957
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Cyanidin-3-O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: potential mechanisms and therapeutic strategies

ORCID Icon, , , , , , , ORCID Icon, , , ORCID Icon, ORCID Icon & show all

References

  • Alexander, K. L., Q. Zhao, M. Reif, A. F. Rosenberg, P. J. Mannon, L. W. Duck, and C. O. Elson. 2021. Human microbiota flagellins drive adaptive immune responses in Crohn’s disease. Gastroenterology 161 (2):522–35.e6. doi: 10.1053/j.gastro.2021.03.064.
  • Ansaldo, E., K. F. Taylor, and B. Yasmine. 2021. Control of immunity by the microbiota. Annual Review of Immunology 39 (1):449–79. doi: 10.1146/annurev-immunol-093019-112348.
  • Arthur, J. C., and C. Jobin. 2013. The complex interplay between inflammation, the microbiota and colorectal cancer. Gut Microbes 4 (3):253–58. doi: 10.4161/gmic.24220.
  • Aura, A.-M., P. M. Lopez, K. A. O. Leary, G. Williamson, K. M. O. Caldentey, K. Poutanen, and C. S. Buelga. 2005. In vitro metabolism of anthocyanins by human gut microflora. European Journal of Nutrition 44 (3):133–42. doi: 10.1007/s00394-004-0502-2.
  • Bailey, M. T., S. E. Dowd, J. D. Galley, A. R. Hufnagle, G. Rebecca, and M. Lyte. 2011. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity 25 (3):397–407. doi: 10.1016/j.Bbi.2010.10.023.
  • Bharat, D., R. R. M. Cavalcanti, C. Petersen, N. Begaye, B. R. Cutler, M. M. A. Costa, R. K. L. G. Ramos, M. R. Ferreira, Y. Li, L. P. Bharath, et al. 2018. Blueberry metabolites attenuate lipotoxicity-induced endothelial dysfunction. Molecular Nutrition and Food Research 62 (2):1–8. doi: 10.1002/mnfr.201700601.
  • Bonarska-Kujawa, D., H. Pruchnik, and H. Kleszczyńska. 2012. Interaction of selected anthocyanins with erythrocytes and liposome membranes. Cellular & Molecular Biology Letters 17 (2):289–308. doi: 10.2478/s11658-012-0010-y.
  • Boutron-Ruault, M.-C., P. Marteau, A. Lavergne-Slove, A. Myara, M.-F. Gerhardt, C. Franchisseur, F. Bornet, and Eripolyp Study Group. 2005. Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small or large colorectal adenomas. Nutrition and Cancer 53 (2):160–8. doi: 10.1207/s15327914nc5302_5.
  • Brubaker, S. W., and D. M. Monack. 2017. Cell-intrinsic defense at the epithelial border wall: Salmonella pays the price. Immunity 46 (4):522–4. doi: 10.1016/j.immuni.2017.03.021.
  • Buonomo, E. L., C. A. Cowardin, M. G. Wilson, M. M. Saleh, P. Pramoonjago, and W. A. Petri, Jr. 2016. Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Reports 16 (2):432–443. doi: 10.1016/j.celrep.2016.06.007.
  • Cai, H., B. Yang, Z. Xu, B. Zhang, B. Xu, X. Li, P. Wu, K. Chen, R. V. Rajotte, Y. Wu, et al. 2015. Cyanidin-3-O-glucoside enhanced the function of syngeneic mouse islets transplanted under the kidney capsule or into the portal vein. Transplantation 99 (3):508–14. doi: 10.1097/TP.0000000000000628.
  • Camilleri, M., K. Madsen, R. Spiller, B. Greenwood-Van Meerveld, B. G. Van Meerveld, and G. N. Verne. 2012. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology and Motility 24 (6):503–12. doi: 10.1111/j.1365-2982.2012.01921.x.
  • Carvalho, F. A., J. D. Aitken, M. Vijay-Kumar, and A. T. Gewirtz. 2012. Toll-like receptor-gut microbiota interactions: Perturb at your own risk!Annual Review of Physiology 74:177–98. doi: 10.1146/annurev-physiol-020911-153330.
  • Cásedas, G., F. Les, E. González-Burgos, M. P. Gómez-Serranillos, C. Smith, and V. López. 2019. Cyanidin-3-O-glucoside inhibits different enzymes involved in central nervous system pathologies and type-2 diabetes. South African Journal of Botany 120 (1):241–6. doi: 10.1016/j.sajb.2018.07.001.
  • Celià-Terrassa, T., and Y. Kang. 2017. Mouse genomic screen reveals novel host regulator of metastasis. Genome Biology 18 (1):31. doi: 10.1186/s13059-017-1170-x.
  • Chen, D., M. Yuan, Q. Ye, X. Wang, J. Xu, G. Shi, and Z. Hu. 2020. Cyanidin-3-o-glucoside inhibits epithelial-to-mesenchymal transition, and migration and invasion of breast cancer cells by upregulating klf4. Food and Nutrition Research 64 (9):1–10. doi: 10.29219/fnr.v64.4240.
  • Chen, G., G. Wang, C. Zhu, X. Jiang, J. Sun, L. Tian, and W. Bai. 2019. Effects of cyanidin-3-O-glucoside on 3-chloro-1,2-propanediol induced intestinal microbiota dysbiosis in rats. Food and Chemical Toxicology 133 (7):110767. doi: 10.1016/j.fct.2019.110767.
  • Chen, J., B. Xu, J. Sun, X. Jiang, and W. Bai. 2021. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Critical Reviews in Food Science and Nutrition 1–13. doi: 10.1080/10408398.2021.1913092.
  • Chen, P., H. Xu, H. Tang, F. Zhao, C. Yang, L. Y. Kwok, C. Cong, Y. F. Wu, W. Zhang, X. F. Zhou, et al. 2020. Modulation of gut mucosal microbiota as a mechanism of probiotics-based adjunctive therapy for ulcerative colitis. Microbial Biotechnology 13 (6):2032–43. doi: 10.1111/1751-7915.13661.
