556
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Seaweed bioactive compounds: Promising and safe inputs for the green synthesis of metal nanoparticles in the food industry

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdel-Raouf, N., N. M. Al-Enazi, and I. B. Ibraheem. 2017. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry 10:S3029–S3039. doi: 10.1016/j.arabjc.2013.11.044.
  • Aboelfetoh, E. F., R. A. El-Shenody, and M. M. Ghobara. 2017. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): Reaction optimization, catalytic and antibacterial activities. Environmental Monitoring and Assessment 189 (7):349–15. doi: 10.1007/s10661-017-6033-0.
  • Acharya, D., S. Satapathy, P. Somu, U. K. Parida, and G. Mishra. 2021. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biological Trace Element Research 199 (5):1812–1. doi: 10.1007/s12011-020-02304-7.
  • Ahila, N. K., V. S. Ramkumar, S. Prakash, B. Manikandan, J. Ravindran, P. K. Dhanalakshmi, and E. Kannapiran. 2016. Synthesis of stable nanosilver particles (AgNPs) by the proteins of seagrass Syringodium isoetifolium and its biomedicinal properties. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 84:60–70. doi: 10.1016/j.biopha.2016.09.004.
  • Ahmad, T., M. A. Bustam, M. Irfan, M. Moniruzzaman, H. M. A. Asghar, and S. Bhattacharjee. 2019. Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: Role of phenolic compounds and flavonoids. Biotechnology and Applied Biochemistry 66 (4):698–708. doi: 10.1002/bab.1787.
  • Amin, H. H. 2020. Biosynthesized silver nanoparticles using Ulva lactuca as a safe synthetic pesticide (in vitro). Open Agriculture 5 (1):291–9. doi: 10.1515/opag-2020-0032.
  • Amooaghaie, R., M. R. Saeri, and M. Azizi. 2015. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicology and Environmental Safety 120:400–8. doi: 10.1016/j.ecoenv.2015.06.025.
  • Anselmo, A. C., and S. Mitragotri. 2016. Nanoparticles in the clinic. Bioengineering & Translational Medicine 1 (1):10–29. doi: 10.1002/btm2.10003.
  • Anuradha, K., P. Bangal, and S. S. Madhavendra. 2016. Macromolecular arabinogalactan polysaccharide mediated synthesis of silver nanoparticles, characterization and evaluation. Macromolecular Research 24 (2):152–62. doi: 10.1007/s13233-016-4018-4.
  • Augustine‐Rauch, K., C. X. Zhang, and J. M. Panzica‐Kelly. 2010. In vitro developmental toxicology assays: A review of the state of the science of rodent and zebrafish whole embryo culture and embryonic stem cell assays. Birth Defects Research. Part C, Embryo Today: Reviews 90 (2):87–98. doi: 10.1002/bdrc.20175.
  • Azizi, S., M. B. Ahmad, F. Namvar, and R. Mohamad. 2014. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters 116:275–7. doi: 10.1016/j.matlet.2013.11.038.
  • Babu, B., S. Palanisamy, M. Vinosha, R. Anjali, P. Kumar, B. Pandi, M. Tabarsa, S. You, and N. M. Prabhu. 2020. Bioengineered gold nanoparticles from marine seaweed Acanthophora spicifera for pharmaceutical uses: Antioxidant, antibacterial, and anticancer activities. Bioprocess and Biosystems Engineering 43 (12):2231–42. doi: 10.1007/s00449-020-02408-3.
  • Bahrami, S., F. Hassanzadeh‐Afruzi, and A. Maleki. 2020. Synthesis and characterization of a novel and green rod‐like magnetic ZnS/CuFe2O4/agar organometallic hybrid catalyst for the synthesis of biologically‐active 2‐amino‐tetrahydro‐4H‐chromene‐3‐carbonitrile derivatives. Applied Organometallic Chemistry 34 (11):e5949. doi: 10.1002/aoc.5949.
  • Bhattacharjee, S. 2016. DLS and zeta potential - What they are and what they are not? Journal of Controlled Release: Official Journal of the Controlled Release Society 235:337–51. doi: 10.1016/j.jconrel.2016.06.017.
  • Borah, D., N. Das, N. Das, A. Bhattacharjee, P. Sarmah, K. Ghosh, M. Chandel, J. Rout, P. Pandey, N. M. Ghosh, et al. 2020. Alga-mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. Applied Organometallic Chemistry 34 (5):e5597. doi: 10.1002/aoc.5597.
  • Budlayan, M. L. M., J. N. Patricio, S. D. Arco, R. Y. Capangpangan, and A. C. Alguno. 2021. Effects of precursor concentration on the properties of magnetic iron oxide nanoparticles synthesized using brown seaweed (Sargassum crassifolium) extract. Materials Today: Proceedings 46 (4):1608–12. doi: 10.1016/j.matpr.2020.07.251.
  • Carbone, M., D. T. Donia, G. Sabbatella, and R. Antiochia. 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University - Science 28 (4):273–9. doi: 10.1016/j.jksus.2016.05.004.
  • Cassani, L., A. Gomez-Zavaglia, C. Jimenez-Lopez, C. Lourenço-Lopes, M. A. Prieto, and J. Simal-Gandara. 2020. Seaweed-based natural ingredients: Stability of phlorotannins during extraction, storage, passage through the gastrointestinal tract and potential incorporation into functional foods. Food Research International (Ottawa, Ont.) 137:109676. doi: 10.1016/j.foodres.2020.109676.
