1,837
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Photodynamic inactivation and its application in food preservation

, , &

References

  • Abrahamse, H., and M. R. Hamblin. 2016. New photosensitizers for photodynamic therapy. The Biochemical Journal 473 (4):347–64. doi: 10.1042/BJ20150942.
  • Agel, M. R., E. Baghdan, S. R. Pinnapireddy, J. Lehmann, J. Schäfer, and U. Bakowsky. 2019. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids and Surfaces. B, Biointerfaces 178 (1):460–8. doi: 178:460-468.
  • Al-Asmari, F., R. Mereddy, and Y. Sultanbawa. 2017. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin. Journal of Photochemistry and Photobiology B: Biology 173:301–6. doi: 10.1016/j.jphotobiol.2017.06.009.
  • Al-Asmari, F., M. Ram, and S. Yasmina. 2018. The effect of photosensitization mediated by curcumin on storage life of fresh date (Phoenix dactylifera L.) fruit. Food Control 93:305–9. doi: 10.1016/j.foodcont.2018.06.005.
  • Aponiene, K., and Z. Luksiene. 2015. Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat Gram (-) bacteria. Journal of Photochemistry and Photobiology. B, Biology 142:257–63. doi: 10.1016/j.jphotobiol.2014.11.011.
  • Aurum, F. S., and T. T. Nguyen. 2019. Efficacy of photoactivated curcumin to decontaminate food surfaces under blue light emitting diode. Journal of Food Process Engineering 42 (3):e12988. doi: 10.1111/jfpe.12988.
  • Bacellar, I. O. L., T. M. Tsubone, C. Pavani, and M. S. Baptista. 2015. Photodynamic efficiency: From molecular photochemistry to cell death. International Journal of Molecular Sciences 16 (9):20523–59. doi: 10.3390/ijms160920523.
  • Bahrami, A., Z. M. Baboli, K. Schimmel, S. M. Jafari, and L. Williams. 2020. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends in Food Science & Technology 96:61–78. doi: 10.1016/j.tifs.2019.12.009.
  • Baptista, M., S. da, J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M. R. Hamblin, C. Lorente, S. C. Nunez, M. S. Ribeiro, et al. 2017. Type I and Type II photosensitized oxidation reactions: Guidelines and mechanistic pathways. Photochemistry and Photobiology 93 (4):912–9. doi: 10.1111/php.12716.
  • Baskaran, R., J. Lee, and S. G. Yang. 2018. Clinical development of photodynamic agents and therapeutic applications. Biomaterials Research 22:25. doi: 10.1186/s40824-018-0140-z.
  • Bhavya, M. L., and H. U. Hebbar. 2019b. Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrasonics Sonochemistry 57:108–15. doi: 10.1016/j.ultsonch.2019.05.002.
  • Bhavya, M., and H. U. Hebbar. 2019a. Efficacy of blue LED in microbial inactivation: Effect of photosensitization and process parameters. International Journal of Food Microbiology 290 (2):296–304. doi: 10.1016/j.ijfoodmicro.2018.10.021.
  • Bhavya, M. L., S. R. Shewale, D. Rajoriya, and H. U. Hebbar. 2021. Impact of Blue LED illumination and natural photosensitizer on bacterial pathogens. Food and Bioprocess Technology 14 (2):362–72. doi: 10.1007/s11947-021-02581-7.
  • Bintsis, T. 2017. Foodborne pathogens. AIMS Microbiology 3 (3):529–63. doi: 10.3934/microbiol.2017.3.529.
  • Bonifacio, D., C. Martins, B. David, C. Lemos, M. G. P. M. S. Neves, A. Almeida, D. C. G. A. Pinto, M. A. F. Faustino, and Â. Cunha. 2018. Photodynamic inactivation of Listeria innocua biofilms with food-grade photosensitizers: A curcumin-rich extract of Curcuma longa vs commercial curcumin. Journal of Applied Microbiology 125 (1):282–94. doi: 10.1111/jam.13767.
