive activity of bioactive peptides derived from porcine blood corpuscle and plasma proteins. International Journal of Food Science & Technology 56 (5):2315–24. doi: 10.1111/ijfs.14853.
  • Akagündüz, Y., M. Mosquera, B. Giménez, A. Alemán, P. Montero, and M. C. Gómez-Guillén. 2014. Sea bream bones and scales as a source of gelatin and ACE inhibitory peptides. LWT - Food Science and Technology 55 (2):579–85. doi: 10.1016/j.lwt.2013.10.026.
  • Aluko, R. E. 2015. Antihypertensive peptides from food proteins. Annual Review of Food Science and Technology 6:235–62. doi: 10.1146/annurev-food-022814-015520.
  • Amorim, M., C. Marques, J. O. Pereira, L. Guardão, M. J. Martins, H. Osório, D. Moura, C. Calhau, H. Pinheiro, and M. Pintado. 2019. Antihypertensive effect of spent brewer yeast peptide. Process Biochemistry 76:213–8. doi: 10.1016/j.procbio.2018.10.004.
  • Amorim, M., H. Pinheiro, and M. Pintado. 2019. Valorization of spent brewer’s yeast: Optimization of hydrolysis process towards the generation of stable ACE-inhibitory peptides. LWT 111:77–84. doi: 10.1016/j.lwt.2019.05.011.
  • Arora, H., N. Shang, K. S. Bhullar, and J. Wu. 2020. Pea protein-derived tripeptide LRW shows osteoblastic activity on MC3T3-E1 cells via the activation of the Akt/Runx2 pathway. Food & Function 11 (8):7197–207. doi: 10.1039/D0FO00497A.
  • Asoodeh, A., M. Homayouni-Tabrizi, H. Shabestarian, S. Emtenani, and S. Emtenani. 2016. Biochemical characterization of a novel antioxidant and angiotensin I-converting enzyme inhibitory peptide from Struthio camelus egg white protein hydrolysis. Journal of Food and Drug Analysis 24 (2):332–42. doi: 10.1016/j.jfda.2015.11.010.
  • Balti, R., A. Bougatef, A. Sila, D. Guillochon, P. Dhulster, and N. Nedjar-Arroume. 2015. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chemistry 170:519–25. doi: 10.1016/j.foodchem.2013.03.091.
  • Bao, W. Y., Z. Z. Wang, P. Ma, T. L. Sun, and A. H. Zuo. 2018. Stichopus japonicus-derived ACE inhibitory activity peptide. CN Patent 109320588, filed October 18, 2018, and issued February 12, 2019.
  • Bargeman, G., G. H. Koops, J. H. Wing, I. Breebaart, H. C. van der Horst, and M. Wessling. 2002. The development of electro-membrane filtration for the isolation of bioactive peptides: The effect of membrane selection and operating parameters on the transport rate. Desalination 149 (1–3):369–74. doi: 10.1016/S0011-9164(02)00824-X.
  • Beermann, C., M. Euler, J. Herzberg, and B. Stahl. 2009. Anti-oxidative capacity of enzymatically released peptides from soybean protein isolate. European Food Research and Technology 229 (4):637–44. doi: 10.1007/s00217-009-1093-1.
  • Bejjani, S., and J. Wu. 2013. Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial Caco-2 cells. Journal of Agricultural and Food Chemistry 61 (7):1487–92. doi: 10.1021/jf302904t.
  • Bougatef, A., N. Nedjar-Arroume, R. Ravallec-Plé, Y. Leroy, D. Guillochon, A. Barkia, and M. Nasri. 2008. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chemistry 111 (2):350–6. doi: 10.1016/j.foodchem.2008.03.074.
  • Çağlar, A. F., B. Çakır, and İ. Gülseren. 2021. LC-Q-TOF/MS based identification and in silico verification of ACE-inhibitory peptides in Giresun (Turkey) hazelnut cakes. European Food Research and Technology 247 (5):1189–98. doi: 10.1007/s00217-021-03700-6.
  • Cao, S., Y. Wang, Y. Hao, W. Zhang, and G. Zhou. 2020. Antihypertensive effects in vitro and in vivo of novel angiotensin-converting enzyme inhibitory peptides from bovine bone gelatin hydrolysate. Journal of Agricultural and Food Chemistry 68 (3):759–68. doi: 10.1021/acs.jafc.9b05618.
  • Chalamaiah, M., W. Yu, and J. Wu. 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry 245:205–22. doi: 10.1016/j.foodchem.2017.10.087.
  • Chaudhari, D. D., R. Singh, R. H. Mallappa, N. Rokana, J. K. Kaushik, R. Bajaj, V. K. Batish, and S. Grover. 2017. Evaluation of casein & whey protein hydrolysates as well as milk fermentates from Lactobacillus helveticus for expression of gut hormones. The Indian Journal of Medical Research 146 (3):409–19. doi: 10.4103/ijmr.IJMR_802_15.
  • Chen, J. C., J. Wang, Y. Y. Zang, and H. F. Ge. 2016. Preparation method of kelp micromolecular ACE inhibitory peptides with Tyr (tyrosine) at C tail end. CN Patent 106591405, filed September 28, 2016, and issued April 26, 2017.
  • Chen, J., S. Sun, Y. Li, and R. Liu. 2021. Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. LWT 139:110502. doi: 10.1016/j.lwt.2020.110502.
  • Choung, S. Y., and Y. J. Choi. 2013. Pharmaceutical composition comprising, as active ingredients, peptides which exhibit inhibitory activity against angiotensin-I converting enzyme for preventing or treating cardiovascular diseases. WO Patent 2014030977, filed August 23, 2013, and issued February 27, 2014.
  • Christianson, D. W., and W. N. Lipscomb. 1989. Carboxypeptidase A. Accounts of Chemical Research 22 (2):62–9. doi:10.1021/ar00158a003.
  • Cian, R. E., J. Vioque, and S. R. Drago. 2015. Structure-mechanism relationship of antioxidant and ACE I inhibitory peptides from wheat gluten hydrolysate fractionated by pH. Food Research International 69:216–23. doi: 10.1016/j.foodres.2014.12.036.
  • Connolly, A., M. B. O’Keeffe, C. O. Piggott, A. B. Nongonierma, and R. J. FitzGerald. 2015. Generation and identification of angiotensin converting enzyme (ACE) inhibitory peptides from a brewers’ spent grain protein isolate. Food Chemistry 176:64–71. doi: 10.1016/j.foodchem.2014.12.027.
  • Dang, Y. L., D. D. Pan, X. C. Gao, T. Y. Zhou, L. Hao, and J. X. Cao. 2018. ACE (angiotensin-converting enzyme) inhibitory peptide from broccoli protein and enzyme digestion metabolism product, preparation method and application thereof. CN Patent 109517035, filed November 29, 2018, issued March 26, 2019.
  • Daniel, H., and T. Zietek. 2015. Taste and move: Glucose and peptide transporters in the gastrointestinal tract. Experimental Physiology 100 (12):1441–50. doi: 10.1113/EP085029.