  • Cheng, Z., J. Lin, N. Gao, X. Sun, X. Meng, R. Liu, Y. Liu, W. Wang, B. Li, and Y. Wang. 2020. Blueberry malvidin-3-galactoside modulated gut microbial dysbiosis and microbial TCA cycle KEGG pathway disrupted in a liver cancer model induced by HepG2 cells. Food Science and Human Wellness 9 (3):245–55. doi: 10.1016/j.fshw.2020.04.006.
  • Cho, E., E. Y. Chung, H. Y. Jang, O. Y. Hong, H. S. Chae, Y. J. Jeong, S. Y. Kim, B. S. Kim, D. J. Yoo, J. S. Kim, et al. 2017. Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and DNA fragmentation in vitro and in vivo. Anti-Cancer Agents in Medicinal Chemistry 17 (11):1519–25. doi: 10.2174/1871520617666170327152026.
  • Clavel, T., R. Lippman, F. Gavini, J. Doré, and M. Blaut. 2007. Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Systematic and Applied Microbiology 30 (1):16–26. doi: 10.1016/j.syapm.2006.02.003.
  • Cooke, D., M. Schwarz, D. Boocock, P. Winterhalter, W. P. Steward, A. J. Gescher, and T. H. Marczylo. 2006. Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis—Relationship with tissue anthocyanin levels. International Journal of Cancer 119 (9):2213–20. doi: 10.1002/ijc.22090.
  • Crespo, I., B. San-Miguel, J. L. Mauriz, J. J. O. de Urbina, M. Almar, M. J. Tuñón, and J. González-Gallego. 2017. Protective effect of protocatechuic acid on TNBS-induced colitis in mice is associated with modulation of the SphK/S1P signaling pathway. Nutrients 9 (3):1–15. doi: 10.3390/nu9030288.
  • Cueva, C., M. V. Moreno-Arribas, P. J. Martín-Álvarez, G. Bills, M. F. Vicente, A. Basilio, C. L. Rivas, T. Requena, J. M. Rodríguez, and B. Bartolomé. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology 161 (5):372–82. doi: 10.1016/j.resmic.2010.04.006.
  • De Ferrars, R. M., C. Czank, Q. Zhang, N. P. Botting, K. P. A. Roon, A. Cassidy, and C. D. Kay. 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology 171 (13):3268–82. doi: 10.1111/bph.12676.
  • Desjardins, J., S. Tanabe, C. Bergeron, S. Gafner, and D. Grenier. 2012. Anthocyanin-rich black currant extract and cyanidin-3-O-glucoside have cytoprotective and anti-inflammatory properties. Journal of Medicinal Food 15 (12):1045–50. doi: 10.1089/jmf.2011.0316.
  • Dharmawansa, K. V. S., D. W. Hoskin, and H. P. Vasantha Rupasinghe. 2020. Chemopreventive effect of dietary anthocyanins against gastrointestinal cancers: A review of recent advances and perspectives. In International Journal of Molecular Sciences 21 (18). doi: 10.3390/ijms21186555.
  • Ding, M., R. Feng, S. Y. Wang, L. Bowman, Y. Lu, Y. Qian, V. Castranova, B. H. Jiang, and X. Shi. 2006. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. The Journal of Biological Chemistry 281 (25):17359–68. doi: 10.1074/jbc.M600861200.
  • Duncan, S. H., W. R. Russell, A. Quartieri, M. Rossi, J. Parkhill, A. W. Walker, and H. J. Flint. 2016. Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid. Environmental Microbiology 18 (7):2214–25. doi: 10.1111/1462-2920.13158.
  • Eguchi, H., H. Matsunaga, S. Onuma, Y. Yoshino, T. Matsunaga, and A. Ikari. 2021. Down-regulation of claudin-2 expression by cyanidin-3-glucoside enhances sensitivity to anticancer drugs in the spheroid of human lung adenocarcinoma a549 cells. International Journal of Molecular Sciences 22 (2):1–15. doi: 10.3390/ijms22020499.
  • Eisenstein, M. 2016. Biology: A slow-motion epidemic. Nature 540 (7634):S98–S99. doi: 10.1038/540S98a.
  • Eisenstein, M. 2020. The hunt for a healthy microbiome. Nature 577 (7792):S6–S8. doi: 10.1038/d41586-020-00193-3.
  • Elinav, E., R. Nowarski, C. A. Thaiss, B. Hu, C. Jin, and R. A. Flavell. 2013. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nature Reviews. Cancer 13 (11):759–71. doi: 10.1038/nrc3611.
  • Fang, J. 2014. Bioavailability of anthocyanins. Drug Metabolism Reviews 46 (4):508–20. doi: 10.3109/03602532.2014.978080.
  • Ferlay, J., I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray. 2015. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer 136 (5):E359–86. doi: 10.1002/ijc.29210.
  • Ferrari, D., F. Cimino, D. Fratantonio, M. S. Molonia, R. Bashllari, R. Busà, A. Saija, and A. Speciale. 2017. Cyanidin-3-O-glucoside modulates the in vitro inflammatory crosstalk between intestinal epithelial and endothelial cells. Mediators of Inflammation 2017:3454023. doi: 10.1155/2017/3454023.
  • Ferrari, D., A. Speciale, M. Cristani, D. Fratantonio, M. S. Molonia, G. Ranaldi, A. Saija, and F. Cimino. 2016. Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via Nrf2 pathway activation. Toxicology Letters 264:51–8. doi: 10.1016/j.toxlet.2016.10.014.
  • Flemer, B., M. Herlihy, M. O’Riordain, F. Shanahan, and P. W. O’Toole. 2018. Tumour-associated and non-tumour-associated microbiota: Addendum. Gut Microbes 9 (4):369–73. doi: 10.1080/19490976.2018.1435246.