  • Bonin, E., A. R. dos Santos, A. Fiori da Silva, L. H. Ribeiro, M. E. Favero, P. A. Z. Campanerut-Sá, C. F. de Freitas, W. Caetano, N. Hioka, and J. M. G. Mikcha. 2018. Photodynamic inactivation of foodborne bacteria by eosin Y. Journal of Applied Microbiology 124 (6):1617–28. doi: 10.1111/jam.13727.
  • Buchovec, I., V. Lukseviciūtė, R. Kokstaite, D. Labeikyte, L. Kaziukonyte, and Z. Luksiene. 2017. Inactivation of Gram (-) bacteria Salmonella enterica by chlorophyllin-based photosensitization: Mechanism of action and new strategies to enhance the inactivation efficiency. Journal of Photochemistry and Photobiology. B, Biology 172:1–10. doi: 10.1016/j.jphotobiol.2017.05.008.
  • Buchovec, I., V. Lukseviciute, A. Marsalka, I. Reklaitis, and Z. Luksiene. 2016. Effective photosensitization-based inactivation of Gram (-) food pathogens and molds using the chlorophyllin-chitosan complex: towards photoactive edible coatings to preserve strawberries. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology 15 (4):506–16. doi: 10.1039/C5PP00376H.
  • Calin, M. A., and S. V. Parasca. 2009. Light sources for photodynamic inactivation of bacteria. Lasers in Medical Science 24 (3):453–60. doi: 10.1007/s10103-008-0588-5.
  • Chen, B. W., J. M. Huang, Y. Liu, H. Q. Liu, Y. Zhao, and J. J. Wang. 2021. Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature. International Journal of Food Microbiology 345 (2):109152. 2021.109152. doi: 10.1016/j.ijfoodmicro.
  • Chen, B., J. Huang, H. Li, Q.-H. Zeng, J. J. Wang, H. Liu, Y. Pan, and Y. Zhao. 2020. Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation. Food Control 113:107181. doi: 10.1016/j.foodcont.2020.107181.
  • Cho, G. L., and J. W. Ha. 2020. Erythrosine B (Red Dye No. 3): A potential photosensitizer for the photodynamic inactivation of foodborne pathogens in tomato juice. Journal of Food Safety 40 (4):e12813. doi: 10.1111/jfs.12813.
  • Chua, A., L. Chong, V. Ghate, H. G. Yuk, and W. Zhou. 2021. Antifungal action of 405 nm light emitting diodes on tomatoes in a meso-scale system and their effect on the physicochemical properties. Postharvest Biology and Technology 172:111366. doi: 10.1016/j.postharvbio.2020.111366.
  • Correa, T. Q., K. C. Blanco, B. G. Érica, S. M. L. Perez, D. Chianfrone, V. S. Morais, and V. S. Bagnato. 2020. Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety: A study in meat and fruit. Photodiagnosis and Photodynamic Therapy 30 (2):101678. doi: 10.1016/j.pdpdt.2020.101678.
  • Cossu, M., L. Ledda, and A. Cossu. 2021. Emerging trends in the photodynamic inactivation (PDI) applied to the food decontamination. Food Research International 144:110358. doi: 10.1016/j.foodres.2021.110358.
  • Damyeh, M. S., R. Mereddy, M. E. Netzel, and Y. Sultanbawa. 2020. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Comprehensive Reviews in Food Science and Food Safety 19 (4):1727–59. doi: 10.1111/1541-4337.12583.
  • De Oliveira, E. F., R. Tikekar, and N. Nitin. 2018a. Combination of aerosolized curcumin and UV-A light for the inactivation of bacteria on fresh produce surfaces. Food Research International (Ottawa, ON) 114:133–9. doi: 10.1016/j.foodres.2018.07.054.
