2,128
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Abraham, T., T. Abraham, S. Pil Pack, and Y. Je Yoo. 2005. Stabilization of Bacillus subtilis lipase A by increasing the residual packing. Biocatalysis and Biotransformation 23 (3–4):217–24. doi: 10.1080/10242420500193013.
  • Atalah, J., P. Cáceres-Moreno, G. Espina, and J. Blamey. 2019. Thermophiles and the applications of their enzymes as new biocatalysts. Bioresource Technology 280:478–88. doi: 10.1016/j.biortech.2019.02.008.
  • Ayuso-Tejedor, S., O. Abián, and J. Sancho. 2011. Underexposed polar residues and protein stabilization. Protein Engineering, Design & Selection: PEDS 24 (1–2):171–7. doi: 10.1093/protein/gzq072.
  • Ban, X., J. Wu, B. Kaustubh, P. Lahiri, A. S. Dhoble, Z. Gu, C. Li, L. Cheng, Y. Hong, Y. Tong, et al. 2020. Additional salt bridges improve the thermostability of 1,4-α-glucan branching enzyme. Food Chemistry 316:126348. doi: 10.1016/j.foodchem.2020.126348.
  • Barzegar, A., A. A. Moosavi-Movahedi, J. Z. Pedersen, and M. Miroliaei. 2009. Comparative thermostability of mesophilic and thermophilic alcohol dehydrogenases: Stability-determining roles of proline residues and loop conformations. Enzyme and Microbial Technology 45 (2):73–9. doi: 10.1016/j.enzmictec.2009.04.007.
  • Ben Ali, M., M. Ghram, H. Hmani, B. Khemakhem, R. Haser, and S. Bejar. 2011. Toward the smallest active subdomain of a TIM-barrel fold: Insights from a truncated α-amylase. Biochemical and Biophysical Research Communications 411 (2):265–70. doi: 10.1016/j.bbrc.2011.06.114.
  • Bommarius, A. S., and M. F. Paye. 2013. Stabilizing biocatalysts. Chemical Society Reviews 42 (15):6534–65. doi: 10.1039/c3cs60137d.
  • Brown, S. H., H. R. Costantino, and R. M. Kelly. 1990. Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus. Applied and Environmental Microbiology 56 (7):1985–91. https://aem.asm.org/content/aem/56/7/1985.full.pdf. doi: 10.1128/aem.56.7.1985-1991.1990.
  • Chadha, B., B. Kaur, N. Basotra, A. Tsang, and A. Pandey. 2019. Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. Bioresource Technology 277:195–203. doi: 10.1016/j.biortech.2019.01.044.
  • Chakravarty, S., and R. Varadarajan. 2002. Elucidation of factors responsible for enhanced thermal stability of proteins: A structural genomics based study. Biochemistry 41 (25):8152–61. doi: 10.1021/bi025523t.
  • Chan, C. H., T. H. Yu, K. B. Wong, and A. Pastore. 2011. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLOS One 6 (6):e21624. doi: 10.1371/journal.pone.0021624.
  • Chen, K., A. C. Robinson, M. E. Van Dam, P. Martinez, C. Economou, and F. H. Arnold. 1991. Enzyme engineering for nonaqueous solvents. II. Additive effects of mutations on the stability and activity of subtilisin E in polar organic media. Biotechnology Progress 7 (2):125–9. doi: 10.1021/bp00008a007.
  • Chen, Q., Y. Xiao, W. Zhang, and W. Mu. 2020. Current methods and applications in computational protein design for food industry. Critical Reviews in Food Science and Nutrition 60 (19):3259–70. doi: 10.1080/10408398.2019.1682513.
  • Chettri, D., A. K. Verma, L. Sarkar, and A. K. Verma. 2021. Role of extremophiles and their extremozymes in biorefinery process of lignocellulose degradation. Extremophiles: Life under Extreme Conditions 25 (3):203–19. doi: 10.1007/s00792-021-01225-0.
  • Craig, D. B., and A. A. Dombkowski. 2013. Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics 14 (1):346. doi: 10.1186/1471-2105-14-346.
  • Creighton, T. E. 1984. Disulfide bond formation in proteins, methods in enzymology, 305–29. Academic Press.