  • Cassani, L., M. Santos, E. Gerbino, M. R. Moreira, and A. Gómez‐Zavaglia. 2018. A combined approach of infrared spectroscopy and multivariate analysis for the simultaneous determination of sugars and fructans in strawberry juices during storage. Journal of Food Science 83 (3):631–8. doi: 10.1111/1750-3841.13994.
  • Cassani, L., B. Tomadoni, M. R. Moreira, A. Ponce, and M. V. Agüero. 2017. Optimization of inulin: Oligofructose proportion and non-thermal processing to enhance microbiological and sensory properties of fiber-enriched strawberry juice. LWT- Food Science and Technology 80:446–55. doi: 10.1016/j.lwt.2017.03.016.
  • Castro, L., M. L. Blázquez, J. A. Muñoz, F. González, and A. Ballester. 2013. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnology 7 (3):109–16. doi: 10.1049/iet-nbt.2012.0041.
  • Chaudhary, R., K. Nawaz, A. K. Khan, C. Hano, B. H. Abbasi, and S. Anjum. 2020. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10 (11):1498–534. doi: 10.3390/biom10111498.
  • Chellapandian, C., B. Ramkumar, P. Puja, R. Shanmuganathan, A. Pugazhendhi, and P. Kumar. 2019. Gold nanoparticles using red seaweed Gracilaria verrucosa: Green synthesis, characterization and biocompatibility studies. Process Biochemistry 80:58–63. doi: 10.1016/j.procbio.2019.02.009.
  • Chen, H., K. Zhou, and G. Zhao. 2018. Gold nanoparticles: From synthesis, properties to their potential application as colorimetric sensors in food safety screening. Trends in Food Science & Technology 78:83–94. doi: 10.1016/j.tifs.2018.05.027.
  • Chen, X., X. Zhao, Y. Gao, J. Yin, M. Bai, and F. Wang. 2018. Green synthesis of gold nanoparticles using carrageenan oligosaccharide and their in vitro antitumor activity. Marine Drugs 16 (8) art. no. 277. doi: 10.3390/md16080277.
  • Cheon, J. Y., S. J. Kim, Y. H. Rhee, O. H. Kwon, and W. H. Park. 2019. Shape-dependent antimicrobial activities of silver nanoparticles. International Journal of Nanomedicine 14:2773–80. doi: 10.2147/IJN.S196472.
  • Costa, L. H., J. V. Hemmer, E. H. Wanderlind, O. M. S. Gerlach, A. L. H. Santos, M. S. Tamanaha, A. Bella-Cruz, R. Corrêa, H. A. G. Bazani, C. M. Radetski, et al. 2020. Green synthesis of gold nanoparticles obtained from algae Sargassum cymosum: Optimization, characterization and stability. BioNanoScience 10 (4):1049–62. doi: 10.1007/s12668-020-00776-4.
  • Cyril, N., J. B. George, L. Joseph, A. C. Raghavamenon, and V. P. Sylas. 2019. Assessment of antioxidant, antibacterial and anti-proliferative (lung cancer cell line A549) activities of green synthesized silver nanoparticles from Derris trifoliata. Toxicology Research 8 (2):297–308. doi: 10.1039/c8tx00323h.
  • da Silva Ferreira, V., M. E. ConzFerreira, L. M. T. R. Lima, S. Frasés, W. de Souza, and C. Sant'Anna. 2017. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and Microbial Technology 97:114–21. doi: 10.1016/j.enzmictec.2016.10.018.
  • de Aragão, A. P., T. M. de Oliveira, P. V. Quelemes, M. L. G. Perfeito, M. C. Araujo, J. d A. S. Santiago, V. S. Cardoso, P. Quaresma, J. R. d S. de Almeida, and D. A. da Silva. 2019. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian Journal of Chemistry 12 (8):4182–8. doi: 10.1016/j.arabjc.2016.04.014.
  • Deepak, P., V. Amutha, R. Birundha, R. Sowmiya, C. Kamaraj, V. Balasubramanian, G. Balasubramani, D. Aiswarya, D. Arul, and P. Perumal. 2018. Facile green synthesis of nanoparticles from brown seaweed Sargassum wightii and its biological application potential. Advances in Natural Sciences: Nanoscience and Nanotechnology 9 (3):035019. doi: 10.1088/2043-6254/aadc4a.
  • Devi, L. S., and S. Joshi. 2015. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. Journal of Microscopy and Ultrastructure 3 (1):29–37. doi: 10.1016/j.jmau.2014.10.004.
  • Doyen, M., J. Goole, K. Bartik, and G. Bruylants. 2016. Amino acid induced fractal aggregation of gold nanoparticles: Why and how. Journal of Colloid and Interface Science 464 (15):160–6. doi: 10.1016/j.jcis.2015.11.017.
  • Elemike, E. E., O. E. Fayemi, A. C. Ekennia, D. C. Onwudiwe, and E. E. Ebenso. 2017. Silver nanoparticles mediated by Costus afer leaf electrochemical properties. Molecules 22 (5):701–21. doi: 10.3390/molecules22050701.
  • El-Rafie, H., M. El-Rafie, and M. Zahran. 2013. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydrate Polymers 96 (2):403–10. doi: 10.1016/j.carbpol.2013.03.071.