  • De Oliveira, E. F., J. V. Tosati, R. V. Tikekar, A. R. Monteiro, and N. Nitin. 2018. Antimicrobial activity of curcumin in combination with light against Escherichia coli O157: H7 and Listeria innocua: Applications for fresh produce sanitation. Postharvest Biology and Technology 137 (1):86–94. doi: 10.1016/j.postharvbio.2017.11.014.
  • Di Mascio, P., G. R. Martinez, S. Miyamoto, G. E. Ronsein, M. H. G. Medeiros, and J. Cadet. 2019. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chemical Reviews 119 (3):2043–86. doi:10.1021/acs.chemrev.8b00554.
  • dos Santos, R. F., B. S. Campos, F. d A. M. G. R. Filho, J. d. O. Moraes, A. L. Ivo Albuquerque, M. C. D. da Silva, P. V. Dos Santos, and M. T. de Araujo. 2019. Photodynamic Inactivation of S. aureus with a water-soluble curcumin salt and an application to cheese decontamination. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 18 (11):2707–16. doi: 10.1039/c9pp00196d.
  • dos Santos, A. R., A. F. Silva, C. F. Freitas, M. V. Silva, E. Bona, C. V. Nakamura, N. Hioka, and J. M. G. Mikcha. 2020. Response surface methodology can be used to predict photoinactivation of foodborne pathogens using Rose Bengal excited by 530 nm LED. Journal of Food Safety 40 (1):e12736. doi: 10.1111/jfs.12736.
  • D’Souza, C., H. G. Yuk, G. H. Khoo, and W. Zhou. 2015. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Comprehensive Reviews in Food Science and Food Safety 14 (6):719–40. doi: 10.1111/1541-4337.12155.
  • Galié, S., C. García-Gutiérrez, E. M. Miguélez, C. J. Villar, and F. Lombó. 2018. Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology 9:898. doi: 10.3389/fmicb.2018.00898.
  • Gao, J., and K. R. Matthews. 2020. Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin. Food Control 109:106959. doi: 10.1016/j.foodcont.2019.106959.
  • Gao, Y., J. Wu, Z. Li, X. Zhang, N. Lu, C. Xue, A. W. Leung, C. Xu, and Q. J. Tang. 2019. Curcumin-mediated photodynamic inactivation (PDI) against DH5α contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters. Photodiagnosis and Photodynamic Therapy 26:244–51. doi: 10.1016/j.pdpdt.2019.04.002.
  • Ghate, V., A. Kumar, M. J. Kim, W. S. Bang, W. Zhou, and H. G. Yuk. 2017. Effect of 460 nm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures. Journal of Food Engineering 196:130–8. doi: 10.1016/j.jfoodeng.2016.10.013.
  • Ghate, V. S., A. Kumar, W. B. Zhou, and H. G. Yuk. 2016. Irradiance and temperature influence the bactericidal effect of 460-nanometer light-emitting diodes on Salmonella in orange juice. Journal of Food Protection 79 (4):553–60. doi: 10.4315/0362-028X.JFP-15-394.
  • Ghate, V. S., W. B. Zhou, and H. G. Yuk. 2019. Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Comprehensive Reviews in Food Science and Food Safety 18 (2):402–24. doi: 10.1111/1541-4337.12418.
  • Glueck, M., B. Schamberger, P. Eckl, and K. Plaetzer. 2017. New horizons in microbiological food safety: Photodynamic decontamination based on a curcumin derivative. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 16 (12):1784–91. doi: 10.1039/C7PP00165G.
  • Guffey, J. S., W. C. Payne, S. D. Motts, P. Towery, T. Hobson, G. Harrell, L. Meurer, and K. Lancaster. 2016. Inactivation of Salmonella on tainted foods: Using blue light to disinfect cucumbers and processed meat products. Food Science & Nutrition 4 (6):878–87. doi: 10.1002/fsn3.354.