  • D’Auria, S., A. Morana, F. Febbraio, C. Vaccaro, M. De Rosa, and R. Nucci. 1996. Functional and structural properties of the homogeneous beta-glycosidase from the extreme thermoacidophilic archaeon sulfolobus solfataricus expressed in Saccharomyces cerevisiae. Protein Expression and Purification 7 (3):299–308. doi: 10.1006/prep.1996.0043.
  • Dani, V. S., C. Ramakrishnan, and R. Varadarajan. 2003. MODIP revisited: Re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins. Protein Engineering 16 (3):187–93. doi: 10.1093/proeng/gzg024.
  • de Bakker, P. I. W., P. H. Hünenberger, and J. A. McCammon. 1999. Molecular dynamics simulations of the hyperthermophilic protein Sac7d from Sulfolobus acidocaldarius: Contribution of salt bridges to thermostability. Journal of Molecular Biology 285 (4):1811–30. doi: 10.1006/jmbi.1998.2397.
  • Dehouck, Y., A. Grosfils, B. Folch, D. Gilis, P. Bogaerts, and M. Rooman. 2009. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics (Oxford, England) 25 (19):2537–43. doi: 10.1093/bioinformatics/btp445.
  • Deutsch, C., and B. Krishnamoorthy. 2007. Four-body scoring function for mutagenesis. Bioinformatics (Oxford, England) 23 (22):3009–15. doi: 10.1093/bioinformatics/btm481.
  • Dotsenko, A. S., S. Pramanik, A. V. Gusakov, A. M. Rozhkova, I. N. Zorov, A. P. Sinitsyn, M. D. Davari, and U. Schwaneberg. 2019. Critical effect of proline on thermostability of endoglucanase II from Penicillium verruculosum. Biochemical Engineering Journal 152:107395. doi: 10.1016/j.bej.2019.107395.
  • Dotsenko, A. S., A. M. Rozhkova, I. N. Zorov, and A. P. Sinitsyn. 2020. Protein surface engineering of endoglucanase Penicillium verruculosum for improvement in thermostability and stability in the presence of 1-butyl-3-methylimidazolium chloride ionic liquid. Bioresource Technology 296:122370. doi: 10.1016/j.biortech.2019.122370.
  • Dougherty, D. A. 2007. Cation-pi interactions involving aromatic amino acids. The Journal of Nutrition 137 (6 Suppl 1):1504S–1508. doi: 10.1093/jn/137.6.1504S.
  • Ebaid, R., H. Wang, C. Sha, A. E. F. Abomohra, and W. Shao. 2019. Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: A critical review. Journal of Cleaner Production 238:117925. doi: 10.1016/j.jclepro.2019.117925.
  • Eriksson, A. E., W. A. Baase, X. J. Zhang, D. W. Heinz, M. Blaber, E. P. Baldwin, and B. W. Matthews. 1992. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science (New York, NY) 255 (5041):178–83. doi: 10.1126/science.1553543.
  • Ferrer, M., M. Martínez-Martínez, R. Bargiela, W. R. Streit, O. V. Golyshina, and P. N. Golyshin. 2016. Estimating the success of enzyme bioprospecting through metagenomics: Current status and future trends. Microbial Biotechnology 9 (1):22–34. doi: 10.1111/1751-7915.12309.
  • Folch, B., M. Rooman, and Y. Dehouck. 2008. Thermostability of salt bridges versus hydrophobic interactions in proteins probed by statistical potentials. Journal of Chemical Information and Modeling 48 (1):119–27. doi: 10.1021/ci700237g.
  • Ge, L., D. Li, T. Wu, L. Zhao, G. Ding, Z. Wang, and W. Xiao. 2018. B-factor-saturation mutagenesis as a strategy to increase the thermostability of α-L-rhamnosidase from Aspergillus terreus. Journal of Biotechnology 275:17–23. doi: 10.1016/j.jbiotec.2018.03.013.
  • Georis, J., F. de Lemos Esteves, J. Lamotte-Brasseur, V. Bougnet, B. Devreese, F. Giannotta, B. Granier, and J. M. Frère. 2000. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: Structural basis and molecular study. Protein Science 9 (3):466–75. doi: 10.1110/ps.9.3.466.