  • El-Seedi, H. R., R. M. El-Shabasy, S. A. M. Khalifa, A. Saeed, A. Shah, R. Shah, F. J. Iftikhar, M. M. Abdel-Daim, A. Omri, N. H. Hajrahand, et al. 2019. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances 9 (42):24539–59. doi: 10.1039/C9RA02225B.
  • El-Sheekh, M. M., M. T. Shabaan, L. Hassan, and H. H. Morsi. 2020. Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. International Journal of Environmental Health Research :1–12. doi: 10.1080/09603123.2020.1789946.
  • Farjadian, F., A. Ghasemi, O. Gohari, A. Roointan, M. Karimi, and M. R. Hamblin. 2019. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine (London, England) 14 (1):93–126. doi: 10.2217/nnm-2018-0120.
  • Fleurence, J., M. Morançais, and J. Dumay. 2018. Seaweed proteins. In Proteins in food processing, ed. R. Y. Yada, 245–62, chapter 9. Amsterdam, The Netherlands: Elsevier. doi: 10.1016/B978-0-08-100722-8.00010-3.
  • Ghaemi, M., and S. Gholamipour. 2017. Controllable synthesis and characterization of silver nanoparticles using Sargassum angostifolium. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 36 (1):1–10. doi: 10.30492/ijcce.2017.25184.
  • Ghibaudo, F., E. Gerbino, G. J. Copello, V. Campo Dall' Orto, and A. Gómez-Zavaglia. 2019. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria. Colloids and Surfaces. B, Biointerfaces 180:193–201. doi: 10.1016/j.colsurfb.2019.04.049.
  • Gómez-Guzmán, M., A. Rodríguez-Nogales, F. Algieri, and J. Gálvez. 2018. Potential role of seaweed polyphenols in cardiovascular-associated disorders. Marine Drugs 16 (8):250–71. doi: 10.3390/md16080250.
  • Gonzales, M., L. M. Mitsumori, J. V. Kushleika, M. E. Rosenfeld, and K. M. Krishnan. 2010. Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127. Contrast Media & Molecular Imaging 5 (5):286–93. doi: 10.1002/cmmi.391.
  • González-Ballesteros, N., L. Diego-González, M. Lastra-Valdor, M. C. Rodríguez-Argüelles, M. Grimaldi, A. Cavazza, F. Bigi, and R. Simón-Vázquez. 2019. Immunostimulant and biocompatible gold and silver nanoparticles synthesized using the Ulva intestinalis L. aqueous extract. Journal of Materials Chemistry B 7 (30):4677–91. doi: 10.1039/c9tb00215d.
  • González-Ballesteros, N., J. González-Rodríguez, M. Rodríguez-Argüelles, and M. J. P. S. Lastra. 2018. New application of two Antarctic macroalgae Palmaria decipiens and Desmarestia menziesii in the synthesis of gold and silver nanoparticles. Polar Science 15:49–54. doi: 10.1016/j.polar.2017.10.004.
  • González-Ballesteros, N., S. Prado-López, J. Rodríguez-González, M. Lastra, and M. Rodríguez-Argüelles. 2017. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids and Surfaces. B, Biointerfaces 153:190–8. doi: 10.1016/j.colsurfb.2017.02.020.
  • González-Ballesteros, N., M. Rodríguez-Argüelles, M. Lastra-Valdor, G. González-Mediero, S. Rey-Cao, M. Grimaldi, A. Cavazza, and F. Bigi. 2020. Synthesis of silver and gold nanoparticles by Sargassum muticum biomolecules and evaluation of their antioxidant activity and antibacterial properties. Journal of Nanostructure in Chemistry 10 (4):317–30. doi: 10.1007/s40097-020-00352-y.
  • González-Ballesteros, N., and M. C. Rodríguez-Argüelles. 2020. Seaweeds: A promising bionanofactory for ecofriendly synthesis of gold and silver nanoparticles. In Sustainable seaweed technologies, ed. M. D. Torres, S. Kraan and H. Dominguez, 507–41. Amsterdam, The Netherlands: Elsevier. doi: 10.1016/B978-0-12-817943-7.00018-4.
  • González-Ballesteros, N., M. C. Rodríguez-Argüelles, S. Prado-López, M. Lastra, M. Grimaldi, A. Cavazza, L. Nasi, G. Salviati, and F. Bigi. 2019. Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. Materials Science & Engineering. C, Materials for Biological Applications 97:498–509. doi: 10.1016/j.msec.2018.12.066.
  • Gopu, M., P. Kumar, T. Selvankumar, B. Senthilkumar, C. Sudhakar, M. Govarthanan, R. S. Kumar, and K. Selvam. 2021. Green biomimetic silver nanoparticles utilizing the red algae Amphiroa rigida and its potent antibacterial, cytotoxicity and larvicidal efficiency. Bioprocess and Biosystems Engineering 44 (2):217–23. doi: 10.1007/s00449-020-02426-1.
  • Herlekar, M., S. Barve, and R. Kumar. 2014. Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles 2014:1–9. doi: 10.1155/2014/140614.
  • Hunt, P. R. 2017. The C. elegans model in toxicity testing. Journal of Applied Toxicology: JAT 37 (1):50–9. doi: 10.1002/jat.3357.