  • Hsieh, C. M, Y. H. Huang, C. P. Chen, B. C. Hsieh, and T. Tsai. 2014. 5-Aminolevulinic acid induced photodynamic inactivation on Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Food and Drug Analysis 22:(3):350–355. doi: 10.1016/j.jfda.2013.09.051.
  • Hua, Z., A. M. Korany, S. H. El-Shinawy, and M.-J. Zhu. 2019. Comparative evaluation of different sanitizers against Listeria monocytogenes biofilms on major food-contact surfaces. Frontiers in Microbiology 10:2462. doi: 10.3389/fmicb.2019.02462.
  • Huang, J., B. Chen, H. Li, Q. H. Zeng, J. J. Wang, H. H. Q. Liu, Y. J. Pan, and Y. Zhao. 2020. Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control 108:106886. doi: 10.1016/j.foodcont.2019.106886.
  • Huang, L., K. Yong, W. L. Fernando, W. C. Fernando, M. C. de Jesus, J. J. De Voss, Y. Sultanbawa, and M. T. Fletcher. 2021. The inactivation by curcumin-mediated photosensitization of Botrytis cinerea spores isolated from strawberry fruits. Toxins 13 (3):196. doi: 10.3390/toxins13030196.
  • Hu, J. M., S. Lin, B. K. Tan, S. S. Hamzah, Y. Lin, Z. H. Kong, Y. Zhang, B. Zheng, and S. X. Zeng. 2018. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Research International (Ottawa, ON) 111 (9):265–71. doi: 10.1016/j.foodres.2018.05.042.
  • Hu, J., F. Zhou, Y. Lin, A. Zhou, B. K. Tan, S. Zeng, S. S. Hamzah, and S. Lin. 2019. The effects of photodynamically activated curcumin on the preservation of low alum treated ready-to-eat jellyfish. LWT-Food Science and Technology 115:108443. doi: 10.1016/j.lwt.2019.108443.
  • Hyun, J. E., and S. Y. Lee. 2020a. Antibacterial effect and mechanisms of action of 460-470 nm light-emitting diode against Listeria monocytogenes and Pseudomonas fluorescens on the surface of packaged sliced cheese. Food Microbiology 86:103314. doi: 10.1016/j.fm.2019.103314.
  • Hyun, J. E., and S. Y. Lee. 2020b. Blue light-emitting diodes as eco-friendly non-thermal technology in food preservation. Trends in Food Science & Technology 105:284–95. doi: 10.1016/j.tifs.2020.09.008.
  • Jiang, S., R. Zhu, X. He, J. Wang, M. Wang, Y. Qian, and S. Wang. 2017. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. International Journal of Nanomedicine 12:167–78. doi: 10.2147/ijn.s123107.
  • Josewin, S. W., V. Ghate, M. J. Kim, and H. G. Yuk. 2018. Antibacterial effect of 460 nm light-emitting diode in combination with riboflavin against Listeria monocytogenes on smoked salmon. Food Control 84:354–61. doi: 10.1016/j.foodcont.2017.08.017.
  • Kim, M. J., W. S. Bang, and H. G. Yuk. 2017. 405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiology 62:124–32. doi: 10.1016/j.fm.2016.10.002.
  • Kim, M. J., M. Da Jeong, Q. W. Zheng, and H. G. Yuk. 2021. Antimicrobial activity of 405 nm light-emitting diode (LED) in the presence of riboflavin against Listeria monocytogenes on the surface of smoked salmon. Food Science and Biotechnology 30 (4):609–18. doi: 10.1007/s10068-021-00895-y.
  • Kim, M. M., and A. Darafsheh. 2020. Light sources and dosimetry techniques for photodynamic therapy. Photochemistry and Photobiology 96 (2):280–94. doi: 10.1111/php.13219.
  • Kim, M. J., M. Mikš-Krajnik, K. Amit, V. Ghate, and H. G. Yuk. 2015. Antibacterial effect and mechanism of high-intensity 405 ± 5 nm light emitting diode on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus under refrigerated condition. Journal of Photochemistry and Photobiology. B, Biology 153:33–9. doi: 10.1016/j.jphotobiol.2015.08.032.