  • Grättinger, M., A. Dankesreiter, H. Schurig, and R. Jaenicke. 1998. Recombinant phosphoglycerate kinase from the hyperthermophilic bacterium Thermotoga maritima: Catalytic, spectral and thermodynamic properties. Journal of Molecular Biology 280 (3):525–33. doi: 10.1006/jmbi.1998.1861.
  • Gromiha, M. M., M. C. Pathak, K. Saraboji, E. A. Ortlund, and E. A. Gaucher. 2013. Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins 81 (4):715–21. doi: 10.1002/prot.24232.
  • Guerois, R., J. E. Nielsen, and L. Serrano. 2002. Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. Journal of Molecular Biology 320 (2):369–87. doi: 10.1016/S0022-2836(02)00442-4.
  • Guo, J., Z. Rao, T. Yang, Z. Man, X. Zhang, M. Xu, and X. Li. 2017. Enhancement of the thermostability of Streptomyces kathirae SC-1 Tyrosinase by rational sign and empirical mutation. Journal of Food Science and Biotechnology 36 (9):901–11. doi: 10.3969/j.issn.1673-1689.2017.09.002. (In Chinese).
  • Han, H., Z. Ling, A. Khan, A. Virk, S. Kulshrestha, and X. Li. 2019. Improvements of thermophilic enzymes: From genetic modifications to applications. Bioresource Technology 279:350–61. doi: 10.1016/j.biortech.2019.01.087.
  • Herbert, R. A. 1992. A perspective on the biotechnological potential of extremophiles. Trends in Biotechnology 10 (11):395–402. doi: 10.1016/0167-7799(92)90282-Z.
  • Huang, P., S. E. Boyken, and D. Baker. 2016. The coming of age of de novo protein design. Nature 537 (7620):320–7. doi: 10.1038/nature19946.
  • Huang, L., J. Ma, J. Sang, N. Wang, S. Wang, C. Wang, H. Kang, F. Liu, F. Lu, and Y. Liu. 2020. Enhancing the thermostability of phospholipase D from Streptomyces halstedii by directed evolution and elucidating the mechanism of a key amino acid residue using molecular dynamics simulation. International Journal of Biological Macromolecules 164:3065–74. doi: 10.1016/j.ijbiomac.2020.08.160.
  • Huang, J., D. Xie, and Y. Feng. 2017. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochemical and Biophysical Research Communications 483 (1):397–402. doi: 10.1016/j.bbrc.2016.12.131.
  • Ikeda, M., and D. S. Clark. 1998. Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon. Biotechnology and Bioengineering 57 (5):624–9. doi: 10.1002/(SICI)­1097-0290(19980305)57:5<624::AID-BIT15>3.0.CO;2-B.
  • Ishak, S. N. H., N. H. A. Kamarudin, M. S. M. Ali, A. T. C. Leow, and R. N. Z. R. A. Rahman. 2020. Ion-pair interaction and hydrogen bonds as main features of protein thermostability in mutated T1 recombinant lipase originating from Geobacillus zalihae. Molecules 25 (15):3430. doi: 10.3390/molecules25153430.
  • Ishikawa, K., H. Nakamura, K. Morikawa, and S. Kanaya. 1993. Stabilization of Escherichia coli ribonuclease HI by cavity-filling mutations within a hydrophobic core. Biochemistry 32 (24):6171–8. doi: 10.1021/bi00075a009.
  • Jensen, M. S., L. Fredriksen, A. K. MacKenzie, P. B. Pope, I. Leiros, P. Chylenski, A. K. Williamson, T. Christopeit, H. Østby, G. Vaaje-Kolstad, et al. 2018. Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome. PLoS One 13 (5):e0197862. doi: 10.1371/journal.pone.0197862.
  • Kannan, N., and S. Vishveshwara. 2000. Aromatic clusters: A determinant of thermal stability of thermophilic proteins. Protein Engineering 13 (11):753–61. doi: 10.1093/protein/13.11.753.