  • Frame, L., E. Costa, and S. Jackson. 2019. Current explorations of nutrition and the gut microbiome: A systematic review. Current Developments in Nutrition 3 (Supplement_1):1–50. doi: 10.1093/cdn/nzz040.P20-032-19.
  • Frank, D. N., C. E. Robertson, C. M. Hamm, Z. Kpadeh, T. Zhang, H. Chen, W. Zhu, R. B. Sartor, E. C. Boedeker, N. Harpaz, et al. 2011. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflammatory Bowel Diseases 17 (1):179–84. doi: 10.1002/ibd.21339.
  • Gan, Y., Y. Fu, L. Yang, J. Chen, H. Lei, and Q. Liu. 2020. Cyanidin-3-O-glucoside and cyanidin protect against intestinal barrier damage and 2,4,6-trinitrobenzenesulfonic acid-induced colitis. Journal of Medicinal Food 23 (1):90–10. doi: 10.1089/jmf.2019.4524.
  • Gao, N., X. Sun, D. Li, E. Gong, J. Tian, X. Si, X. Jiao, J. Xing, Y. Wang, X. Meng, et al. 2020. Optimization of anthocyanidins conversion using chokeberry pomace rich in polymeric proanthocyanidins and cellular antioxidant activity analysis. Lwt 133 (3):109889. doi: 10.1016/j.lwt.2020.109889.
  • Gotoh, A., M. Nara, Y. Sugiyama, M. Sakanaka, H. Yachi, A. Kitakata, A. Nakagawa, H. Minami, S. Okuda, T. Katoh, et al. 2017. Use of Gifu anaerobic medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles. Bioscience, Biotechnology, and Biochemistry 81 (10):2009–17. doi: 10.1080/09168451.2017.1359486.
  • Guglielmi, F., C. Luceri, L. Giovannelli, P. Dolara, and M. Lodovici. 2003. Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. The British Journal of Nutrition 89 (5):581–7. doi: 10.1079/bjn2003849.
  • Guo, H., M. Xia, T. Zou, W. Ling, R. Zhong, and W. Zhang. 2012. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. The Journal of Nutritional Biochemistry 23 (4):349–60. doi: 10.1016/j.jnutbio.2010.12.013.
  • Ha, T. J., J. E. Park, K. S. Lee, W. D. Seo, S. B. Song, M. H. Lee, S. Kim, J. I. Kim, E. Oh, S. B. Pae, et al. 2021. Identification of anthocyanin compositions in black seed coated Korean adzuki bean (Vigna angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and screening for their antioxidant properties using different solvent systems. Food Chemistry 346:128882. doi: 10.1016/j.foodchem.2020.128882.
  • Han, M., A. Li, T. Shen, J. Meng, Y. Lei, X. Zhang, P. Liu, L. Gan, L. Ao, and H. Li. 2019. Phenolic compounds present in fruit extracts of Malus spp. show antioxidative and pro-apoptotic effects on human gastric cancer cell lines. Journal of Food Biochemistry 43 (11):e13028. doi: 10.1111/jfbc.13028.
  • Han, M., C. Yang, J. Zhou, J. Zhu, J. Meng, T. Shen, Z. Xin, and H. Li. 2020. Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Brazilian Journal of Botany 43 (1):81–9. doi: 10.1007/s40415-020-00590-y.
  • Hanske, L., W. Engst, G. Loh, S. Sczesny, M. Blaut, and A. Braune. 2013. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. The British Journal of Nutrition 109 (8):1433–41. doi: 10.1017/S0007114512003376.
  • He, J., and M. M. Giusti. 2010. Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1 (1):163–87. doi: 10.1146/annurev.food.080708.100754.
  • He, Y., Y. Hu, X. Jiang, T. Chen, Y. Ma, S. Wu, J. Sun, R. Jiao, X. Li, L. Deng, et al. 2017. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells. Journal of Photochemistry and Photobiology. B, Biology 177 (9):24–31. doi: 10.1016/j.jphotobiol.2017.10.006.
  • Hernández-Herrero, J. A., and M. J. Frutos. 2015. Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices. Food Chemistry 173:495–500. doi: 10.1016/j.foodchem.2014.10.059.
  • Hou, J., M. Hu, L. Zhang, Y. Gao, L. Ma, and Q. Xu. 2020. Dietary taxifolin protects against dextran sulfate sodium-induced colitis via NF-κB signaling, enhancing intestinal barrier and modulating gut microbiota. Frontiers in Immunology 11 (2):631809–11. doi: 10.3389/fimmu.2020.631809.
  • Hu, L., L. Jin, D. Xia, Q. Zhang, L. Ma, H. Zheng, T. Xu, S. Chang, X. Li, Z. Xun, et al. 2020. Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota. Free Radical Biology & Medicine 152 (8):609–21. doi: 10.1016/j.freeradbiomed.2019.12.002.
  • Hu, R., Z. He, M. Liu, J. Tan, H. Zhang, D. X. Hou, J. He, and S. Wu. 2020. Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. Journal of Animal Science and Biotechnology 11 (1):92–12. doi: 10.1186/s40104-020-00492-9.
  • Hu, Y., Y. Ma, S. Wu, T. Chen, Y. He, J. Sun, R. Jiao, X. Jiang, Y. Huang, L. Deng, et al. 2016. Protective effect of Cyanidin-3-O-glucoside against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes. Frontiers in Pharmacology 7 (9):301–8. doi: 10.3389/fphar.2016.00301.
  • Huang, F., R. Zhao, M. Xia, and G. X. Shen. 2020. Impact of cyanidin-3-glucoside on gut microbiota and relationship with metabolism and inflammation in high fat-high sucrose diet-induced insulin resistant mice. Microorganisms 8 (8):1–15. doi: 10.3390/microorganisms8081238.
  • Inaguma, T., J. Han, and H. Isoda. 2011. Improvement of insulin resistance by Cyanidin 3-glucoside, anthocyanin from black beans through the up-regulation of GLUT4 gene expression. BMC Proceedings 5 Suppl 8 (8):P21. doi: 10.1186/1753-6561-5-s8-p21.