  • Danser, A. H. J., and J. Deinum. 2005. Renin, prorenin and the putative (pro)renin receptor. Hypertension 46 (5):1069–76. doi: 10.1161/01.HYP.0000186329.92187.2e.
  • De Lencastre Novaes, L. C., A. F. Jozala, A. M. Lopes, V. de Carvalho Santos-Ebinuma, P. G. Mazzola, and A. P. Junior. 2016. Stability, purification, and applications of bromelain: A review. Biotechnology Progress 32 (1):5–13. doi: 10.1002/btpr.2190.
  • De Leo, F., S. Panarese, R. Gallerani, and L. R. Ceci. 2009. Angiotensin converting enzyme (ACE) inhibitory peptides: Production and implementation of functional food. Current Pharmaceutical Design 15 (31):3622–43. doi: 10.2174/138161209789271834.
  • Del Mar Contreras, M., R. Carrón, M. J. Montero, M. Ramos, and I. Recio. 2009. Novel casein-derived peptides with antihypertensive activity. International Dairy Journal 19 (10):566–73. doi: 10.1016/j.idairyj.2009.05.004.
  • Delemasure, S., N. Blaes, C. Richard, R. Couture, M. Bader, P. Dutartre, J. P. Girolami, J. L. Connat, and L. Rochette. 2013. Antioxidant/oxidant status and cardiac function in bradykinin B- and B-receptor null mice. Physiological Research 62 (5):511–7. doi: 10.33549/physiolres.932496.
  • Ding, L., L. Wang, Y. Zhang, and J. Liu. 2015. Transport of antihypertensive peptide RVPSL, ovotransferrin 328–332, in human intestinal Caco-2 cell monolayers. Journal of Agricultural and Food Chemistry 63 (37):8143–50. doi: 10.1021/acs.jafc.5b01824.
  • Ding, L., L. Wang, Z. Yu, T. Zhang, and J. Liu. 2016. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers. International Journal of Food Sciences and Nutrition 67 (2):111–6. doi: 10.3109/09637486.2016.1144722.
  • Ding, L., Y. Zhang, Y. Jiang, L. Wang, B. Liu, and J. Liu. 2014. Transport of egg white ACE-inhibitory peptide, Gln-Ile-Gly-Leu-Phe, in human intestinal Caco-2 cell monolayers with cytoprotective effect. Journal of Agricultural and Food Chemistry 62 (14):3177–82. doi: 10.1021/jf405639w.
  • Escudero, E., F. Toldrá, M. A. Sentandreu, H. Nishimura, and K. Arihara. 2012. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Science 91 (3):382–4. doi: 10.1016/j.meatsci.2012.02.007.
  • Escudero, E., L. Mora, P. D. Fraser, M. C. Aristoy, K. Arihara, and F. Toldra. 2013. Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. Journal of Proteomics 78:499–507. doi: 10.1016/j.jprot.2012.10.019.
  • Fernández-Lucas, J., D. Castañeda, and D. Hormigo. 2017. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science & Technology 68:91–101. doi: 10.1016/j.tifs.2017.08.017.
  • Fernández-Musoles, R., J. B. Salom, M. Castelló-Ruiz, M. del Mar Contreras, I. Recio, and P. Manzanares. 2013. Bioavailability of antihypertensive lactoferricin B-derived peptides: Transepithelial transport and resistance to intestinal and plasma peptidases. International Dairy Journal 32 (2):169–74. doi: 10.1016/j.idairyj.2013.05.009.
  • Fernandez-Musoles, R., M. Castello-Ruiz, C. Arce, P. Manzanares, M. D. Ivorra, and J. B. Salom. 2014. Antihypertensive mechanism of lactoferrin-derived peptides: Angiotensin receptor blocking effect. Journal of Agricultural and Food Chemistry 62 (1):173–81. doi: 10.1021/jf404616f.
  • Fu, Y., J. F. Young, M. K. Rasmussen, T. K. Dalsgaard, R. Lametsch, R. E. Aluko, and M. Therkildsen. 2016. Angiotensin I-converting enzyme-inhibitory peptides from bovine collagen: Insights into inhibitory mechanism and transepithelial transport. Food Research International 89:373–81. doi: 10.1016/j.foodres.2016.08.037.
  • Fujita, H., and M. Yoshikawa. 1999. LKPNM: A prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44 (1–2):123–7. doi: 10.1016/S0162-3109(99)00118-6.
  • Gangopadhyay, N., K. Wynne, P. O’Connor, E. Gallagher, N. P. Brunton, D. K. Rai, and M. Hayes. 2016. In silico and in vitro analyses of the angiotensin-I converting enzyme inhibitory activity of hydrolysates generated from crude barley (Hordeum vulgare) protein concentrates. Food Chemistry 203:367–74. doi: 10.1016/j.foodchem.2016.02.097.
  • García-Moreno, P. J., F. J. Espejo-Carpio, A. Guadix, and E. M. Guadix. 2015. Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fish discards. Journal of Functional Foods 18:95–105. doi: 10.1016/j.jff.2015.06.062.
  • García-Tejedor, A., L. Sánchez-Rivera, I. Recio, J. B. Salom, and P. Manzanares. 2015. Dairy Debaryomyces hansenii strains produce the antihypertensive casein-derived peptides LHLPLP and HLPLP. LWT - Food Science and Technology 61 (2):550–6. doi: 10.1016/j.lwt.2014.12.019.
  • Ghassem, M., K. Arihara, A. S. Babji, M. Said, and S. Ibrahim. 2011. Purification and identification of ACE inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolysate using HPLC-ESI-TOF MS/MS. Food Chemistry 129 (4):1770–7. doi: 10.1016/j.foodchem.2011.06.051.
  • Girgih, A. T., I. D. Nwachukwu, F. Hasan, T. N. Fagbemi, T. Gill, and R. E. Aluko. 2015. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by cod (Gadus morhua) protein hydrolysates and their antihypertensive effects in spontaneously hypertensive rats. Food & Nutrition Research 59 (1):29788. doi: 10.3402/fnr.v59.29788.
  • Gómez-Ruiz, J. Á., Ramos, M., and I. Recio. 2007. Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and chromatographic techniques. Electrophoresis 28 (22):4202–11. doi: 10.1002/elps.200700324.
  • Gu, R., C. Li, W. Liu, W. Yi, and M. Cai. 2011. Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Research International 44 (5):1536–40. doi: 10.1016/j.foodres.2011.04.006.
  • Gu, Y., and J. Wu. 2016. Bovine lactoferrin-derived ACE inhibitory tripeptide LRP also shows antioxidative and anti-inflammatory activities in endothelial cells. Journal of Functional Foods 25:375–84. doi: 10.1016/j.jff.2016.06.013.