  • Kapoor, S., A. Rafiq, and S. Sharma. 2017. Protein engineering and its applications in food industry. Critical Reviews in Food Science and Nutrition 57 (11):2321–9. doi: 10.1080/10408398.2014.1000481.
  • Karnaouri, A., I. Antonopoulou, A. Zerva, M. Dimarogona, E. Topakas, U. Rova, and P. Christakopoulos. 2019. Thermophilic enzyme systems for efficient conversion of lignocellulose to valuable products: Structural insights and future perspectives for esterases and oxidative catalysts. Bioresource Technology 279:362–72. doi: 10.1016/j.biortech.2019.01.062.
  • Karshikoff, A., and R. Ladenstein. 1998. Proteins from thermophilic and mesophilic organisms essentially do not differ in packing. Protein Engineering 11 (10):867–72. doi: 10.1093/protein/11.10.867.
  • Kazlauskas, R. 2018. Engineering more stable proteins. Chemical Society Reviews 47 (24):9026–45. doi: 10.1039/c8cs00014j.
  • Kim, H. S., Q. A. T. Le, and Y. H. Kim. 2010. Development of thermostable lipase B from Candida antarctica (CalB) through in silico design employing B-factor and RosettaDesign. Enzyme and Microbial Technology 47 (1–2):1–5. doi: 10.1016/j.enzmictec.2010.04.003.
  • Kumar, S., A. Dangi, P. Shukla, D. Baishya, and S. Khare. 2019. Thermozymes: Adaptive strategies and tools for their biotechnological applications. Bioresource Technology 278:372–82. doi: 10.1016/j.biortech.2019.01.088.
  • Ladevèze, S., L. Tarquis, D. A. Cecchini, J. Bercovici, I. André, C. M. Topham, S. Morel, E. Laville, P. Monsan, V. Lombard, et al. 2013. Role of glycoside phosphorylases in mannose foraging by human gut bacteria. The Journal of Biological Chemistry 288 (45):32370–83. doi: 10.1074/jbc.M113.483628.
  • Lewin, A., T. A. Strand, T. Haugen, G. Klinkenberg, H. K. Kotlar, S. Valla, F. Drablos, and A. Wentzel. 2016. Discovery and characterization of a thermostable esterase from an oil reservoir metagenome. Advances in Enzyme Research 04 (02):68–86. doi: 10.4236/aer.2016.42008.
  • Li, G., X. Chen, X. Zhou, R. Huang, L. Li, Y. Miao, D. Liu, and R. Zhang. 2019. Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal. Biochemical and Biophysical Research Communications 515 (3):417–22. doi: 10.1016/j.bbrc.2019.05.163.
  • Li, L., S. Zhang, W. Wu, W. Guan, Z. Deng, and H. Qiao. 2019. Enhancing thermostability of Yarrowia lipolytica lipase 2 through engineering multiple disulfide bonds and mitigating reduced lipase production associated with disulfide bonds. Enzyme and Microbial Technology 126:41–9. doi: 10.1016/j.enzmictec.2019.03.008.
  • Li, W., X. Zhou, and P. Lu. 2005. Structural features of thermozymes. Biotechnology Advances 23 (4):271–81. doi: 10.1016/j.biotechadv.2005.01.002.
  • Liu, Y., L. Huang, M. Shan, J. Sang, Y. Li, L. Jia, N. Wang, S. Wang, S. Shao, F. Liu, et al. 2019. Enhancing the activity and thermostability of Streptomyces mobaraensis transglutaminase by directed evolution and molecular dynamics simulation. Biochemical Engineering Journal 151:107333. doi: 10.1016/j.bej.2019.107333.
  • Liu, Q., Y. Wang, H. Luo, L. Wang, P. Shi, H. Huang, P. Yang, and B. Yao. 2015. Isolation of a novel cold-active family 11 xylanase from the filamentous fungus Bispora antennata and deletion of its N-terminal amino acids on thermostability. Applied Biochemistry and Biotechnology 175 (2):925–36. doi: 10.1007/s12010-014-1344-x.
  • Liu, Q., G. Xun, and Y. Feng. 2019. The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnology Advances 37 (4):530–7. doi: 10.1016/j.biotechadv.2018.10.011.