  • Ishikawa, D., T. Sasaki, M. Takahashi, K. Kuwahara-Arai, K. Haga, S. Ito, K. Okahara, A. Nakajima, T. Shibuya, T. Osada, et al. 2018. The microbial composition of bacteroidetes species in ulcerative colitis is effectively improved by combination therapy with fecal microbiota transplantation and antibiotics. Inflammatory Bowel Diseases 24 (12):2590–8. doi: 10.1093/ibd/izy266.
  • Jiao, X., Y. Wang, Y. Lin, Y. Lang, E. Li, X. Zhang, Q. Zhang, Y. Feng, X. Meng, and B. Li. 2019. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. The Journal of Nutritional Biochemistry 64:88–100. doi: 10.1016/j.jnutbio.2018.07.008.
  • Jin, X., C. Wang, W. Wu, T. Liu, B. Ji, and F. Zhou. 2018. Cyanidin-3-glucoside alleviates 4-Hydroxyhexenal-induced NLRP3 inflammasome activation via JNK-c-Jun/AP-1 pathway in human retinal pigment epithelial cells. Journal of Immunology Research 2018:5604610. doi: 10.1155/2018/5604610.
  • Joo, S. H., C. Hahn, H. K. Lim, K. D. Yoon, S. H. Yoon, and C. U. Lee. 2019. An exploration of the Oryza sativa L. Cyanidin-3-glucoside on the cognitive function in older adults with subjective memory impairment . Psychiatry Investigation 16 (10):759–65. doi: 10.30773/pi.2019.06.17.
  • Jung, H., H. K. Kwak, and K. T. Hwang. 2014. Antioxidant and antiinflammatory activities of cyanidin-3-glucoside and cyanidin-3-rutinoside in hydrogen peroxide and lipopolysaccharide-treated RAW264.7 cells. Food Science and Biotechnology 23 (6):2053–62. doi: 10.1007/s10068-014-0279-x.
  • Kaewmool, C., S. Udomruk, T. Phitak, P. Pothacharoen, and P. Kongtawelert. 2020. Cyanidin-3-O-glucoside protects PC12 cells against neuronal apoptosis mediated by LPS-stimulated BV2 microglial activation. Neurotoxicity Research 37 (1):111–25. doi: 10.1007/s12640-019-00102-1.
  • Kay, C. D., P. A. Kroon, and A. Cassidy. 2009. The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products. Molecular Nutrition & Food Research 53 Suppl 1 (1):S92–S101. doi: 10.1002/mnfr.200800461.
  • Kim, S. H., H. Woo, M. Park, K. J. Rhee, C. Moon, D. Lee, W. D. Seo, and J. B. Kim. 2014. Cyanidin 3-O-glucoside reduces helicobacter pylori VacA-induced cell death of gastric KATO III cells through inhibition of the SecA pathway. International Journal of Medical Sciences 11 (7):742–7. doi: 10.7150/ijms.7167.
  • Kirjavainen, P. V., M. Kalliomäki, S. J. Salminen, and E. Isolauri. 2007. Postnatal effects of obstetrical epidural anesthesia on allergic sensitization. Allergy 62 (1):88–9. doi: 10.1111/j.1398-9995.2006.01259.x.
  • Kong, J. M., L. S. Chia, N. K. Goh, T. F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64 (5):923–33. doi: 10.1016/S0031-9422(03)00438-2.
  • Kostic, A. D., E. Chun, L. Robertson, J. N. Glickman, C. A. Gallini, M. Michaud, T. E. Clancy, D. C. Chung, P. Lochhead, G. L. Hold, et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe 14 (2):207–15. doi: 10.1016/j.chom.2013.07.007.
  • Krga, I., N. Vidovic, D. Milenkovic, A. Konic-Ristic, F. Stojanovic, C. Morand, and M. Glibetic. 2018. Effects of anthocyanins and their gut metabolites on adenosine diphosphate-induced platelet activation and their aggregation with monocytes and neutrophils. Archives of Biochemistry and Biophysics 645:34–41. doi: 10.1016/j.abb.2018.03.016.
  • Lee, D., J. Ham, K. S. Kang, and H. J. Lee. 2016. Cyanidin 3-O-glucoside Isolated from Lonicera caerulea fruit improves glucose response in INS-1 cells by improving insulin secretion and signaling. Bulletin of the Korean Chemical Society 37 (12):2015–8. doi: 10.1002/bkcs.11017.
  • Lee, J., K. He, V. Stolc, H. Lee, P. Figueroa, Y. Gao, W. Tongprasit, H. Zhao, I. Lee, and W. D. Xing. 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. The Plant Cell 19 (3):731–49. doi: 10.1105/tpc.106.047688.
  • Lee, J. S., Y. R. Kim, I. G. Song, S. J. Ha, Y. E. Kim, N. I. Baek, and E. K. Hong. 2015. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. International Journal of Molecular Medicine 35 (2):405–12. doi: 10.3892/ijmm.2014.2013.
  • Lee, K. S., M. Palatinszky, F. C. Pereira, J. Nguyen, V. I. Fernandez, A. J. Mueller, F. Menolascina, H. Daims, D. Berry, M. Wagner, et al. 2019. An automated Raman-based platform for the sorting of live cells by functional properties. Nature Microbiology 4 (6):1035–48. doi: 10.1038/s41564-019-0394-9.
  • Li, B., Z. Cheng, X. Sun, X. Si, E. Gong, Y. Wang, J. Tian, C. Shu, F. Ma, D. Li, et al. 2020. Lonicera caerulea L. polyphenols alleviate oxidative stress-induced intestinal environment imbalance and lipopolysaccharide-induced liver injury in HFD-fed rats by regulating the Nrf2/HO-1/NQO1 and MAPK pathways. Molecular Nutrition & Food Research 64 (10):e1901315. doi: 10.1002/mnfr.201901315.