  • Kim, M. J., C. H. Tang, W. S. Bang, and H. G. Yuk. 2017a. Antibacterial effect of 405 ± 5nm light emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. International Journal of Food Microbiology 244 (6):82–9. doi: 10.1016/j.ijfoodmicro.2016.12.023.
  • Kim, M. J., and H. G. Yuk. 2017b. Antibacterial mechanism of 405-nanometer light-emitting diode against Salmonella at refrigeration temperature. Applied and Environmental Microbiology 83 (5):1–14. doi: 10.1128/AEM.02582-16.
  • Kumar, A., V. Ghate, M. J. Kim, W. Zhou, G. H. Khoo, and H. G. Yuk. 2015. Kinetics of bacterial inactivation by 405nm and 520nm light emitting diodes and the role of endogenous coproporphyrin on bacterial susceptibility. Journal of Photochemistry and Photobiology. B, Biology 149:37–44. doi: 10.1016/j.jphotobiol.2015.05.005.
  • Kwiatkowski, S., B. Knap, D. Przystupski, J. Saczko, E. Kędzierska, K. Knap-Czop, J. Kotlińska, O. Michel, K. Kotowski, and J. Kulbacka. 2018. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 106 (10):1098–107. doi: 10.1016/j.biopha.2018.07.049.
  • Li, X., M. J. Kim, and H. G. Yuk. 2018. Influence of 405 nm light-emitting diode illumination on the inactivation of Listeria monocytogenes and Salmonella spp. on ready-to-eat fresh salmon surface at chilling storage for 8 h and their susceptibility to simulated gastric fluid. Food Control 88:61–8. doi: 10.1016/j.foodcont.2018.01.002.
  • Lin, Y. L., J. M. Hu, S. Y. Li, S. S. Hamzah, H. Q. Jiang, A. Zhou, S. X. Zeng, and S. L. Lin. 2019. Curcumin-based photodynamic sterilization for preservation of fresh-cut hami melon. Molecules 24 (13):2374. doi: 10.3390/molecules24132374.
  • Liu, F., Z. J. Li, B. B. Cao, J. Wu, Y. M. Wang, Y. Xue, J. Xu, C. H. Xue, and Q. J. Tang. 2016. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality. Food Research International (Ottawa, ON) 87:204–10. doi: 10.1016/j.foodres.2016.07.012.
  • Li, Y. L., Y. Xu, Q. M. Liao, M. M. Xie, H. Tao, and H. L. Wang. 2021. Synergistic effect of hypocrellin B and curcumin on photodynamic inactivation of Staphylococcus aureus. Microbial Biotechnology 14 (2):692–707. doi: 10.1111/1751-7915.13734.
  • Maisch, T., A. Eichner, A. Späth, A. Gollmer, B. König, J. Regensburger, and W. Bäumler. 2014. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLOS One 9 (12):e111792. doi: 10.1371/journal.pone.0111792.
  • Memar, M. Y., R. Ghotaslou, M. Samiei, and K. Adibkia. 2018. Antimicrobial use of reactive oxygen therapy: Current insights. Infection and Drug Resistance 11:567–76. doi: 10.2147/idr.s142397.
  • Nair, G. B., and S. J. Dhoble. 2021. Current trends and innovations. In The Fundamentals and Applications of Light-Emitting Diodes, 253–70. doi: 10.1016/B978-0-12-.819605-2.00010-0.
  • Ormond, A. B., and H. S. Freeman. 2013. Dye sensitizers for photodynamic therapy. Materials (Basel, Switzerland) 6 (3):817–40. doi: 10.3390/ma6030817.