  • Guo, Y., J. Gan, Q. Zhu, X. Zeng, Y. Sun, Z. Wu, and D. Pan. 2018. Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence. Journal of the Science of Food and Agriculture 98 (3):976–83. doi: 10.1002/jsfa.8545.
  • Guo, Y., K. Wang, B. Wu, P. Wu, Y. Duan, and H. Ma. 2020. Production of ACE inhibitory peptides from corn germ meal by an enzymatic membrane reactor with a novel gradient diafiltration feeding working-mode and in vivo evaluation of antihypertensive effect. Journal of Functional Foods 64:103584. doi: 10.1016/j.jff.2019.103584.
  • He, R., S. A. Malomo, A. Alashi, A. T. Girgih, X. Ju, and R. E. Aluko. 2013. Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. Journal of Functional Foods 5 (2):781–9. doi: 10.1016/j.jff.2013.01.024.
  • He, X., and W. Zhu. 2013. Method for preparing ACE inhibitory PEPTIDES from hairtail leftovers. WO Patent 2014194530, filed June 8, 2013, and issued December 11, 2014.
  • Hernández-Ledesma, B., M. del Mar Contreras, and I. Recio. 2011. Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science 165 (1):23–35. doi: 10.1016/j.cis.2010.11.001.
  • Himaya, S. W. A., D. Ngo, B. Ryu, and S. K. Kim. 2012. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-I converting enzyme (ACE) activity and cellular oxidative stress. Food Chemistry 132 (4):1872–82. doi: 10.1016/j.foodchem.2011.12.020.
  • Homaei, A., R. Stevanato, R. Etemadipour, and R. Hemmati. 2017. Purification, catalytic, kinetic and thermodynamic characteristics of a novel ficin from Ficus johannis. Biocatalysis and Agricultural Biotechnology 10:360–6. doi: 10.1016/j.bcab.2017.04.008.
  • Horner, K., E. Drummond, and L. Brennan. 2016. Bioavailability of milk protein-derived bioactive peptides: A glycaemic management perspective. Nutrition Research Reviews 29 (1):91–101. doi: 10.1017/S0954422416000032.
  • Huang, W. H., J. Sun, H. He, H. W. Dong, and J. T. Li. 2011. Antihypertensive effect of corn peptides, produced by a continuous production in enzymatic membrane reactor, in spontaneously hypertensive rats. Food Chemistry 128 (4):968–73. doi: 10.1016/j.foodchem.2011.03.127.
  • Ibrahim, H. R., A. S. Ahmed, and T. Miyata. 2017. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. Journal of Advanced Research 8 (1):63–71. doi: 10.1016/j.jare.2016.12.002.
  • Ishiguro, K., Y. Sameshima, T. Kume, K. Ikeda, J. Matsumoto, and M. Yoshimoto. 2012. Hypotensive effect of a sweetpotato protein digest in spontaneously hypertensive rats and purification of angiotensin I-converting enzyme inhibitory peptides. Food Chemistry 131 (3):774–9. doi: 10.1016/j.foodchem.2011.09.038.
  • Je, J. Y., P. J. Park, J. Y. Kwon, and S. K. Kim. 2004. A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Journal of Agricultural and Food Chemistry 52 (26):7842–5. doi: 10.1021/jf0494027.
  • Jang, A., and M. Lee. 2005. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science 69 (4):653–61. doi: 10.1016/j.meatsci.2004.10.014.
  • Jang, A., C. Jo, K. S. Kang, and M. Lee. 2008. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chemistry 107 (1):327–36. doi: 10.1016/j.foodchem.2007.08.036.
  • Jemil, I., L. Mora, R. Nasri, O. Abdelhedi, M. C. Aristoy, M. Hajji, M. Nasri, and F. Toldrá. 2016. A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Research International 89:347–58. doi: 10.1016/j.foodres.2016.08.020.
  • Kajihara, R., K. Shibata, S. Nakatsu, and K. Sakamoto. 2011. Production of angiotensin I-converting enzyme-inhibitory peptides in a freeze-thaw infusion-treated soybean. Food Science and Technology Research 17 (6):561–5. doi: 10.3136/fstr.17.561.
  • Kapel, R., E. Rahhou, D. Lecouturier, D. Guillochon, and P. Dhulster. 2006. Characterization of an antihypertensive peptide from an Alfalfa white protein hydrolysate produced by a continuous enzymatic membrane reactor. Process Biochemistry 41 (9):1961–6. doi: 10.1016/j.procbio.2006.04.019.
  • Karami, Z., S. H. Peighambardoust, J. Hesari, B. Akbari-Adergani, and D. Andreu. 2019. Identification and synthesis of multifunctional peptides from wheat germ hydrolysate fractions obtained by proteinase K digestion. Journal of Food Biochemistry 43 (4):e12800. doi: 10.1111/jfbc.12800.
  • Kasiwut, J., W. Youravong, and N. Sirinupong. 2019. Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor. Journal of Food Biochemistry 43 (12):e13058. doi: 10.1111/jfbc.13058.
  • Katayama, K., H. E. Anggraeni, T. Mori, A. M. Ahhmed, S. Kawahara, M. Sugiyama, T. Nakayama, M. Maruyama, and M. Muguruma. 2008. Porcine skeletal muscle troponin is a good source of peptides with angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 56 (2):355–60. doi: 10.1021/jf071408j.
  • Katayama, K., Jamhari, T. Mori, S. Kawahara, K. Miake, Y. Kodama, M. Sugiyama, Y. Kawamura, T. Nakayama, M. Maruyama, and M. Muguruma. 2007. Angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats. Journal of Food Science 72 (9):S702–S6. doi: 10.1111/j.1750-3841.2007.00571.x.
  • Katsuhiro, O., M. Kiyoshi, and M. Toshiro. 2004. Calcium channel inhibitor. JP Patent 2006056805, filed August 18, 2004, and issued March 2, 2006.
  • Kawasaki, T., E. Seki, K. Osajima, M. Yoshida, K. Asada, T. Matsui, and Y. Osajima. 2000. Antihypertensive effect of Valyl-Tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. Journal of Human Hypertension 14 (8):519–23. doi: 10.1038/sj.jhh.1001065.
  • Kedzierski, R. M., and M. Yanagisawa. 2001. Endothelin system: The double-edged sword in health and disease. Annual Review of Pharmacology and Toxicology 41 (1):851–76. doi: 10.1146/annurev.pharmtox.41.1.851.
  • Ko, J., N. Kang, J. Lee, J. Kim, W. Kim, S. Park, Y. Kim, and Y. Jeon. 2016. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent. Process Biochemistry 51 (4):535–41. doi: 10.1016/j.procbio.2016.01.009.
  • Ko, S. C., N. Kang, E. A. Kim, M. C. Kang, S. H. Lee, S. M. Kang, J. B. Lee, B. T. Jeon, S. K. Kim, S. J. Park, et al. 2012. A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochemistry 47 (12):2005–11. doi: 10.1016/j.procbio.2012.07.015.