  • Li, D., X. Meng, and B. Li. 2016. Profiling of anthocyanins from blueberries produced in China using HPLC-DAD-MS and exploratory analysis by principal component analysis. Journal of Food Composition and Analysis 47:1–7. doi: 10.1016/j.jfca.2015.09.005.
  • Li, X., J. L. Lu, J. X. Sun, X. W. Jiang, X. S. Li, Y. Li, R. Jiao, L. M. Tian, and W. B. Bai. 2019. Cyanidin-3-O-glucoside promotes progesterone secretion by improving cells viability and mitochondrial function in cadmium-sulfate-damaged R2C cells. Food and Chemical Toxicology 128 (8):97–105. doi: 10.1016/j.fct.2019.03.040.
  • Liang, Z., H. Liang, Y. Guo, and D. Yang. 2021. Cyanidin 3‐o‐galactoside: A natural compound with multiple health benefits. International Journal of Molecular Sciences 22 (5):1–23. doi: 10.3390/ijms22052261.
  • Lin, J., J. Tian, C. Shu, Z. Cheng, Y. Liu, W. Wang, R. Liu, B. Li, and Y. Wang. 2020. Malvidin-3-galactoside from blueberry suppresses the growth and metastasis potential of hepatocellular carcinoma cell Huh-7 by regulating apoptosis and metastases pathways. Food Science and Human Wellness 9 (2):136–45. doi: 10.1016/j.fshw.2020.02.004.
  • Liu, D., F. Pan, J. Liu, Y. Wang, T. Zhang, E. Wang, and J. Liu. 2016. Individual and combined antioxidant effects of ginsenoside F2 and cyanidin-3-O -glucoside in human embryonic kidney 293 cells. RSC Advances 6 (84):81092–100. doi: 10.1039/C6RA14831J.
  • Liu, M., Y. Du, H. Li, L. Wang, D. Ponikwicka-Tyszko, W. Lebiedzinska, A. Pilaszewicz-Puza, H. Liu, L. Zhou, H. Fan, et al. 2019. Cyanidin-3-o-glucoside pharmacologically inhibits tumorigenesis via estrogen receptor β in melanoma mice. Frontiers in Oncology 9 (10):1110–8. doi: 10.3389/fonc.2019.01110.
  • Liu, Z., Z. Ma, H. Zhang, B. S. Summah, H. Liu, D. An, Q. Zhan, W. Lai, Q. Zeng, H. Ren, et al. 2019. Ferulic acid increases intestinal Lactobacillus and improves cardiac function in TAC mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 120 (9):109482. doi: 10.1016/j.biopha.2019.109482.
  • Luo, Y., C. Z. Wang, R. Sawadogo, J. Yuan, J. Zeng, M. Xu, T. Tan, and C. S. Yuan. 2021. 4-vinylguaiacol, an active metabolite of ferulic acid by enteric microbiota and probiotics, possesses significant activities against drug-resistant human colorectal cancer cells. ACS Omega 6 (7):4551–61. doi: 10.1021/acsomega.0c04394.
  • Ma, Y., K. Chen, L. Lv, S. Wu, and Z. Guo. 2019. Ferulic acid ameliorates nonalcoholic fatty liver disease and modulates the gut microbiota composition in high-fat diet fed ApoE-/- mice. Biomedicine & Pharmacotherapy 113 (3):108753. doi: 10.1016/j.biopha.2019.108753.
  • Mangifesta, M., L. Mancabelli, C. Milani, F. Gaiani, N. de’Angelis, G. L. de’Angelis, D. van Sinderen, M. Ventura, and F. Turroni. 2018. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Scientific Reports 8 (1):13974–9. doi: 10.1038/s41598-018-32413-2.
  • Mansour, R., B. Ezzili, and M. Farou. 2013. Dyeing properties of wool fabrics dyed with Vitis vinifera L. (Black Grenache) leaves extract. Fibers and Polymers 14 (5):786–92. doi: 10.1007/s12221-013-0786-z.
  • Maruta, T., M. Noshi, M. Nakamura, S. Matsuda, M. Tamoi, T. Ishikawa, and S. Shigeoka. 2014. Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Plant Science 219-220:61–8. doi: 10.1016/j.plantsci.2014.01.003.
  • Matsukawa, T., T. Inaguma, J. Han, M. O. Villareal, and H. Isoda. 2015. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. The Journal of Nutritional Biochemistry 26 (8):860–7. doi: 10.1016/j.jnutbio.2015.03.006.
  • Matsuoka, K., T. Kobayashi, F. Ueno, T. Matsui, F. Hirai, N. Inoue, J. Kato, K. Kobayashi, K. Kobayashi, K. Koganei, et al. 2018. Evidence-based clinical practice guidelines for inflammatory bowel disease. Journal of Gastroenterology 53 (3):305–53. doi: 10.1007/s00535-018-1439-1.
  • Mattioli, R., A. Francioso, L. Mosca, and P. Silva. 2020. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25 (17). doi: 10.3390/molecules25173809.
  • Medeiros, J. G. S., C. M. De Bona, F. L. Cuquel, and L. A. Biasi. 2017. Performance of blueberry cultivars under mild winter conditions. Ciência Rural 47 (9):e20160795. doi: 10.1590/0103-8478cr20160795.
  • Molonia, M. S., C. Occhiuto, C. Muscarà, A. Speciale, R. Bashllari, F. Villarroya, A. Saija, F. Cimino, and M. Cristani. 2020. Cyanidin-3-O-glucoside restores insulin signaling and reduces inflammation in hypertrophic adipocytes. Archives of Biochemistry and Biophysics 691 (5):108488. doi: 10.1016/j.abb.2020.108488.
  • Muller, P. A., P. A. Muller, F. Matheis, M. Schneeberger, Z. Kerner, V. Jové, and D. Mucida. 2020. Microbiota-modulated CART+ enteric neurons autonomously regulate blood glucose. Science 370 (6514):314. doi: 10.1126/science.abd6176.