  • Liu, Y., G. Luo, H. Ngo, W. Guo, and S. Zhang. 2020. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review. Bioresource Technology 298:122511. doi: 10.1016/j.biortech.2019.122511.
  • Lorenz, P., and J. Eck. 2005. Metagenomics and industrial applications. Nature Reviews Microbiology 3 (6):510–6. doi: 10.1038/nrmicro1161.
  • Mabrouk, S. B., N. Aghajari, M. B. Ali, E. B. Messaoud, M. Juy, R. Haser, and S. Bejar. 2011. Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions. Bioresource Technology 102 (2):1740–6. doi: 10.1016/j.biortech.2010.08.082.
  • Madan, B., and P. Mishra. 2014. Directed evolution of Bacillus licheniformis lipase for improvement of thermostability. Biochemical Engineering Journal 91:276–82. doi: 10.1016/j.bej.2014.08.022.
  • Mao, S., X. Cheng, Z. Zhu, Y. Chen, C. Li, M. Zhu, X. Liu, F. Lu, and H. Qin. 2020. Engineering a thermostable version of D-allulose 3-epimerase from Rhodopirellula baltica via site-directed mutagenesis based on B-factors analysis. Enzyme and Microbial Technology 132:109441. doi: 10.1016/j.enzmictec.2019.109441.
  • Matthews, B. W., H. Nicholson, and W. J. Becktel. 1987. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proceedings of the National Academy of Sciences of the United States of America 84 (19):6663–7. doi: 10.1073/pnas.84.19.6663.
  • Mhiri, S., A. Bouanane-Darenfed, S. Jemli, S. Neifar, R. Ameri, M. Mezghani, K. Bouacem, B. Jaouadi, and S. Bejar. 2020. A thermophilic and thermostable xylanase from Caldicoprobacter algeriensis: Recombinant expression, characterization and application in paper biobleaching. International Journal of Biological Macromolecules 164:808–17. doi: 10.1016/j.ijbiomac.2020.07.162.
  • Modarres, H. P., M. R. Mofrad, and A. Sanati-Nezhad. 2016. Protein thermostability engineering. RSC Advances 6 (116):115252–70. doi: 10.1039/C6RA16992A.
  • Mohammadi, M., A. Sakhteman, S. Ahrari, K. Hassanpour, S. E. Hashemi, and G. Farnoosh. 2018. Disulfide bridge formation to increase thermostability of DFPase enzyme: A computational study. Computational Biology and Chemistry 77:272–8. doi: 10.1016/j.compbiolchem.2018.09.005.
  • Mollania, N., K. Khajeh, B. Ranjbar, and S. Hosseinkhani. 2011. Enhancement of a bacterial laccase thermostability through directed mutagenesis of a surface loop. Enzyme and Microbial Technology 49 (5):446–52. doi: 10.1016/j.enzmictec.2011.08.001.
  • Niehaus, F., A. Peters, T. Groudieva, and G. Antranikian. 2000. Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans. FEMS Microbiology Letters 190 (2):223–9. doi: 10.1016/S0378-1097(00)00339-6.
  • Ohmura, T., T. Ueda, K. Ootsuka, M. Saito, and T. Imoto. 2001. Stabilization of hen egg white lysozyme by a cavity-filling mutation. Protein Science 10 (2):313–20. doi: 10.1110/ps.37401.
  • Okada, J., T. Okamoto, A. Mukaiyama, T. Tadokoro, D. You, H. Chon, Y. Koga, K. Takano, and S. Kanaya. 2010. Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins. BMC Evolutionary Biology 10:207. doi: 10.1186/1471-2148-10-207.
  • Pace, C. 1992. Contribution of the hydrophobic effect to globular protein stability. Journal of Molecular Biology 226 (1):29–35. doi: 10.1016/0022-2836(92)90121-Y.
  • Patel, A., R. Singhania, S. Sim, and A. Pandey. 2019. Thermostable cellulases: Current status and perspectives. Bioresource Technology 279:385–92. doi: 10.1016/j.biortech.2019.01.049.