  • Ibraheem, I. B. M., B. E. E. Abd Elaziz, W. F. Saad, and W. A. Fathy. 2016. Green biosynthesis of silver nanoparticles using marine red algae Acanthophora specifera and its antimicrobial activity. Journal of Nanomedicine and Nanotechnology 7 (6):1000409. doi: 10.4172/2157-7439.1000409.
  • Ishwarya, R., B. Vaseeharan, S. Kalyani, B. Banumathi, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, M. N. Al-Anbr, J. M. Khaled, and G. Benelli. 2018. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology. B, Biology 178:249–58. doi: 10.1016/j.jphotobiol.2017.11.006.
  • Jeevitha, M., and R. Shanmugam. 2019. Antimicrobial activity of silver nanoparticles synthesized using marinebrown seaweed Spatoglossum asperum against oral pathogens. Indian Journal of Public Health Research & Development 10 (11):3568–73. doi: 10.5958/0976-5506.2019.04140.8.
  • Jeyarani, S., N. M. Vinita, P. Puja, S. Senthamilselvi, U. Devan, A. J. Velangani, M. Biruntha, A. Pugazhendhi, and P. Kumar. 2020. Biomimetic gold nanoparticles for its cytotoxicity and biocompatibility evidenced by fluorescence-based assays in cancer (MDA-MB-231) and non-cancerous (HEK-293) cells. Journal of Photochemistry and Photobiology. B, Biology 202:111715. doi: 10.1016/j.jphotobiol.2019.111715.
  • Kalimuthu, K., C. Panneerselvam, C. Chou, S.-M. Lin, L.-C. Tseng, K.-H. Tsai, K. Murugan, and J.-S J. H. Hwang. 2017. Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma-synthesized silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia 785 (1):359–72. doi: 10.1007/s10750-016-2943-z.
  • Kannan, R., W. Stirk, and J. van Staden. 2013. Synthesis of silver nanoparticles using the seaweed Codium capitatum PC Silva (Chlorophyceae). South African Journal of Botany 86:1–4. doi: 10.1016/j.sajb.2013.01.003.
  • Karkhane, M., H. E. Lashgarian, S. Z. Mirzaei, A. Ghaffarizadeh, K. Cherghipour, A. Sepahvand, and A. Marzban. 2020. Antifungal, antioxidant and photocatalytic activities of zinc nanoparticles synthesized by Sargassum vulgare extract. Biocatalysis and Agricultural Biotechnology 29:101791. doi: 10.1016/j.bcab.2020.101791.
  • Kathiraven, T., A. Sundaramanickam, N. Shanmugam, and T. Balasubramanian. 2015. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience 5 (4):499–504. doi: 10.1007/s13204-014-0341-2.
  • Khalifa, K. S., R. A. Hamouda, D. Hanafy, and A. Hamza. 2016. In vitro antitumor activity of silver nanoparticles biosynthesized by marine algae. Digest Journal of Nanomaterials and Biostructures 11 (1):213–21.
  • Khan, A. U., M. Khan, N. Malik, N. H. Cho, and M. M. Khan. 2019. Recent progress of algae and blue-green algae-assisted synthesis of gold nanoparticles for various applications . Bioprocess and Biosystems Engineering 42 (1):1–15. doi: 10.1007/s00449-018-2012-2.
  • Khanna, P., A. Kaur, and D. Goyal. 2019. Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of Microbiological Methods 163:105656. doi: 10.1016/j.mimet.2019.105656.
  • Kholiya, F., S. Chatterjee, G. Bhojani, S. Sen, M. Barkume, N. K. Kasinathan, J. Kode, and R. Meena. 2020. Seaweed polysaccharide derived bioaldehyde nanocomposite: Potential application in anticancer therapeutics. Carbohydrate Polymers 240:116282. doi: 10.1016/j.carbpol.2020.116282.
  • Kim, S. W., K. S. Kim, K. Lamsal, Y.-J. Kim, S. B. Kim, M. Jung, S.-J. Sim, H.-S. Kim, S.-J. Chang, J. K. Kim, et al. 2009. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology 19 (8):760–4. doi: 10.4014/jmb.0812.649.
  • Kumar, H., K. Bhardwaj, E. Nepovimova, K. Kuča, D. S. Dhanjal, S. Bhardwaj, S. K. Bhatia, R. Verma, and D. Kumar. 2020. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials 10 (7):1–31. doi: 10.3390/nano10071334.
  • Kumar, P., S. S. Selvi, and M. Govindaraju. 2013. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Applied Nanoscience 3 (6):495–500. doi: 10.1007/s13204-012-0151-3.
  • Kumaresan, M., K. Vijai Anand, K. Govindaraju, S. Tamilselvan, and V. G. Kumar. 2018. Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microbial Pathogenesis 124:311–5. doi: 10.1016/j.micpath.2018.08.060.
  • Lavakumar, V., K. Masilamani, V. Ravichandiran, N. Venkateshan, D. V. R. Saigopal, C. K. A. Kumar, and C. Sowmya. 2015. Promising upshot of silver nanoparticles primed from Gracilaria crassa against bacterial pathogens. Chemistry Central Journal 9 (1):42. doi: 10.1186/s13065-015-0120-5.
  • Lesnichaya, M., R. Shendrik, E. Titov, and B. Sukhov. 2020. Synthesis and comparative assessment of antiradical activity, toxicity, and biodistribution of κ-carrageenan-capped selenium nanoparticles of different size: In vivo and in vitro study. IET Nanobiotechnology 14 (6):519–26. doi: 10.1049/iet-nbt.2020.0023.