  • Ochmian, I., J. Grajkowski, and M. Smolik. 2012. Comparison of some morphological features, quality and chemical content of four cultivars of chokeberry fruits (Aronia melanocarpa). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40 (1):253–260. doi: 10.15835/nbha4017181.
  • Olivas-Aguirre, F. J., J. Rodrigo-García, N. R. Martínez-Ruiz, A. I. Cárdenas-Robles, S. O. Mendoza-Díaz, E. Álvarez-Parrilla, G. A. González-Aguilar, L. A. De. Rosa, A. Ramos-Jiménez, and M. Wall. 2016. Cyanidin-3- O-glucoside: Physical-chemistry, foodomics and health effects. Molecules 21 (9):1264–30. doi: 10.3390/molecules21091264.
  • Päivärinta, E., M. Niku, J. Maukonen, M. Storvik, A. Heiman-Lindh, M. Saarela, A. M. Pajari, and M. Mutanen. 2016. Changes in intestinal immunity, gut microbiota, and expression of energy metabolism-related genes explain adenoma growth in bilberry and cloudberry-fed ApcMin mice . Nutr Res 36 (11):1285–1297. doi: 10.1016/j.nutres.2016.10.003.
  • Pala, Ç. U., and A. K. Toklucu. 2011. Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. Journal of Food Composition and Analysis 24 (6):790–795. doi: 10.1016/j.jfca.2011.01.003.
  • Park, J. Y., K. S. Kang, and H. J. Lee. 2017. Protection effect of cyanidin 3-O-glucoside against oxidative stress-induced HepG2 cell death through activation of akt and extracellular signal-regulated kinase pathways. Bulletin of the Korean Chemical Society 38 (11):1316–1320. doi: 10.1002/bkcs.11290.
  • Park, M. Y., J. M. Kim, J. S. Kim, M. G. Choung, and M. K. Sung. 2015. chemopreventive action of anthocyanin-rich black soybean fraction in APC (Min/+) intestinal polyposis model. Journal of Cancer Prevention 20 (3):193–201. doi: 10.15430/jcp.2015.20.3.193.
  • Patras, A., N. P. Brunton, C. O’Donnell, and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology 21 (1):3–11. doi: 10.1016/j.tifs.2009.07.004.
  • Peng, Z., S. Cheng, Y. Kou, Z. Wang, R. Jin, H. Hu, X. Zhang, J. F. Gong, J. Li, M. Lu, et al. 2020. The Gut microbiome is associated with clinical response to Anti-PD-1/PD-L1 immunotherapy in gastrointestinal cancer. Cancer Immunology Research 8 (10):1251–1261. doi: 10.1158/2326-6066.CIR-19-1014.
  • Piovani, D., S. Danese, L. Peyrin-Biroulet, G. K. Nikolopoulos, T. Lytras, and S. Bonovas. 2019. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses. Gastroenterology 157 (3):647–659.e4. doi: 10.1053/j.gastro.2019.04.016.
  • Pires, T. C. S. P., C. Caleja, C. Santos-Buelga, L. Barros, and I. C. F. R. Ferreira. 2020. Vaccinium myrtillus L. fruits as a novel source of phenolic compounds with health benefits and industrial applications—A review. Current Pharmaceutical Design 26 (16):1917–1928. doi: 10.2174/1381612826666200317132507.
  • Rajilić-Stojanović, M., E. Biagi, H. G. H. J. Heilig, K. Kajander, R. A. Kekkonen, S. Tims, and W. M. De Vos. 2011. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable Bowel syndrome. Gastroenterology 141 (5):1792–1801. doi: 10.1053/j.gastro.2011.07.043.
  • Raman, M., P. Ambalam, K. K. Kondepudi, S. Pithva, C. Kothari, A. T. Patel, R. K. Purama, J. M. Dave, and B. R. M. Vyas. 2013. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 4 (3):181–192. doi: 10.4161/gmic.23919.
  • Rice-Evans, C. A., N. J. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science 2 (4):152–159. doi: 10.1016/S1360-1385(97)01018-2.
  • Rupasinghe, H. P. V., N. Arumuggam, M. Amararathna, and A. B. K. H. De Silva. 2018. The potential health benefits of haskap (Lonicera caerulea L.): Role of cyanidin-3-O-glucoside. Journal of Functional Foods 44 (2):24–39. doi: 10.1016/j.jff.2018.02.023.
  • Schneider, H., and M. Blaut. 2000. Anaerobic degradation of flavonoids by Eubacterium ramulus. Archives of Microbiology 173 (1):71–75. doi: 10.1007/s002030050010.
  • Serra, D., L. M. Almeida, and T. C. P. Dinis. 2016. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPAR-γ: Comparison with 5-aminosalicylic acid. Chemico-Biological Interactions 260:102–109. doi: 10.1016/j.cbi.2016.11.003.
  • Si, X., J. Bi, Q. Chen, H. Cui, Y. Bao, J. Tian, C. Shu, Y. Wang, H. Tan, W. Zhang, et al. 2021. Effect of blueberry anthocyanin-rich extracts on peripheral and hippocampal antioxidant defensiveness: The analysis of the serum fatty acid species and gut microbiota profile. Journal of Agricultural and Food Chemistry 69 (12):3658–3666. doi: 10.1021/acs.jafc.0c07637.
  • Song, J., M. Zhao, X. Liu, Y. Zhu, X. Hu, and F. Chen. 2013. Protection of cyanidin-3-glucoside against oxidative stress induced by acrylamide in human MDA-MB-231 cells. Food and Chemical Toxicology 58:306–310. doi: 10.1016/j.fct.2013.05.003.
  • Song, Y., M. Wu, G. Tao, M. Lu, J. Lin, and J. Huang. 2020. Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Research International 137 (5):109410. doi: 10.1016/j.foodres.2020.109410.
  • Speciale, A., S. Anwar, R. Canali, J. Chirafisi, A. Saija, F. Virgili, and F. Cimino. 2013. Cyanidin-3-O-glucoside counters the response to TNF-alpha of endothelial cells by activating Nrf2 pathway. Molecular Nutrition & Food Research 57 (11):1979–1987. doi: 10.1002/mnfr.201300102.