  • Ko, W. C., M. L. Chen, K. C. Hsu, and J. S. Hwang. 2006. Absorption-enhancing treatments for antihypertensive activity of oligopeptides from Tuna cooking juice: In vivo evaluation in spontaneously hypertensive rats. Journal of Food Science 71 (1):S13–7. doi: 10.1111/j.1365-2621.2006.tb12399.x.
  • Komin, A., L. M. Russell, K. A. Hristova, and P. C. Searson. 2017. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Advanced Drug Delivery Reviews 110–111:52–64. doi: 10.1016/j.addr.2016.06.002.
  • Korhonen, H., and A. Pihlanto. 2006. Bioactive peptides: Production and functionality. International Dairy Journal 16 (9):945–60. doi: 10.1016/j.idairyj.2005.10.012.
  • Koyama, M., K. Naramoto, T. Nakajima, T. Aoyama, M. Watanabe, and K. Nakamura. 2013. Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. Journal of Agricultural and Food Chemistry 61 (12):3013–21. doi: 10.1021/jf305157y.
  • Kumar, D., M. K. Chatli, R. Singh, N. Mehta, and P. Kumar. 2016. Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Science & Technology 96 (3):391–404. doi: 10.1007/s13594-015-0275-9.
  • Lan, X., D. Liao, S. Wu, F. Wang, J. Sun, and Z. Tong. 2015. Rapid purification and characterization of angiotensin converting enzyme inhibitory peptides from lizard fish protein hydrolysates with magnetic affinity separation. Food Chemistry 182:136–42. doi: 10.1016/j.foodchem.2015.02.004.
  • Lee, S. Y., and S. J. Hur. 2017. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chemistry 228:506–17. doi: 10.1016/j.foodchem.2017.02.039.
  • Leeb, E., A. Holder, T. Letzel, S. C. Cheison, U. Kulozik, and J. Hinrichs. 2014. Fractionation of dairy based functional peptides using ion-exchange membrane adsorption chromatography and cross-flow electro membrane filtration. International Dairy Journal 38 (2):116–23. doi: 10.1016/j.idairyj.2013.12.006.
  • Li, S. Y., H. Zhang, Y. Y. Zhang, X. K. Li, X. L. Liu, and Y. L. Li. 2017a. Method to increase yield of wheat gluten hydrolysate ACE (angiotensin converting enzyme) inhibitory peptide efficiently within short time. CN Patent 107828844, filed November 29, 2017, and issued March 23, 2018.
  • Li, Y., F. A. Sadiq, L. Fu, H. Zhu, M. Zhong, and M. Sohail. 2016. Identification of angiotensin I-converting enzyme inhibitory peptides derived from enzymatic hydrolysates of razor clam Sinonovacula constricta. Marine Drugs 14 (6):10. doi: 10.3390/md14060110.
  • Li, Y., J. Zhao, X. Liu, X. Xia, Y. Wang, and J. Zhou. 2017b. Transport of a novel angiotensin-I-converting enzyme inhibitory peptide Ala-His-Leu-Leu across human intestinal epithelial Caco-2 cells. Journal of Medicinal Food 20 (3):243–50. doi: 10.1089/jmf.2016.3842.
  • Li, Y., J. Zhou, K. Huang, Y. Sun, and X. Zeng. 2012. Purification of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide with an antihypertensive effect from loach (Misgurnus anguillicaudatus). Journal of Agricultural and Food Chemistry 60 (5):1320–5. doi: 10.1021/jf204118n.
  • Lin, K., Z. Ma, M. Ramachandran, C. De Souza, X. Han, and L. Zhang. 2020. ACE inhibitory peptide KYIPIQ derived from yak milk casein induces nitric oxide production in HUVECs and diffuses via a transcellular mechanism in Caco-2 monolayers. Process Biochemistry 99:103–11. doi: 10.1016/j.procbio.2020.08.031.
  • Lin, Q., Q. Xu, J. Bai, W. Wu, H. Hong, and J. Wu. 2017. Transport of soybean protein-derived antihypertensive peptide LSW across Caco-2 monolayers. Journal of Functional Foods 39:96–102. doi: 10.1016/j.jff.2017.10.011.
  • Lin, Y. H., C. Chen, J. Tsai, and G. Chen. 2019. Preparation and identification of novel antihypertensive peptides from the in vitro gastrointestinal digestion of marine cobia skin hydrolysates. Nutrients 11 (6):1351. doi: 10.3390/nu11061351.
  • Liu, H., T. Hou, L. H. Wang, Y. D. Chuai, D. Li, P. Liu, Q. W. Yang, X. Y. Li, W. Wei, and W. Fu. 2016a. Method for preparing ACE inhibitory peptides through bean pulp enzymolysis. CN Patent 105524966, filed February 26, 2016, and issued April 27, 2016.
  • Liu, M., M. Du, Y. Zhang, W. Xu, C. Wang, K. Wang, and L. Zhang. 2013. Purification and identification of an ACE inhibitory peptide from walnut protein. Journal of Agricultural and Food Chemistry 61 (17):4097–100. doi: 10.1021/jf4001378.
  • Liu, P., X. Lan, M. Yaseen, S. Wu, X. Feng, L. Zhou, J. Sun, A. Liao, D. Liao, and L. Sun. 2019a. Purification, characterization and evaluation of inhibitory mechanism of ACE inhibitory peptides from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate. Marine Drugs 17 (8):463. doi: 10.3390/md17080463.
  • Liu, R., J. Cheng, and H. Wu. 2019. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: A review. International Journal of Molecular Sciences 20 (3):463. doi: 10.3390/ijms20030463.
  • Liu, X., M. Zhang, Y. Shi, R. Qiao, W. Tang, and Z. Sun. 2016b. Production of the angiotensin I converting enzyme inhibitory peptides and isolation of four novel peptides from jellyfish (Rhopilema esculentum) protein hydrolysate. Journal of the Science of Food and Agriculture 96 (9):3240–8. doi: 10.1002/jsfa.7507.
  • Liu, Y., J. Zhou, X. Xia, X. Liu, and Z. Huang. 2018. Preparation of angiotensin-I-converting enzyme inhibitory peptide from loach (Misgurnus anguillicaudatus) protein using ultrasonic assisted enzymatic hydrolysis. Journal of Chinese Institute of Food Science and Technology 18 (9):182–7. doi: 10.16429/j.1009-7848.2018.09.023.
  • Liu, Z. Y., Y. C. Su, S. J. Liu, B. Chen, K. Qiao, M. Xu, and S. L. Cai. 2019b. ACE inhibitory peptide taking takifugu flavidus skin as raw material and preparation method. CN Patent 111004309, filed December 31, 2019, issued April 14, 2020.
  • Liu, Z., F. Gu, B. Wang, F. Zhang, H. Liu, and F. Wang. 2020. Preparation of angiotensin converting enzyme inhibitory peptides from corn gluten meal by ultra-high pressure-assisted alcalase hydrolysis. Food Science 41 (4):222–8. doi: 10.7506/spkx1002-6630-20190123-304.