  • Lewis Oscar, F., S. Vismaya, M. Arunkumar, N. Thajuddin, D. Dhanasekaran, and C. Nithya. 2016. Algal nanoparticles: Synthesis and biotechnological potentials. In Algae-organisms for imminent biotechnology, ed. N. Thajuddin and D. Dhanasekaran, chapter 7. Croatia: IntechOpen. doi: 10.5772/62909.
  • Liu, Z., Y. Jiao, Y. Wang, C. Zhou, and Z. Zhang. 2008. Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews 60 (15):1650–62. doi: 10.1016/j.addr.2008.09.001.
  • Lopez-Santamarina, A., J. M. Miranda, A. d C. Mondragon, A. Lamas, A. Cardelle-Cobas, C. M. Franco, and A. Cepeda. 2020. Potential use of marine seaweeds as prebiotics: A review. Molecules 25 (4):1004–30. doi: 10.3390/molecules25041004.
  • Love, A. J., V. Makarov, I. Yaminsky, N. O. Kalinina, and M. E. Taliansky. 2014. The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials. Virology 449:133–9. doi: 10.1016/j.virol.2013.11.002.
  • Madhiyazhagan, P., K. Murugan, A. N. Kumar, T. Nataraj, D. Dinesh, C. Panneerselvam, J. Subramaniam, P. Mahesh Kumar, U. Suresh, M. Roni, et al. 2015. S argassum muticum-synthesized silver nanoparticles: An effective control tool against mosquito vectors and bacterial pathogens. Parasitology Research 114 (11):4305–17. doi: 10.1007/s00436-015-4671-0.
  • Mahdavi, M., F. Namvar, M. B. Ahmad, and R. Mohamad. 2013. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules (Basel, Switzerland) 18 (5):5954–64. doi: 10.3390/molecules18055954.
  • Maleki, A., M. Panahzadeh, and R. Eivazzadeh-Keihan. 2019. Agar: A natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1, 2, 3–triazoles. Green Chemistry Letters and Reviews 12 (4):395–406. doi: 10.1080/17518253.2019.1679263.
  • Manikandakrishnan, M., S. Palanisamy, M. Vinosha, B. Kalanjiaraja, S. Mohandoss, R. Manikandan, M. Tabarsa, S. You, and N. M. Prabhu. 2019. Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications. Journal of Drug Delivery Science and Technology 54:101345. doi: 10.1016/j.jddst.2019.101345.
  • Mashjoor, S., M. Yousefzadi, H. Zolgharnain, E. Kamrani, and M. Alishahi. 2018. Organic and inorganic nano-Fe3O4: Alga Ulva flexuosa-based synthesis, antimicrobial effects and acute toxicity to briny water rotifer Brachionus rotundiformis. Environmental Pollution (Barking, Essex: 1987) 237:50–64. doi: 10.1016/j.envpol.2018.02.036.
  • Mashjoor, S., M. Yousefzadi, H. Zolgharnein, E. Kamrani, and M. Alishahi. 2019. Phyco-linked vs chemogenic magnetite nanoparticles: Route selectivity in nano-synthesis, antibacterial and acute zooplanktonic responses. Materials Science & Engineering. C, Materials for Biological Applications 102:324–40. doi: 10.1016/j.msec.2019.01.049.
  • Massironi, A., A. Morelli, L. Grassi, D. Puppi, S. Braccini, G. Maisetta, S. Esin, G. Batoni, C. D. Pina, and F. Chiellini. 2019. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydrate Polymers 203:310–21. doi: 10.1016/j.carbpol.2018.09.066.
  • Mata, Y., E. Torres, M. Blazquez, A. Ballester, F. González, and J. Munoz. 2009. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials 166 (2-3):612–8. doi: 10.1016/j.jhazmat.2008.11.064.
  • Md Ishak, N. A. I., S. K. Kamarudin, and S. N. Timmiati. 2019. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Materials Research Express 6 (11):112004. doi: 10.1088/2053-1591/ab4458.
  • Meyer, J. N., C. A. Lord, X. Y. Yang, E. A. Turner, A. R. Badireddy, S. M. Marinakos, A. Chilkoti, M. R. Wiesner, and M. Auffan. 2010. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic Toxicology (Amsterdam, Netherlands) 100 (2):140–50. doi: 10.1016/j.aquatox.2010.07.016.
  • Mmola, M., M. L. Roes-Hill, K. Durrell, J. J. Bolton, N. Sibuyi, M. E. Meyer, D. R. Beukes, and E. Antunes. 2016. Enhanced antimicrobial and anticancer activity of silver and gold nanoparticles synthesised using Sargassum incisifolium aqueous extracts. Molecules (Basel, Switzerland) 21 (12):21121633. doi: 10.3390/molecules21121633.
  • Mohamed, A. A., A. Fouda, M. A. Abdel-Rahman, S. E. D. Hassan, M. S. El-Gamal, S. S. Salem, and T. I. Shaheen. 2019. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatalysis and Agricultural Biotechnology 19:101103. doi: 10.1016/j.bcab.2019.101103.
  • Mondal, P., A. Anweshan, and M. K. Purkait. 2020. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere 259:127509. doi: 10.1016/j.chemosphere.2020.127509.