  • Stanifer, M. L., M. Mukenhirn, S. Muenchau, K. Pervolaraki, T. Kanaya, D. Albrecht, C. Odendall, T. Hielscher, V. Haucke, J. C. Kagan, et al. 2020. Asymmetric distribution of TLR3 leads to a polarized immune response in human intestinal epithelial cells. Nature Microbiology 5 (1):181–191. doi: 10.1038/s41564-019-0594-3.
  • Staudacher, H. M., and A. Loughman. 2021. Gut health: Definitions and determinants. The Lancet. Gastroenterology & Hepatology 6 (4):269. doi: 10.1016/S2468-1253(21)00071-6.
  • Stausberg, J. 2015. Epidemiology of Clostridium difficile infection. Deutsches Arzteblatt International 112 (19):345. doi: 10.3238/arztebl.2015.0345a.
  • Su, V., and B. D. Hsu. 2003. Isolation and sequencing a genomic DNA encoding for phenylalanine ammonia-lyase from phalaenopsis. DNA Sequence 14 (6):442–449. doi: 10.1080/10425170310001628883.
  • Sun, C., Y. Zheng, Q. Chen, X. Tang, M. Jiang, J. Zhang, X. Li, and K. Chen. 2012. Purification and anti-tumour activity of cyanidin-3-O-glucoside from Chinese bayberry fruit. Food Chemistry 131 (4):1287–1294. doi: 10.1016/j.foodchem.2011.09.121.
  • Tan, J., Y. Li, D. X. Hou, and S. Wu. 2019. The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity. Antioxidants 8 (10):1–16. doi: 10.3390/antiox8100479.
  • Targan, S. R., and D. Q. Shih. 2009. Insights into IBD pathogenesis. Current Gastroenterology Reports 11 (6):473–480. doi: 10.1007/s11894-009-0072-9.
  • Teratani, T., Y. Mikami, N. Nakamoto, T. Suzuki, Y. Harada, K. Okabayashi, Y. Hagihara, N. Taniki, K. Kohno, S. Shibata, et al. 2020. The liver-brain-gut neural arc maintains the Treg cell niche in the gut. Nature 585 (7826):591–596. doi: 10.1038/s41586-020-2425-3.
  • Tian, J., X. Si, Y. Wang, E. Gong, X. Xie, Y. Zhang, C. Shu, and B. Li. 2020. Cyanidin-3-O-glucoside protects human gastric epithelial cells against Helicobacter pylori lipopolysaccharide-induced disorders by modulating TLR-mediated NF-κB pathway. Journal of Functional Foods 68 (120):103899. doi: 10.1016/j.jff.2020.103899.
  • Tranah, T. H., L. A. Edwards, B. Schnabl, and D. L. Shawcross. 2021. Targeting the gut-liver-immune axis to treat cirrhosis. Gut 70 (5):982–994. doi: 10.1136/gutjnl-2020-320786.
  • Tsoi, H., E. S. H. Chu, X. Zhang, J. Sheng, G. Nakatsu, S. C. Ng, A. W. H. Chan, F. K. L. Chan, J. J. Y. Sung, and J. Yu. 2017. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152 (6):1419–1433.e5. doi: 10.1053/j.gastro.2017.01.009.
  • Van Rymenant, E., L. Abrankó, S. Tumova, C. Grootaert, J. Van Camp, G. Williamson, and A. Kerimi. 2017. Chronic exposure to short-chain fatty acids modulates transport and metabolism of microbiome-derived phenolics in human intestinal cells. The Journal of Nutritional Biochemistry 39:156–168. doi: 10.1016/j.jnutbio.2016.09.009.
  • Vancamelbeke, M., and S. Vermeire. 2017. The intestinal barrier: A fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology 11 (9):821–834. doi: 10.1080/17474124.2017.1343143.
  • Verediano, T. A., H. M. D. Stampini, M. C. P. Dias, and E. Tako. 2021. Effects of anthocyanin on intestinal health: A systematic review. Nutrients 13 (4). doi: 10.3390/nu13041331.
  • Wang, E., Y. Yin, C. Xu, and J. Liu. 2014. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques. Journal of Chromatography. A 1327:39–48. doi: 10.1016/j.chroma.2013.12.070.
  • Wang, L. H., X. C. Fang, and G. Z. Pan. 2004. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut 53 (8):1096–1101. doi: 10.1136/gut.2003.021154.
  • Wang, Y., Y. Huo, L. Zhao, F. Lu, O. Wang, X. Yang, B. Ji, and F. Zhou. 2016. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression. Molecular Nutrition & Food Research 60 (7):1564–1577. doi: 10.1002/mnfr.201501048.
  • Wang, Y., W. Qi, Y. Huo, G. Song, H. Sun, X. Guo, and C. Wang. 2019. Cyanidin-3-glucoside attenuates 4-hydroxynonenal- and visible light-induced retinal damage: In vitro and in vivo. Food & Function 10 (5):2871–2880. doi: 10.1039/C9FO00273A.
  • Wang, Y. H., J. Lin, J. Tian, X. Si, X. Jiao, W. Zhang, E. Gong, and B. Li. 2019. Blueberry Malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. Journal of Agricultural and Food Chemistry 67 (2):625–636. doi: 10.1021/acs.jafc.8b06209.
  • Wangensteen, H., M. Bräunlich, V. Nikolic, K. E. Malterud, R. Slimestad, and H. Barsett. 2014. Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects. Journal of Functional Foods 7 (1):746–752. doi: 10.1016/j.jff.2014.02.006.
  • Wensaas, K.-A., N. Langeland, K. Hanevik, K. Mørch, G. E. Eide, and G. Rortveit. 2012. Irritable bowel syndrome and chronic fatigue 3 years after acute giardiasis: Historic cohort study. Gut 61 (2):214–219. doi: 10.1136/gutjnl-2011-300220.