  • Ma, T., Q. Fu, Q. Mei, Z. Tu, and L. Zhang. 2021. Extraction optimization and screening of angiotensin-converting enzyme inhibitory peptides from Channa striatus through bioaffinity ultrafiltration coupled with LC-Orbitrap-MS/MS and molecular docking. Food Chemistry 354:129589. doi: 10.1016/j.foodchem.2021.129589.
  • Majumder, K., and J. Wu. 2010. A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Research International 43 (5):1371–8. doi: 10.1016/j.foodres.2010.04.027.
  • Mao, X. Y., J. R. Ni, W. L. Sun, P. P. Hao, and L. Fan. 2007. Value-added utilization of yak milk casein for the production of angiotensin-I-converting enzyme inhibitory peptides. Food Chemistry 103 (4):1282–7. doi: 10.1016/j.foodchem.2006.10.041.
  • Marchiando, A. M., W. V. Graham, and J. R. Turner. 2010. Epithelial barriers in homeostasis and disease. Annual Review of Pathology 5:119–44. doi: 10.1146/annurev.pathol.4.110807.092135.
  • Marczak, E. D., H. Usui, H. Fujita, Y. Yang, M. Yokoo, A. W. Lipkowski, and M. Yoshikawa. 2003. New antihypertensive peptides isolated from rapeseed. Peptides 24 (6):791–8. doi: 10.1016/S0196-9781(03)00174-8.
  • Martinez-Maqueda, D., B. Miralles, I. Recio, and B. Hernandez-Ledesma. 2012. Antihypertensive peptides from food proteins: A review. Food & Function 3 (4):350–61. doi: 10.1039/c2fo10192k.
  • Matsui, T. 2018. Are peptides absorbable compounds?Journal of Agricultural and Food Chemistry 66 (2):393–4. doi: 10.1021/acs.jafc.7b05589.
  • Matsui, T., C. Li, and Y. Osajima. 1999. Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ. Journal of Peptide Science 5 (7):289–97. doi: 10.1002/(SICI)1099-1387(199907)5:7 < 289::AID-PSC196 > 3.0.CO;2-6.
  • Megías, C., M. del Mar Yust, J. Pedroche, H. Lquari, J. Girón-Calle, M. Alaiz, F. Millan, and J. Vioque. 2004. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. Journal of Agricultural and Food Chemistry 52 (7):1928–32. doi: 10.1021/jf034707r.
  • Miguel, M., A. Davalos, M. A. Manso, G. de la Pena, M. A. Lasuncion, and R. Lopez-Fandino. 2008. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Molecular Nutrition & Food Research 52 (12):1507–13. doi: 10.1002/mnfr.200700503.
  • Min, W. H., C. L. Liu, H. M. Li, L. Fang, and J. Wang. 2016. Hazelnut ACE inhibitory peptides and preparation method of same. CN Patent 106008669, filed July 4, 2016, and issued October 1, 2019.
  • Mirzaei, M., S. Mirdamadi, and M. Safavi. 2020. Structural analysis of ACE-inhibitory peptide (VL-9) derived from Kluyveromyces marxianus protein hydrolysate. Journal of Molecular Structure 1213:128199. doi: 10.1016/j.molstruc.2020.128199.
  • Mirzaei, M., S. Mirdamadi, M. R. Ehsani, and M. Aminlari. 2018. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. Journal of Food and Drug Analysis 26 (2):696–705. doi: 10.1016/j.jfda.2017.07.008.
  • Mirzaei, M., S. Mirdamadi, M. R. Ehsani, M. Aminlari, and E. Hosseini. 2015. Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. Journal of Functional Foods 19:259–68. doi: 10.1016/j.jff.2015.09.031.
  • Mirzaei, M., S. Mirdamadi, M. Safavi, and N. Soleymanzadeh. 2020. The stability of antioxidant and ACE-inhibitory peptides as influenced by peptide sequences. LWT 130:109710. doi: 10.1016/j.lwt.2020.109710.
  • Moreland, S., D. M. Mcmullen, C. L. Delaney, V. G. Lee, and J. T. Hunt. 1992. Venous smooth muscle contains vasoconstrictor ETB-like receptors. Biochemical and Biophysical Research Communications 184 (1):100–6. doi: 10.1016/0006-291X(92)91163-K.
  • Muguruma, M., A. Ahhmed, K. Katayama, S. Kawahara, M. Maruyama, and T. Nakamura. 2009. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chemistry 114 (2):516–22. doi: 10.1016/j.foodchem.2008.09.081.
  • Nakano, D., K. Ogura, M. Miyakoshi, F. Ishii, H. Kawanishi, D. Kurumazuka, C.-J. Kwak, K. Ikemura, M. Takaoka, S. Moriguchi, et al. 2006. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry 70 (5):1118–26. doi: 10.1271/bbb.70.1118.
  • Nongonierma, A. B., and R. J. FitzGerald. 2017. Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science & Technology 69:289–305. doi: 10.1016/j.tifs.2017.03.003.
  • Ogura, K., T. Iino, and S. Asami. 2004. Angiotensin-converting enzyme inhibitory peptides. EP Patent 2145630, filed March 17, 2004, and issued January 20, 2010.
  • Oh, R., M. J. Lee, Y. Kim, B. Nam, H. J. Kong, J. Kim, J. Park, J. Seo, and D. Kim. 2020. Myticusin-beta, antimicrobial peptide from the marine bivalve, Mytilus coruscus. Fish & Shellfish Immunology 99:342–52. doi: 10.1016/j.fsi.2020.02.020.
  • Orio, L. P., G. Boschin, T. Recca, C. F. Morelli, L. Ragona, P. Francescato, A. Arnoldi, and G. Speranza. 2017. New ACE-inhibitory peptides from hemp seed (Cannabis sativa L.) proteins. Journal of Agricultural and Food Chemistry 65 (48):10482–8. doi: 10.1021/acs.jafc.7b04522.
  • Pan, D., Y. Luo, and M. Tanokura. 2005. Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chemistry 91 (1):123–9. doi: 10.1016/j.foodchem.2004.05.055.
  • Pan, S., S. Wang, L. Jing, and D. Yao. 2016. Purification and characterisation of a novel angiotensin-I converting enzyme (ACE)-inhibitory peptide derived from the enzymatic hydrolysate of Enteromorpha clathrata protein. Food Chemistry 211:423–30. doi: 10.1016/j.foodchem.2016.05.087.
  • Pandey, M., R. Kapila, and S. Kapila. 2018. Osteoanabolic activity of whey-derived anti-oxidative (MHIRL and YVEEL) and angiotensin-converting enzyme inhibitory (YLLF, ALPMHIR, IPA and WLAHK) bioactive peptides. Peptides 99:1–7. doi: 10.1016/j.peptides.2017.11.004.
  • Perna, A. F., D. Ingrosso, and N. G. De Santo. 2003. Homocysteine and oxidative stress. Amino Acids 25 (3–4):409–17. doi: 10.1007/s00726-003-0026-8.