  • Moshfegh, A., A. Jalali, A. Salehzadeh, and A. S. Jozani. 2019. Biological synthesis of silver nanoparticles by cell-free extract of Polysiphonia algae and their anticancer activity against breast cancer MCF-7 cell lines. Micro & Nano Letters 14 (5):581–4. doi: 10.1049/mnl.2018.5260.
  • Nagarajan, S., and K. A. Kuppusamy. 2013. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. Journal of Nanobiotechnology 11 (1):39–11. doi: 10.1186/1477-3155-11-39.
  • Namvar, F., H. S. Rahman, R. Mohamad, J. Baharara, M. Mahdavi, E. Amini, M. S. Chartrand, and S. K. Yeap. 2014. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. International Journal of Nanomedicine 9:2479–88. doi: 10.2147/IJN.S59661.
  • Namvar, F., S. Azizi, M. B. Ahmad, K. Shameli, R. Mohamad, M. Mahdavi, and P. M. Tahir. 2014. Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Research on Chemical Intermediates 41 (8):5723–30. doi: 10.1007/s11164-014-1696-4.
  • Nel, A., T. Xia, L. Mädler, and N. Li. 2006. Toxic potential of materials at the nanolevel. Science (New York, N.Y.) 311 (5761):622–7. doi: 10.1126/science.1114397.
  • Nile, S. H., V. Baskar, D. Selvaraj, A. Nile, J. Xiao, and G. Kai. 2020. Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Letters 12 (1):45–34. doi: 10.1007/s40820-020-0383-9.
  • Nunes, B. S., F. D. Carvalho, L. M. Guilhermino, and G. van Stappen. 2006. Use of the genus Artemia in ecotoxicity testing. Environmental Pollution (Barking, Essex: 1987) 144 (2):453–62. doi: 10.1016/j.envpol.2005.12.037.
  • Öztürk, Y. B. 2019. Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: Their antibacterial and antifungal effects. Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics 72 (1):29–43. doi: 10.13128/cayologia-249.
  • Öztürk, Y. B., Y. B. Gürsu, and İ. Dağ. 2020. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry 89:208–19. doi: 10.1016/j.procbio.2019.10.027.
  • Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology 73 (6):1712–20. doi: 10.1128/AEM.02218-06.
  • Palanisamy, S., P. Rajasekar, G. Vijayaprasath, G. Ravi, R. Manikandan, and N. M. Prabhu. 2017. A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: An in vitro analysis. Materials Letters 189:196–200. doi: 10.1016/j.matlet.2016.12.005.
  • Parial, D., P. K. Gopal, S. Paul, and R. J. Pal. 2016. Gold (III) bioreduction by cyanobacteria with special reference to in vitro biosafety assay of gold nanoparticles. Journal of Applied Phycology 28 (6):3395–406. doi: 10.1007/s10811-016-0880-x.
  • Pereda, M., N. E. Marcovich, and M. R. Ansorena. 2017. Nanotechnology in food packaging applications: Barrier materials, antimicrobial agents, sensors, and safety assessment. In Handbook of ecomaterials, ed. L. Martínez, O. Kharissova, and B. Kharisov, 2035–56. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-68255-6_30.
  • Prasad, T. N., V. S. R. Kambala, and R. Naidu. 2013. Phyconanotechnology: Synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. Journal of Applied Phycology 25 (1):177–82. doi: 10.1007/s10811-012-9851-z.
  • Prior, R. L., X. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry 53 (10):4290–302. doi: 10.1021/jf0502698.
  • Pugazhendhi, A., D. Prabakar, J. M. Jacob, I. Karuppusamy, and R. G. Saratale. 2018. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microbial Pathogenesis 114:41–5. doi: 10.1016/j.micpath.2017.11.013.
  • Pugazhendhi, A., R. Prabhu, K. Muruganantham, R. Shanmuganathan, and S. Natarajan. 2019. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology. B, Biology 190:86–97. doi: 10.1016/j.jphotobiol.2018.11.014.
  • Rahimi, Z., M. Yousefzadi, A. Noori, and A. Akbarzadeh. 2014. Green synthesis of silver nanoparticles using Ulva flexousa from the Persian Gulf. Iran. Journal of the Persian Gulf 5 (15):9–16.
  • Rajabi, S., A. Ramazani, M. Hamidi, and T. Naji. 2015. Artemia salina as a model organism in toxicity assessment of nanoparticles. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences 23 (1):20–6. doi: 10.1186/s40199-015-0105-x.
  • Rajasekar, P., S. Palanisamy, R. Anjali, M. Vinosha, M. Thillaieswari, B. Malaikozhundan, P. Boomi, M. Saravanan, S. G. You, and N. M. Prabhu. 2020. Cladophora fascicularis mediated silver nanoparticles: Assessment of their antibacterial activity against Aeromonas hydrophila. Journal of Cluster Science 31 (4):673–83. doi: 10.1007/s10876-019-01674-w.
  • Rajeshkumar, S., C. Malarkodi, D. A. Al Farraj, M. S. Elshikh, and S. M. Roopan. 2021. Employing sulphated polysaccharide (fucoidan) as medium for gold nanoparticles preparation and its anticancer study against HepG2 cell lines. Materials Today Communications 26:101975. doi: 10.1016/j.mtcomm.2020.101975.
  • Rajeshkumar, S., C. Malarkodi, G. Gnanajobitha, K. Paulkumar, M. Vanaja, C. Kannan, and G. Annadurai. 2013. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. Journal of Nanostructure in Chemistry 3 (1):1–7. doi: 10.1186/2193-8865-3-44.