  • Paskeviciute, E., B. Zudyte, and Z. Luksiene. 2018. Towards better microbial safety of fresh produce: Chlorophyllin-based photosensitization for microbial control of foodborne pathogens on cherry tomatoes. Journal of Photochemistry and Photobiology. B, Biology 182:130–6. doi: 10.1016/j.jphotobiol.2018.04.009.
  • Penha, C. B., E. Bonin, A. F. da Silva, N. Hioka, E. B. Zanqueta, T. U. Nakamura, B. A. de Abreu Filho, P. A. Z. Campanerut-Sá, and J. M. G. Mikchae. 2017. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. Lwt - Food Science and Technology 76:198–202. doi: 10.1016/j.lwt.2016.07.037.
  • Pereira, M. A., M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, and A. Almeida. 2014. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 13 (4):680–90. doi: 10.1039/c3pp50408e.
  • Polat, E., and K. Kang. 2021. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 9 (584):1–30. doi: 10.3390/biomedicines9060584.
  • Qiu, L., M. Zhang, J. Tang, B. Adhikari, and P. Cao. 2019. Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Research International (Ottawa, ON) 116:90–102. doi: 10.1016/j.foodres.2018.12.055.
  • Roh, H. J., G. S. Kang, A. Kim, N. E. Kim, T. L. Nguyen, and D. H. Kim. 2018. Blue light-emitting diode photoinactivation inhibits edwardsiellosis in fancy. Aquaculture 483 (20):1–7. doi: 10.1016/j.aquaculture.2017.09.046.
  • Russo, P., and V. Capozzi. 2021. Editorial: Microbiological safety of foods. Foods 10:53. doi: 10.3390/foods10010053.
  • Sabino, C. P., M. Wainwright, M. S. Ribeiro, F. P. Sellera, C. dos Anjos, M. d S. Baptista, and N. Lincopan. 2020. Global priority multidrug-resistant pathogens do not resist photodynamic therapy. Journal of Photochemistry and Photobiology. B, Biology 208:111893. doi: 10.1016/j.jphotobiol.2020.111893.
  • Santos, A. R., A. F. da Silva, A. F. P. Batista, C. F. Freitas, E. Bona, M. J. Sereia, W. Caetano, N. Hioka, and J. M. G. Mikcha. 2019. Application of response surface methodology to evaluate photodynamic inactivation mediated by Eosin Y and 530 nm LED against Staphylococcus aureus. Antibiotics 9 (3):125. doi: 10.3390/antibiotics9030125.
  • Silva, A. F., B. Anabela, G. Efstathios, J. M. G. Mikcha, and S. Manuel. 2018. Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states. Critical Reviews in Microbiology 44 (6):667–84. doi: 10.1080/1040841X.2018.1491528.
  • Silva, A. F., A. R. Dos Santos, D. A. C. Trevisan, E. Bonin, C. F. Freitas, A. F. P. Batista, N. Hioka, M. Simões, and J. M. G. Mikcha. 2019. Xanthene dyes and green LED for the inactivation of foodborne pathogens in planktonic and biofilm states. Photochemistry and Photobiology 95 (5):1230–8. doi: 10.1111/php.13104.
  • Sommers, C., N. W. Gunther, and S. Sheen. 2017. Inactivation of Salmonella spp., pathogenic Escherichia coli, Staphylococcus spp., or Listeria monocytogenes in chicken purge or skin using a 405-nm LED array. Food Microbiology 64:135–8. doi: 10.1016/j.fm.2016.12.011.
  • Song, L., F. Zhang, J. Yu, C. Wei, Q. Han, and X. Meng. 2020. Antifungal effect and possible mechanism of curcumin mediated photodynamic technology against Penicillium expansum. Postharvest Biology and Technology 167 (3):111234. doi: 10.1016/j.postharvbio.2020.111234.
  • Srimagal, A., T. Ramesh, and J. K. Sahu. 2016. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk. LWT-Food Science and Technology 71:378–85. doi: 10.1016/j.lwt.2016.04.028.