  • Phelan, M., A. Aherne, R. J. FitzGerald, and N. M. O’Brien. 2009. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. International Dairy Journal 19 (11):643–54. doi: 10.1016/j.idairyj.2009.06.001.
  • Pinciroli, M., P. Aphalo, A. E. Nardo, M. C. Anon, and A. V. Quiroga. 2019. Broken rice as a potential functional ingredient with inhibitory activity of renin and angiotensin-converting Enzyme (ACE). Plant Foods for Human Nutrition 74 (3):405–13. doi: 10.1007/s11130-019-00754-6.
  • Pokora, M., A. Zambrowicz, A. Dąbrowska, E. Eckert, B. Setner, M. Szołtysik, Z. Szewczuk, A. Zabłocka, A. Polanowski, T. Trziszka, et al. 2014. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides. Food Chemistry 151:500–5. doi: 10.1016/j.foodchem.2013.11.111.
  • Priyanto, A. D., R. J. Doerksen, C. Chang, W. Sung, S. B. Widjanarko, J. Kusnadi, Y. Lin, T. Wang, and J. Hsu. 2015. Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. Journal of Proteomics 128:424–35. doi: 10.1016/j.jprot.2015.08.018.
  • Qian, Z., J. Je, and S. Kim. 2007. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolysates of Bigeye tuna dark muscle, Thunnus obesus. Journal of Agricultural and Food Chemistry 55 (21):8398–403. doi: 10.1021/jf0710635.
  • Qu, W., H. Ma, Z. Pan, L. Luo, Z. Wang, and R. He. 2010. Preparation and antihypertensive activity of peptides from Porphyra yezoensis. Food Chemistry 123 (1):14–20. doi: 10.1016/j.foodchem.2010.03.091.
  • Quirós, A., A. Dávalos, M. A. Lasunción, M. Ramos, and I. Recio. 2008. Bioavailability of the antihypertensive peptide LHLPLP: Transepithelial flux of HLPLP. International Dairy Journal 18 (3):279–86. doi: 10.1016/j.idairyj.2007.09.006.
  • Quirós, A., M. Ramos, B. Muguerza, M. A. Delgado, M. Miguel, A. Aleixandre, and I. Recio. 2007. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. International Dairy Journal 17 (1):33–41. doi: 10.1016/j.idairyj.2005.12.011.
  • Rao, S., J. Sun, Y. Liu, H. Zeng, Y. Su, and Y. Yang. 2012. ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chemistry 135 (3):1245–52. doi: 10.1016/j.foodchem.2012.05.059.
  • Ren, F. Z., L. Zhao, J. Luo, H. Y. Guo, Y. X. Li, L. Tian, and N. Cui. 2015. Yak milk lactalbumin-source ACE inhibitory peptides and preparation method thereof. CN Patent 104877007, filed February 13, 2015, and issued April 3, 2018.
  • Ruiz-Giménez, P., J. B. Salom, J. F. Marcos, S. Vallés, D. Martínez-Maqueda, I. Recio, G. Torregrosa, E. Alborch, and P. Manzanares. 2012. Antihypertensive effect of a bovine lactoferrin pepsin hydrolysate: Identification of novel active peptides. Food Chemistry 131 (1):266–73. doi: 10.1016/j.foodchem.2011.08.076.
  • Sagardia, I., R. H. Roa-Ureta, and C. Bald. 2013. A new QSAR model, for angiotensin I-converting enzyme inhibitory oligopeptides. Food Chemistry 136 (3–4):1370–6. doi: 10.1016/j.foodchem.2012.09.092.
  • Saiga, A., K. Iwai, T. Hayakawa, Y. Takahata, S. Kitamura, T. Nishimura, and F. Morimatsu. 2008. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. Journal of Agricultural and Food Chemistry 56 (20):9586–91. doi: 10.1021/jf072669w.
  • Saito, T., T. Nakamura, H. Kitazawa, Y. Kawai, and T. Itoh. 2000. Isolation and structural analysis of antihypertensive peptides that exist naturally in gouda cheese. Journal of Dairy Science 83 (7):1434–40. doi: 10.3168/jds.S0022-0302(00)75013-2.
  • Sakharov, D. V., E. F. Plow, and D. C. Rijken. 1997. On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. The Journal of Biological Chemistry 272 (22):14477–82. doi:10.1074/jbc.272.22.14477. 9162090
  • Salamat-Miller, N., and T. P. Johnston. 2005. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. International Journal of Pharmaceutics 294 (1–2):201–16. doi: 10.1016/j.ijpharm.2005.01.022.
  • Salampessy, J., N. Reddy, K. Kailasapathy, and M. Phillips. 2015. Functional and potential therapeutic ACE-inhibitory peptides derived from bromelain hydrolysis of trevally proteins. Journal of Functional Foods 14:716–25. doi: 10.1016/j.jff.2015.02.037.
  • Sangsawad, P., S. Roytrakul, and J. Yongsawatdigul. 2017. Angiotensin converting enzyme (ACE) inhibitory peptides derived from the simulated in vitro gastrointestinal digestion of cooked chicken breast. Journal of Functional Foods 29:77–83. doi: 10.1016/j.jff.2016.12.005.
  • Satake, M., M. Enjoh, Y. Nakamura, T. Takano, Y. Kawamura, S. Arai, and M. Shimizu. 2002. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Bioscience, Biotechnology, and Biochemistry 66 (2):378–84. doi: 10.1271/bbb.66.378.
  • Sato, M., T. Hosokawa, T. Yamaguchi, T. Nakano, K. Muramoto, T. Kahara, K. Funayama, A. Kobayashi, and T. Nakano. 2002. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 50 (21):6245–52. doi: 10.1021/jf020482t.
  • Schiffrin, E. L. 2005. Vascular endothelin in hypertension. Vascular Pharmacology 43 (1):19–29. doi: 10.1016/j.vph.2005.03.004.
  • Sekiya, S., Y. Kobayashi, E. Kita, Y. Imamura, and S. Toyama. 1992. Antihypertensive effects of tryptic hydrolysate of casein on normotensive and hypertensive volunteers. Journal of Japanese Society of Nutrition and Food Science 45 (6):513–7. doi: 10.4327/jsnfs.45.513.
  • Shanmugam, V. P., S. Kapila, T. S. Kemgang, S. Reddi, R. Kapila, S. Muthukumar, and D. Rajesh. 2021. Isolation and characterization of angiotensin converting enzyme inhibitory peptide from buffalo casein. International Journal of Peptide Research and Therapeutics 27 (2):1481–91. doi: 10.1007/s10989-021-10185-0.
  • Shih, Y., F. Chen, L. Wang, and J. Hsu. 2019. Discovery and study of novel antihypertensive peptides derived from Cassia obtusifolia seeds. Journal of Agricultural and Food Chemistry 67 (28):7810–20. doi: 10.1021/acs.jafc.9b01922.