  • Peng, H., L. Qian, Z. Fu, L. Xin, Z. Hua, J. Woolf, Y. Xiao, and Y. Gao. 2021. Using a novel hyperthermophilic amylopullulanase to simplify resistant starch preparation from rice starches. Journal of Functional Foods 80:104429. doi: 10.1016/j.jff.2021.104429.
  • Polizzi, K. M., A. S. Bommarius, J. M. Broering, and J. F. Chaparro-Riggers. 2007. Stability of biocatalysts. Current Opinion in Chemical Biology 11 (2):220–5. doi: 10.1016/j.cbpa.2007.01.685.
  • Reetz, M. T., and J. D. Carballeira. 2007. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nature Protocols 2 (4):891–903. doi: 10.1038/nprot.2007.72.
  • Rothschild, L. J., and R. L. Mancinelli. 2001. Life in extreme environments. Nature 409 (6823):1092–101. doi: 10.1038/35059215.
  • Sakai, G., K. Kojima, K. Mori, Y. Oonishi, and K. Sode. 2015. Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond. Biotechnology Letters 37 (5):1091–9. doi: 10.1007/s10529-015-1774-8.
  • Samson, M., T. Yang, M. Omar, M. Xu, X. Zhang, U. Alphonse, and Z. Rao. 2018. Improved thermostability and catalytic efficiency of overexpressed catalase from B. pumilus ML 413 (KatX2) by introducing disulfide bond C286-C289. Enzyme and Microbial Technology 119:10–6. doi: 10.1016/j.enzmictec.2018.08.002.
  • Schymkowitz, J., J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Serrano. 2005. The FoldX web server: An online force field. Nucleic Acids Research 33 (Web Server issue):W382–388. doi: 10.1093/nar/gki387.
  • Scott, K. A., D. O. V. Alonso, S. Sato, A. R. Fersht, and V. Daggett. 2007. Conformational entropy of alanine versus glycine in protein denatured states. Proceedings of the National Academy of Sciences of the United States of America 104 (8):2661–6. doi: 10.1073/pnas.0611182104.
  • Shi, H., Q. Gan, D. Jiang, Y. Wu, Y. Yin, H. Hou, H. Chen, Y. Xu, L. Miao, Z. Yang, et al. 2019. Biochemical characterization and mutational studies of a thermostable uracil DNA glycosylase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. International Journal of Biological Macromolecules 134:846–55. doi: 10.1016/j.ijbiomac.2019.05.073.
  • Strickler, S. S., A. V. Gribenko, A. V. Gribenko, T. R. Keiffer, J. Tomlinson, T. Reihle, V. V. Loladze, and G. I. Makhatadze. 2006. Protein stability and surface electrostatics: A charged relationship. Biochemistry 45 (9):2761–6. doi: 10.1021/bi0600143.
  • Sumbalova, L., J. Stourac, T. Martinek, D. Bednar, and J. Damborsky. 2018. HotSpot Wizard 3.0: Web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Research 46 (W1):W356–362. doi: 10.1093/nar/gky417.
  • Sun, J., M. Liu, Y. Xu, Z. Xu, L. Pan, and H. Gao. 2005. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Protein Expression and Purification 42 (1):122–30. doi: 10.1016/j.pep.2005.03.009.
  • Sun, Z., Q. Liu, G. Qu, Y. Feng, and M. T. Reetz. 2019. Utility of B-Factors in protein science: Interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chemical Reviews 119 (3):1626–65. doi: 10.1021/acs.chemrev.8b00290.
  • Suresh, A., D. Ramgopal, K. Gopinath, J. Arun, P. SundarRajan, and A. Bhatnagar. 2021. Recent advancements in the synthesis of novel thermostable biocatalysts and their applications in commercially important chemoenzymatic conversion processes. Bioresource Technology 323:124558. doi: 10.1016/j.biortech.2020.124558.
  • Szilágyi, A., and P. Závodszky. 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure (London, England: 1993) 8 (5):493–504. doi: 10.1016/S0969-2126(00)00133-7.
  • Tachibana, Y., A. Kuramura, N. Shirasaka, Y. Suzuki, T. Yamamoto, S. Fujiwara, M. Takagi, and T. Imanaka. 1999. Purification and characterization of an extremely thermostable cyclomaltodextrin glucanotransferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp. Applied and Environmental Microbiology 65 (5):1991–7. doi: 10.1128/AEM.65.5.1991-1997.1999.