  • Rajeshkumar, S., C. Malarkodi, M. Paulkumar, G. Vanaja, G. Gnanajobitha, and G. Annadurai. 2014. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. International Journal of Metals 2014:1–8. doi: 10.1155/2014/692643.
  • Ramkumar, V. S., A. Pugazhendhi, K. Gopalakrishnan, P. Sivagurunathan, G. D. Saratale, T. N. B. Dung, and E. Kannapiran. 2017. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports (Amsterdam, Netherlands) 14:1–7. doi: 10.1016/j.btre.2017.02.001.
  • Rana, A., K. Yadav, and S. Jagadevan. 2020. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production 272 (1):122880. doi: 10.1016/j.jclepro.2020.122880.
  • Rana, S., and P. T. Kalaichelvan. 2011. Antibacterial activities of metal nanoparticles. Advance Biotechnology 11:21–3.
  • Ravichandran, A., P. Subramanian, V. Manoharan, T. Muthu, R. Periyannan, M. Thangapandi, K. Ponnuchamy, B. Pandi, and P. N. Marimuthu. 2018. Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. Journal of Photochemistry and Photobiology. B, Biology 185:117–25. doi: 10.1016/j.jphotobiol.2018.05.031.
  • Rioux, L.-E., and S. L. Turgeon. 2015. Seaweed carbohydrates. In Seaweed sustainability, ed. B. K. Tiwari and D. J. Troy, 141–92. Amsterdam, The Netherlands: Elsevier. doi: 10.1016/B978-0-12-418697-2.00007-6.
  • Rizwan, M., S. Amin, B. M. Kudaibergenova, A. Rauf, M. Siddique, K. Ullah, S. Bawazeer, U. Farooq, Y. N. Mabkhot, and M. F. Ramadan. 2020. Green synthesis and antimicrobial potential of silver nanoparticles with Boerhavia procumbens extract. Journal of Pure and Applied Microbiology 14 (2):1437–51. doi: 10.22207/JPAM.14.2.42.
  • Roh, J.-y., S. J. Sim, J. Yi, K. Park, K. H. Chung, D-y Ryu, and J. J. Choi. 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environmental Science & Technology 43 (10):3933–40. doi: 10.1021/es803477u.
  • Roni, M., K. Murugan, C. Panneerselvam, J. Subramaniam, M. Nicoletti, P. Madhiyazhagan, D. Dinesh, U. Suresh, H. F. Khater, H. Wei, et al. 2015. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicology and Environmental Safety 121:31–8. doi: 10.1016/j.ecoenv.2015.07.005.
  • Sadhasivam, S., V. Vinayagam, and M. Balasubramaniyan. 2020. Recent advancement in biogenic synthesis of iron nanoparticles. Journal of Molecular Structure 1217 (5):128372. doi: 10.1016/j.molstruc.2020.128372.
  • Salem, D. M. S. A., M. M. Ismail, and M. A. Aly-Eldeen. 2019. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea. The Egyptian Journal of Aquatic Research 45 (3):197–204. doi: 10.1016/j.ejar.2019.07.002.
  • Salem, S. S., and A. Fouda. 2021. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research 199 (1):344–70. doi: 10.1007/s12011-020-02138-3.
  • Sanaeimehr, Z., I. Javadi, and F. Namvar. 2018. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnology 9 (1):3–16. doi: 10.1186/s12645-018-0037-5.
  • Sánchez-López, E., D. Gomes, G. Esteruelas, L. Bonilla, A. L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, et al. 2020. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 10 (2):292. doi: 10.3390/nano10020292.
  • Sauer, U. G., S. Vogel, A. Hess, S. N. Kolle, L. Ma-Hock, B. van Ravenzwaay, and R. Landsiedel. 2013. In vivo-in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems. Toxicology in Vitro: An International Journal Published in Association with BIBRA 27 (1):174–90. doi: 10.1016/j.tiv.2012.10.007.
  • Shankar, P. D., S. Shobana, I. Karuppusamy, A. Pugazhendhi, V. S. Ramkumar, S. Arvindnarayan, and G. Kumar. 2016. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology 95:28–44. doi: 10.1016/j.enzmictec.2016.10.015.
  • Sharma, A., S. Sharma, K. Sharma, S. P. Chetri, A. Vashishtha, P. Singh, R. Kumar, B. Rathi, and V. Agrawal. 2016. Algae as crucial organisms in advancing nanotechnology: A systematic review. Journal of Applied Phycology 28 (3):1759–74. doi: 10.1007/s10811-015-0715-1.
  • Sharma, B., D. D. Purkayastha, S. Hazra, M. Thajamanbi, C. R. Bhattacharjee, N. N. Ghosh, and J. Rout. 2014. Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess and Biosystems Engineering 37 (12):2559–65. doi: 10.1007/s00449-014-1233-2.
  • Shiny, P. J., A. Mukherjee, and N. Chandrasekaran. 2014. Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess and Biosystems Engineering 37 (6):991–7. doi: 10.1007/s00449-013-1069-1.
  • Singh, A. K., R. Tiwari, V. Kumar, P. Singh, S. K. Riyazat Khadim, A. Tiwari, V. Srivastava, S. H. Hasan, and R. K. Asthana. 2017. Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology. B, Biology 166:202–11. doi: 10.1016/j.jphotobiol.2016.11.020.