  • Shimizu, K., M. Sato, Y. Zhang, T. Kouguchi, Y. Takahata, F. Morimatsu, and M. Shimizu. 2010. The bioavailable octapeptide Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro stimulates nitric oxide synthesis in vascular endothelial cells. Journal of Agricultural and Food Chemistry 58 (11):6960–5. doi: 10.1021/jf100388w.
  • Shimizu, M., M. Tsunogai, and S. Arai. 1997. Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2. Peptides 18 (5):681–7. doi: 10.1016/S0196-9781(97)00002-8.
  • Siltari, A., A. S. Kivimäki, P. I. Ehlers, R. Korpela, and H. Vapaatalo. 2012. Effects of milk casein derived tripeptides on endothelial enzymes in vitro; a study with synthetic tripeptides. Arzneimittel-Forschung 62 (10):477–81. doi: 10.1055/s-0032-1321846.
  • Siow, H. L., and C. Y. Gan. 2013. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Food Chemistry 141 (4):3435–42. doi: 10.1016/j.foodchem.2013.06.030.
  • Sonklin, C., M. A. Alashi, N. Laohakunjit, O. Kerdchoechuen, and R. E. Aluko. 2020. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. Journal of Functional Foods 64:103635. doi: 10.1016/j.jff.2019.103635.
  • Su, Y. C., Z. Y. Liu, B. Chen, K. Qiao, M. Xu, and X. T. Chen. 2019. Puffer fish ACE inhibitory peptide and preparation method thereof. CN Patent 111072756, filed December 31, 2019, and issued May 25, 2021.
  • Suetsuna, K., and J. R. Chen. 2001. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Marine Biotechnology 3 (4):305–9. doi: 10.1007/s10126-001-0012-7.
  • Szymańska, K., M. Pietrowska, J. Kocurek, K. Maresz, A. Koreniuk, J. Mrowiec-Białoń, P. Widłak, E. Magner, and A. Jarzębski. 2016. Low back-pressure hierarchically structured multichannel microfluidic bioreactors for rapid protein digestion-Proof of concept. Chemical Engineering Journal 287:148–54. doi: 10.1016/j.cej.2015.10.120.
  • Tanaka, M., M. Tokuyasu, T. Matsui, and K. Matsumoto. 2008. Endothelium-independent vasodilation effect of di- and tri-peptides in thoracic aorta of Sprague-Dawley rats. Life Sciences 82 (15–16):869–75. doi: 10.1016/j.lfs.2008.02.001.
  • Terashima, M., T. Baba, N. Ikemoto, M. Katayama, T. Morimoto, and S. Matsumura. 2010. Novel angiotensin-converting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat. Journal of Agricultural and Food Chemistry 58 (12):7432–6. doi: 10.1021/jf100977z.
  • Thomsen, R., and M. H. Christensen. 2006. MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry 49 (11):3315–21. doi: 10.1021/jm051197e.
  • Tomatsu, M., A. Shimakage, M. Shinbo, S. Yamada, and S. Takahashi. 2013. Novel angiotensin I-converting enzyme inhibitory peptides derived from soya milk. Food Chemistry 136 (2):612–6. doi: 10.1016/j.foodchem.2012.08.080.
  • Tondo, A. R., L. Caputo, G. F. Mangiatordi, L. Monaci, G. Lentini, A. F. Logrieco, M. Montaruli, O. Nicolotti, and L. Quintieri. 2020. Structure-based identification and design of angiotensin converting enzyme-inhibitory peptides from whey proteins. Journal of Agricultural and Food Chemistry 68 (2):541–8. doi: 10.1021/acs.jafc.9b06237.
  • Tu, M., S. Cheng, W. Lu, and M. Du. 2018. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trends in Analytical Chemistry 105:7–17. doi: 10.1016/j.trac.2018.04.005.
  • Udenigwe, C. C., and A. Mohan. 2014. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. Journal of Functional Foods 8:45–52. doi: 10.1016/j.jff.2014.03.002.
  • Vasquez-Villanueva, R., J. M. Orellana, M. L. Marina, and M. C. Garcia. 2019. Isolation and characterization of angiotensin converting enzyme inhibitory peptides from peach seed hydrolysates: In vivo assessment of antihypertensive activity. Journal of Agricultural and Food Chemistry 67 (37):10313–20. doi: 10.1021/acs.jafc.9b02213.
  • Vermeirssen, V., J. Van Camp, and W. Verstraete. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. British Journal of Nutrition 92 (3):357–66. doi: 10.1079/bjn20041189.
  • Vig, B. S., T. R. Stouch, J. K. Timoszyk, Y. Quan, D. A. Wall, R. L. Smith, and T. N. Faria. 2006. Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. Journal of Medicinal Chemistry 49 (12):3636–44. doi: 10.1021/jm0511029.
  • Vij, R., S. Reddi, S. Kapila, and R. Kapila. 2016. Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food Chemistry 190:681–8. doi: 10.1016/j.foodchem.2015.05.121.
  • Wang, J., J. Hu, J. Cui, X. Bai, Y. Du, Y. Miyaguchi, and B. Lin. 2008. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chemistry 111 (2):302–8. doi: 10.1016/j.foodchem.2008.03.059.
  • Wang, X., H. Chen, X. Fu, S. Li, and J. Wei. 2017. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT 75:93–9. doi: 10.1016/j.lwt.2016.08.047.
  • Wei, H., Y. Xiao, Y. Tong, Y. Chen, X. Luo, Y. Wang, P. Jin, C. Ma, Z. Fu, H. Guo, et al. 2019. Therapeutic effect of angelica and its compound formulas for hypertension and the complications: Evidence mapping. Phytomedicine 59:152767. doi: 10.1016/j.phymed.2018.11.027.
  • Wijesekara, I., Z. Qian, B. Ryu, D. Ngo, and S. Kim. 2011. Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate. Food Research International 44 (3):703–7. doi: 10.1016/j.foodres.2010.12.022.
  • Willy, B. A., and G. J. Marie Wilhelmu. 2007. Methods for producing ACE-inhibitory peptides from whey and peptides obtained thereby. EP Patent 1967524, filed March 6, 2007, and issued September 10, 2008.
  • Wu, H., H. L. He, X. L. Chen, C. Y. Sun, Y. Z. Zhang, and B. C. Zhou. 2008. Purification and identification of novel angiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate. Process Biochemistry 43 (4):457–61. doi: 10.1016/j.procbio.2008.01.018.
  • Wu, J. P., R. E. Aluko, and S. Nakai. 2006a. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship modeling of peptides containing 4–10 amino acid residues. QSAR & Combinatorial Science 25 (10):873–80. doi: 10.1002/qsar.200630005.
  • Wu, J., R. E. Aluko, and S. Nakai. 2006b. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides. Journal of Agricultural and Food Chemistry 54 (3):732–8. doi: 10.1021/jf051263l.