  • Westfall, S., N. Lomis, and S. Prakash. 2019. Ferulic acid produced by Lactobacillus fermentum influences developmental growth through a dTOR-mediated mechanism. Molecular Biotechnology 61 (1):1–11. doi: 10.1007/s12033-018-0119-y.
  • Wlodarska, M., A. D. Kostic, and R. J. Xavier. 2015. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host & Microbe 17 (5):577–591. doi: 10.1016/j.chom.2015.04.008.
  • Wu, H., S. Xie, J. Miao, Y. Li, Z. Wang, M. Wang, and Q. Yu. 2020. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. Gut Microbes 11 (4):997–1014. doi: 10.1080/19490976.2020.1734423.
  • Xia, Y., L. M. Tian, Y. Liu, K. S. Guo, M. Lv, Q. T. Li, S. Y. Hao, C. H. Ma, Y. X. Chen, M. Tanaka, et al. 2019. Low dose of Cyanidin-3-O-glucoside alleviated dextran sulfate sodium-induced colitis, mediated by CD169+ macrophage pathway. Inflammatory Bowel Diseases 25 (9):1510–1521. doi: 10.1093/ibd/izz090.
  • Xie, G. H., W. Xie, H. Piao, and D. Li. 2019. Defensive mechanism in human cholangiocarcinoma cells against hypoxia by Cyanidin-3-glucoside treatment. International Journal of Pharmacology 15 (3):361–369. doi: 10.3923/ijp.2019.361.369.
  • Xu, D., J. Gao, M. Gillilland, X. Wu, I. Song, J. Y. Kao, and C. Owyang. 2014. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology 146 (2):484–496.e4. doi: 10.1053/j.gastro.2013.10.026.
  • Xu, J. W., K. Ikeda, and Y. Yamori. 2004. Cyanidin-3-glucoside regulates phosphorylation of endothelial nitric oxide synthase. FEBS Letters 574 (1-3):176–180. doi: 10.1016/j.febslet.2004.08.027.
  • Yachida, S., S. Mizutani, H. Shiroma, S. Shiba, T. Nakajima, T. Sakamoto, H. Watanabe, K. Masuda, Y. Nishimoto, M. Kubo, et al. 2019. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nature Medicine 25 (6):968–976. doi: 10.1038/s41591-019-0458-7.
  • Yan, Y., D. A. Drew, A. Markowitz, J. Lloyd-Price, G. Abu-Ali, L. H. Nguyen, C. Tran, D. C. Chung, K. K. Gilpin, D. Meixell, et al. 2020. Structure of the mucosal and stool microbiome in Lynch syndrome. Cell Host & Microbe 27 (4):585–600.e4. doi: 10.1016/j.chom.2020.03.005.
  • Yang, J. S., S. Jeon, K. D. Yoon, and S. H. Yoon. 2018. Cyanidin-3-glucoside inhibits amyloid β25-35-induced neuronal cell death in cultured rat hippocampal neurons. The Korean Journal of Physiology & Pharmacology 22 (6):689–696. doi: 10.4196/kjpp.2018.22.6.689.
  • Yang, T., E. M. Richards, C. J. Pepine, and M. K. Raizada. 2018. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nature Reviews. Nephrology 14 (7):442–456. doi: 10.1038/s41581-018-0018-2.
  • Yao, Y., Y. Chen, R. Adili, T. McKeown, P. Chen, G. Zhu, D. Li, W. Ling, H. Ni, and Y. Yang. 2017. Plant-based food cyanidin-3-glucoside modulates human platelet glycoprotein VI signaling and inhibits platelet activation and thrombus formation. The Journal of Nutrition 147 (10):1917–1925. doi: 10.3945/jn.116.245944.
  • Yu, L., S. D. Zhang, X. L. Zhao, H. Y. Ni, X. R. Song, W. Wang, L. P. Yao, X. H. Zhao, and Y. J. Fu. 2020. Cyanidin-3-glucoside protects liver from oxidative damage through AMPK/Nrf2 mediated signaling pathway in vivo and in vitro. Journal of Functional Foods 73 (1):104148. doi: 10.1016/j.jff.2020.104148.
  • Yuliana, N. D., M. Z. Tuarita, A. Khatib, F. Laila, and S. Sukarno. 2020. GC-MS metabolomics revealed protocatechuic acid as a cytotoxic and apoptosis-inducing compound from black rice brans . Food Science and Biotechnology 29 (6):825–835. doi: 10.1007/s10068-019-00725-2.
  • Zackular, J. P., M. A. M. Rogers, M. T. Ruffin, and P. D. Schloss. 2014. The human gut microbiome as a screening tool for colorectal ­cancer. Cancer Prevention Research 7 (11):1112–1121. doi: 10.1158/1940-6207.CAPR-14-0129.
  • Zhang, M., K. Sun, Y. Wu, Y. Yang, P. Tso, and Z. Wu. 2017. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Frontiers in Immunology 8 (8):942. doi: 10.3389/fimmu.2017.00942.
  • Zhen, Y., and H. Zhang. 2019. NLRP3 inflammasome and inflammatory bowel disease. Frontiers in Immunology 10 (2)1–10. doi:10.3389/fimmu.2019.00276.
  • Zheng, S., H. Zhang, R. Liu, C. L. Huang, H. Li, Z. Y. Deng, and R. Tsao. 2021. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects? - New insights from a TNF-α-induced Caco-2 cell model. Food Research International 139 (2):109833. doi: 10.1016/j.foodres.2020.109833.
  • Zhou, Y. J., D. D. Zhao, H. Liu, H. T. Chen, J. J. Li, X. Q. Mu, Z. Liu, X. Li, L. Tang, Z. Y. Zhao, et al. 2017. Cancer killers in the human gut microbiota: Diverse phylogeny and broad spectra. Oncotarget 8 (30):49574–49591. doi: 10.18632/oncotarget.17319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.