  • Tao, R., F. Zhang, Q. J. Tang, C. S. Xu, Z. J. Ni, and X. H. Meng. 2019. Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chemistry 274:415–21. doi: 0.1016/j.foodchem.2018.08.042 doi: 10.1016/j.foodchem.2018.08.042.
  • Temba, B. A., M. T. Fletcher, G. P. Fox, J. Harvey, S. A. Okoth, and Y. Sultanbawa. 2019. Curcumin-based photosensitization inactivates Aspergillus flavus and reduces aflatoxin B1 in maize kernels. Food Microbiology 82:82–8. doi: 10.1016/j.fm.2018.12.013.
  • Temba, B. A., M. T. Fletcher, G. P. Fox, J. J. Harvey, and Y. Sultanbawa. 2016. Inactivation of Aspergillus flavus spores by curcumin mediated photosensitization. Food Control 59:708–13. doi: 10.1016/j.foodcont.2015.06.045.
  • Tosati, J. V., E. F. de Oliveira, J. V. Oliveira, N. Nitin, and A. R. Monteiro. 2018. Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages. Food Control 84:177–85. doi: 10.1016/j.foodcont.2017.07.026.
  • Varghese, K. S., M. C. Pandey, K. Radhakrishna, and A. S. Bawa. 2014. Technology, applications and modelling of ohmic heating: A review. Journal of Food Science and Technology 51 (10):2304–17. doi: 10.1007/s13197-012-0710-3.
  • Visvalingam, J., and R. A. Holley. 2018. Evaluation of chlorine dioxide, acidified sodium chlorite and peroxyacetic acid for control of Escherichia coli O157:H7 in beef patties from treated beef trim. Food Research International 103:295–300. doi: 10.1016/j.foodres.2017.10.051.
  • Wastensson, G., and K. Eriksson. 2020. Inorganic chloramines: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Critical Reviews in Toxicology 50 (3):219–71. doi:1080/10408444.2020.1744514.
  • Wu, J., H. Mou, C. Xue, A. W. Leung, C. Xu, and Q. J. Tang. 2016. Photodynamic effect of curcumin on Vibrio parahaemolyticus. Photodiagnosis and Photodynamic Therapy 15:34–9. doi: 10.1016/j.pdpdt.2016.05.004.
  • Xiao, Q., J. Wu, X. Pang, Y. Jiang, P. Wang, A. W. Leung, L. Gao, S. Jiang, and C. Xu. 2018. Discovery and development of natural products and their derivatives as photosensitizers for photodynamic therapy. Current Medicinal Chemistry 25 (7):839–60. doi: 10.2174/0929867324666170823143137.
  • Yassunaka, N. N., C. F. de Freitas, B. R. Rabello, P. R. Santos, W. Caetano, N. Hioka, T. U. Nakamura, B. A. de Abreu Filho, and J. M. G. Mikcha. 2015. Photodynamic inactivation mediated by erythrosine and its derivatives on foodborne pathogens and spoilage bacteria. Current Microbiology 71 (2):243–51. doi: 10.1007/s00284-015-0827-5.
  • Yoon, I. L., J. Z. Li, and Y. K. Shim. 2013. Advance in photosensitizers and light delivery for photodynamic therapy. Clinical Endoscopy 46 (1):7–23. doi: 10.5946/ce.2013.46.1.7.
  • Zhang, J. N., F. Zhang, Q. J. Tang, C. S. Xu, and X. H. Meng. 2018. Effect of photodynamic inactivation of Escherichia coli by hypericin. World Journal of Microbiology & Biotechnology 34 (7):100. doi: 10.1007/s11274-018-2464-1.
  • Zou, Y., Y. Yu, L. Cheng, L. Li, B. Zou, J. Wu, W. Zhou, J. Li, and Y. Xu. 2021. Effects of curcumin-based photodynamic treatment on quality attributes of fresh-cut pineapple. LWT-Food Science and Technology 141:110902. doi: 10.1016/j.lwt.2021.110902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.