  • Singh, M., R. Kalaivani, S. Manikandan, N. Sangeetha, and A. Kumaraguru. 2013. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Applied Nanoscience 3 (2):145–51. doi: 10.1007/s13204-012-0115-7.
  • Singh, P., Y. J. Kim, H. Singh, C. Wang, K. H. Hwang, M. E.-A. Farh, and D. C. Yang. 2015. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. International Journal of Nanomedicine 10:2567–77. doi: 10.2147/IJN.S72313.
  • Singh, T., S. Shukla, P. Kumar, V. Wahla, V. K. Bajpai, and I. A. Rather. 2017. Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology 8:1501. doi: 10.3389/fmicb.2017.01501.
  • Suh, W. H., K. S. Suslick, G. D. Stucky, and Y.-H. Suh. 2009. Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology 87 (3):133–70. doi: 10.1016/j.pneurobio.2008.09.009.
  • Torabfam, M., and M. Yüce. 2020. Microwave-assisted green synthesis of silver nanoparticles using dried extracts of Chlorella vulgaris and antibacterial activity studies. Green Processing and Synthesis 9 (1):283–93. doi: 10.1515/gps-2020-0024.
  • Uzair, B., A. Liaqat, H. Iqbal, B. Menaa, A. Razzaq, G. Thiripuranathar, N. F. Rana, and F. Menaa. 2020. Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering 7 (4):129. doi: 10.3390/bioengineering7040129.
  • Vaid, P., P. Raizada, A. K. Saini, and R. V. Saini. 2020. Biogenic silver, gold and copper nanoparticles-A sustainable green chemistry approach for cancer therapy. Sustainable Chemistry and Pharmacy 16:100247. doi: 10.1016/j.scp.2020.100247.
  • Vasquez, R. D., J. G. Apostol, J. D. de Leon, J. D. Mariano, C. M. C. Mirhan, S. S. Pangan, A. G. M. Reyes, and E. T. Zamora. 2016. Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosum. Opennano 1:16–24. doi: 10.1016/j.onano.2016.03.001.
  • Venkatesan, J., P. Manivasagan, S.-K. Kim, A. V. Kirthi, S. Marimuthu, and A. A. Rahuman. 2014. Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess and Biosystems Engineering 37 (8):1591–7. doi: 10.1007/s00449-014-1131-7.
  • Vicario-Parés, U., L. Castañaga, J. M. Lacave, M. Oron, P. Reip, D. Berhanu, E. Valsami-Jones, M. P. Cajaraville, and A. Orbea. 2014. Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO2) to developing zebrafish embryos. Journal of Nanoparticle Research 16 (8):1–16. doi: 10.1007/s11051-014-2550-8.
  • Vijayan, S. R., P. Santhiyagu, R. Ramasamy, P. Arivalagan, G. Kumar, K. Ethiraj, and B. R. Ramaswamy. 2016. Seaweeds: A resource for marine bionanotechnology. Enzyme and Microbial Technology 95:45–57. doi: 10.1016/j.enzmictec.2016.06.009.
  • Vijayaraghavan, K., and T. Ashokkumar. 2017. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. Journal of Environmental Chemical Engineering 5 (5):4866–83. doi: 10.1016/j.jece.2017.09.026.
  • Waghmare, S. R., M. N. Mulla, S. R. Marathe, and K. D. Sonawane. 2015. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 5 (1):33–8. doi: 10.1007/s13205-014-0196-y.
  • Xavier, H. F. M., V. M. Nadar, P. Patel, D. Umapathy, A. Velanganni Joseph, S. Manivannan, P. Santhiyagu, B. Pandi, G. Muthusamy, Y. Rathinam, et al. 2020. Selective antibacterial and apoptosis-inducing effects of hybrid gold nanoparticles–A green approach. Journal of Drug Delivery Science and Technology 59:101890. doi: 10.1016/j.jddst.2020.101890.
  • Yang, X., A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, and J. N. Meyer. 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environmental Science & Technology 46 (2):1119–27. doi: 10.1021/es202417t.
  • Yang, X., C. Jiang, H. Hsu-Kim, A. R. Badireddy, M. Dykstra, M. Wiesner, D. E. Hinton, and J. N. J. Meyer. 2014. Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: Effects of natural organic matter. Environmental Science & Technology 48 (6):3486–95. doi: 10.1021/es404444n.
  • Yew, Y. P., K. Shameli, M. Miyake, N. Kuwano, N. B. B. A. Khairudin, S. E. B. Mohamad, and K. X. Lee. 2016. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Research Letters 11 (1):276–7. doi: 10.1186/s11671-016-1498-2.
  • Yugay, Y., R. Usoltseva, V. Silant'ev, A. Egorova, A. Karabtsov, V. Kumeiko, S. Ermakova, V. Bulgakov, and Y. Shkryl. 2020. Synthesis of bioactive silver nanoparticles using alginate, fucoidan and laminaran from brown algae as a reducing and stabilizing agent. Carbohydrate Polymers 245 (1):116547. doi: 10.1016/j.carbpol.2020.116547.
  • Zhao, X., S. Wang, Y. Wu, H. You, and L. Lv. 2013. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquatic Toxicology (Amsterdam, Netherlands) 136-137:49–59. doi: 10.1016/j.aquatox.2013.03.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.