  • Wu, Q. Y., J. Q. Jia, H. Yan, and Z. Z. Gui. 2013a. Method for preparing channel catfish skin collagen ACE (angiotensin-I converting enzyme) inhibitory peptides. CN Patent 103571904, filed October 15, 2013, and issued August 12, 2015.
  • Wu, Q., Y. Li, K. Peng, X. Wang, Z. Ding, L. Liu, P. Xu, and G. Liu. 2019. Isolation and characterization of three antihypertension peptides from the mycelia of Ganoderma Lucidum (Agaricomycetes). Journal of Agricultural and Food Chemistry 67 (29):8149–59. doi: 10.1021/acs.jafc.9b02276.
  • Wu, S., W. Qi, T. Li, D. Lu, R. Su, and Z. He. 2013b. Simultaneous production of multi-functional peptides by pancreatic hydrolysis of bovine casein in an enzymatic membrane reactor via combinational chromatography. Food Chemistry 141 (3):2944–51. doi: 10.1016/j.foodchem.2013.05.050.
  • Xie, C., J. C. Huo, and P. Ding. 2010. Method for preparing angiotensin I-converting enzyme inhibitory peptide by using squid liver protein. CN Patent 102250994, filed May 18, 2010, and issued November 23, 2011.
  • Xie, J., X. Chen, J. Wu, Y. Zhang, Y. Zhou, L. Zhang, Y. Tang, and D. Wei. 2018. Antihypertensive effects, molecular docking study, and isothermal titration calorimetry assay of angiotensin I-converting enzyme inhibitory peptides from Chlorella vulgaris. Journal of Agricultural and Food Chemistry 66 (6):1359–68. doi: 10.1021/acs.jafc.7b04294.
  • Xu, F., J. Zhang, Z. Wang, Y. Yao, G. G. Atungulu, X. Ju, and L. Wang. 2018. Absorption and metabolism of peptide WDHHAPQLR derived from rapeseed protein and inhibition of HUVEC apoptosis under oxidative stress. Journal of Agricultural and Food Chemistry 66 (20):5178–89. doi: 10.1021/acs.jafc.8b01620.
  • Xu, Q., H. Fan, W. Yu, H. Hong, and J. Wu. 2017. Transport study of egg-derived antihypertensive peptides (LKP and IQW) using Caco-2 and HT29 coculture monolayers. Journal of Agricultural and Food Chemistry 65 (34):7406–14. doi: 10.1021/acs.jafc.7b02176.
  • Xu, Q., H. Hong, J. Wu, and X. Yan. 2019. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology 86:399–411. doi: 10.1016/j.tifs.2019.02.050.
  • Xu, X., Y. Qiao, B. Shi, and V. P. Dia. 2021a. Alcalase and bromelain hydrolysis affected physicochemical and functional properties and biological activities of legume proteins. Food Structure 27:100178. doi: 10.1016/j.foostr.2021.100178.
  • Xu, Z., C. Wu, D. Sun-Waterhouse, T. Zhao, G. I. N. Waterhouse, M. Zhao, and G. Su. 2021b. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein isolate: Their production conditions and in silico molecular docking with ACE. Food Chemistry 345:128855. doi: 10.1016/j.foodchem.2020.128855.
  • Yang, R., Y. Zou, N. Yu, and Z. Gu. 2011. Accumulation and identification of angiotensin-converting enzyme inhibitory peptides from wheat germ. Journal of Agricultural and Food Chemistry 59 (8):3598–605. doi: 10.1021/jf104998s.
  • Yang, Y., E. D. Marczak, M. Yokoo, H. Usui, and M. Yoshikawa. 2003. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach rubisco. Journal of Agricultural and Food Chemistry 51 (17):4897–902. doi: 10.1021/jf026186y.
  • Yu, Z. P., Y. Fan, and W. Z. Zhao. 2017. Two kinds of ACE inhibitory peptides derived from Larimichthys crocea connetin. CN Patent 108033995, filed December 19, 2017, and issued December 29, 2020.
  • Yu, Z. P., Y. Fan, W. Z. Zhao, and X. Y. Zhang. 2018. Two mudskipper source bioactive peptides having ACE (angiotensin converting enzyme) inhibitory activity. CN Patent 108840906, filed July 15, 2018, and November 20, 2018.
  • Yu, Z., B. Liu, W. Zhao, Y. Yin, J. Liu, and F. Chen. 2012. Primary and secondary structure of novel ACE-inhibitory peptides from egg white protein. Food Chemistry 133 (2):315–22. doi: 10.1016/j.foodchem.2012.01.032.
  • Yu, Z., S. Wu, W. Zhao, G. Mi, L. Ding, J. Li, and J. Liu. 2020. Identification of novel angiotensin I-converting enzyme inhibitory peptide from collagen hydrolysates and its molecular inhibitory mechanism. International Journal of Food Science and Technology 55 (9):2145–52. doi: 10.1111/ijfs.14578.
  • Zaharuddin, N. D., M. A. Hanafi, C. S. Yea, F. S. Hussin, S. M. Auwal, M. Zarei, S. R. Sarbini, W. Z. W. Ibadullah, R. Karim, and N. Saari. 2021. Multifunctional hydrolysates from kenaf (Hibiscus cannabinus L.) seed protein with high antihypertensive activity in vitro and in vivo. Journal of Food Measurement and Characterization 15 (1):652–63. doi: 10.1007/s11694-020-0063-2.
  • Zhang, P., C. Chang, H. Liu, B. Li, Q. Yan, and Z. Jiang. 2020a. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa. Journal of Functional Foods 65:103751. doi: 10.1016/j.jff.2019.103751.
  • Zhang, Y., S. He, E. Bonneil, and B. K. Simpson. 2020b. Generation of antioxidative peptides from Atlantic sea cucumber using alcalase versus trypsin: In vitro activity, de novo sequencing, and in silico docking for in vivo function prediction. Food Chemistry 306:125581. doi: 10.1016/j.foodchem.2019.125581.
  • Zhang, Y., Y. Zhang, P. Chen, F. Shu, K. Li, L. Qiao, Z. Chen, and L. Wang. 2019. A novel angiotensin-I converting enzyme inhibitory peptide derived from the glutelin of vinegar soaked black soybean and its antihypertensive effect in spontaneously hypertensive rats. Journal of Biochemistry 166 (3):223–30. doi: 10.1093/jb/mvz029.
  • Zhao, Y. Q. 2019. Tuna white meat ACE inhibitory peptide and preparation method thereof. CN Patent 110724178, filed October 14, 2019, and issued January 24, 2020.
  • Zhao, Y., L. Zhang, J. Tao, C. Chi, and B. Wang. 2019. Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill (Euphausia superba): Isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs). Food Research International 121:197–204. doi: 10.1016/j.foodres.2019.03.035.
  • Zheng, Y., Y. Li, Y. Zhang, X. Ruan, and R. Zhang. 2017. Purification, characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. Journal of Functional Foods 28:48–58. doi: 10.1016/j.jff.2016.11.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.