  • Tang, F., D. Chen, B. Yu, Y. Luo, P. Zheng, X. Mao, J. Yu, and J. He. 2017. Improving the thermostability of Trichoderma reesei xylanase 2 by introducing disulfide bonds. Electronic Journal of Biotechnology 26:52–9. doi: 10.1016/j.ejbt.2017.01.001.
  • Tian, J., P. Wang, S. Gao, X. Chu, N. Wu, and Y. Fan. 2010. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. The FEBS Journal 277 (23):4901–8. doi: 10.1111/j.1742-4658.2010.07895.x.
  • Tompa, D. R., M. M. Gromiha, and K. Saraboji. 2016. Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins. Journal of Molecular Graphics & Modelling 64:85–93. doi: 10.1016/j.jmgm.2016.01.001.
  • Tong, L., S. Liu, J. Li, G. Du, and J. Chen. 2018. Improvement of TGase thermal stability through site-directed mutagenesis based on analysis of folding free energy. Journal of Food Science and Biotechnology 37 (12):1278–83. doi: 10.3969/j.issn.1673-1689.2018.12.008. (In Chinese).
  • Toogood, H. S., E. J. Hollingsworth, R. C. Brown, I. N. Taylor, S. J. Taylor, R. McCague, and J. A. Littlechild. 2002. A thermostable L-aminoacylase from Thermococcus litoralis: Cloning, overexpression, characterization, and applications in biotransformations. Extremophiles: Life under Extreme Conditions 6 (2):111–22. doi: 10.1007/s007920100230.
  • Ueno, K., M. Ibarra, and T. Gojobori. 2016. Structural adaption of extremophile proteins to the environments with special reference to hydrophobic networks. Ecological Genetics and Genomics 1:1–5. doi: 10.1016/j.egg.2015.10.001.
  • van den Burg, B. 2003. Extremophiles as a source for novel enzymes. Current Opinion in Microbiology 6 (3):213–8. doi: 10.1016/S1369-5274(03)00060-2.
  • Vasudevan, U., A. Jaiswal, S. Krishna, and A. Pandey. 2019. Thermostable phytase in feed and fuel industries. Bioresource Technology 278:400–7. doi: 10.1016/j.biortech.2019.01.065.
  • Verma, S., G. K. Meghwanshi, and R. Kumar. 2021. Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie 182:23–36. doi: 10.1016/j.biochi.2020.12.027.
  • Vieille, C., and G. J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews: MMBR 65 (1):1–43. doi: 10.1128/MMBR.65.1.1-43.2001.
  • Vieira, D. S., and L. Degrève. 2009. An insight into the thermostability of a pair of xylanases: The role of hydrogen bonds. Molecular Physics 107 (1):59–69. doi: 10.1080/00268970902717959.
  • Vogt, G., S. Woell, and P. Argos. 1997. Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology 269 (4):631–43. doi: 10.1006/jmbi.1997.1042.
  • Wang, K., H. Luo, J. Tian, O. Turunen, H. Huang, P. Shi, H. Hua, C. Wang, S. Wang, and B. Yao. 2014. Thermostability improvement of a streptomyces xylanase by introducing proline and glutamic acid residues. Applied and Environmental Microbiology 80 (7):2158–65. doi: 10.1128/AEM.03458-13.
  • Wang, R., S. Wang, Y. Xu, and X. Yu. 2020. Enhancing the thermostability of Rhizopus chinensis lipase by rational design and MD simulations. International Journal of Biological Macromolecules 160:1189–200. doi: 10.1016/j.ijbiomac.2020.05.243.
  • Wang, X., Y. Nie, and Y. Xu. 2019. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. Bioresource Technology 278:360–71. doi: 10.1016/j.biortech.2019.01.098.
  • Wang, Y., Z. Fu, H. Huang, H. Zhang, B. Yao, H. Xiong, and O. Turunen. 2012. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology 112:275–9. doi: 10.1016/j.biortech.2012.02.092.
  • Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T. A. P. de Beer, C. Rempfer, L. Bordoli, et al. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research 46 (W1):W296–303. doi: 10.1093/nar/gky427.
  • Wen, S., T. Tan, and H. Zhao. 2012. Improving the thermostability of lipase Lip2 from Yarrowia lipolytica. Journal of Biotechnology 164 (2):248–53. doi: 10.1016/j.jbiotec.2012.08.023.
  • Wu, H., M. Chen, C. Guang, W. Zhang, and W. Mu. 2020. Identification of a novel recombinant D-lyxose isomerase from Thermoprotei archaeon with high thermostable, weak-acid and nickel ion dependent properties. International Journal of Biological Macromolecules 164:1267–74. doi: 10.1016/j.ijbiomac.2020.07.222.
  • Wu, H., W. Zhang, and W. Mu. 2019. Recent studies on the biological production of D-mannose. Applied Microbiology and Biotechnology 103 (21–22):8753–61. doi: 10.1007/s00253-019-10151-3.
  • Xiao, Z., H. Bergeron, S. Grosse, M. Beauchemin, M.-L. Garron, D. Shaya, T. Sulea, M. Cygler, and P. C. K. Lau. 2008. Improvement of the thermostability and activity of a pectate lyase by single amino acid substitutions, using a strategy based on melting-temperature-guided sequence alignment. Applied and Environmental Microbiology 74 (4):1183–9. doi: 10.1128/AEM.02220-07.
  • Xing, H., G. Zou, C. Liu, S. Chai, X. Yan, X. Li, R. Liu, Y. Yang, and Z. Zhou. 2021. Improving the thermostability of a GH11 xylanase by directed evolution and rational design guided by B-factor analysis. Enzyme and Microbial Technology 143:109720. doi: 10.1016/j.enzmictec.2020.109720.
  • Xu, J., W. A. Baase, E. Baldwin, and B. W. Matthews. 1998. The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect. Protein Science 7 (1):158–77. doi: 10.1002/pro.5560070117.
  • Xu, P., Z. Ni, M. Zong, X. Ou, J. Yang, and W. Lou. 2020. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design. International Journal of Biological Macromolecules 150:9–15. doi: 10.1016/j.ijbiomac.2020.02.033.
  • Xu, W., J. Peng, W. Zhang, T. Zhang, C. Guang, and W. Mu. 2019. Enhancement of the Brenneria sp. levansucrase thermostability by site-directed mutagenesis at Glu404 located at the “-TEAP-” residue motif. Journal of Biotechnology 290:1–9. doi: 10.1016/j.jbiotec.2018.11.021.
  • Xu, Z., T. Cai, N. Xiong, S. Zou, Y. Xue, and Y. Zheng. 2018. Engineering the residues on “A” surface and C-terminal region to improve thermostability of nitrilase. Enzyme and Microbial Technology 113:52–8. doi: 10.1016/j.enzmictec.2018.03.001.
  • Xu, Z., Y. Cen, S. Zou, Y. Xue, and Y. Zheng. 2020. Recent advances in the improvement of enzyme thermostability by structure modification. Critical Reviews in Biotechnology 40 (1):83–98. doi: 10.1080/07388551.2019.1682963.
  • Yi, Z., X. Pei, and Z. Wu. 2011. Introduction of glycine and proline residues onto protein surface increases the thermostability of endoglucanase CelA from Clostridium thermocellum. Bioresource Technology 102 (3):3636–8. doi: 10.1016/j.biortech.2010.11.043.
  • Yin, X., J. Li, C. Wang, D. Hu, Q. Wu, Y. Gu, and M. Wu. 2015. Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis. Applied Microbiology and Biotechnology 99 (23):10047–56. doi: 10.1007/s00253-015-6889-2.
  • Yoneda, K., M. Yoshioka, H. Sakuraba, T. Araki, and T. Ohshima. 2020. Structural and biochemical characterization of an extremely thermostable FMN-dependent NADH-indigo reductase from Bacillus smithii. International Journal of Biological Macromolecules 164:3259–67. doi: 10.1016/j.ijbiomac.2020.08.197.
  • Yu, H., and H. Huang. 2014. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnology Advances 32 (2):308–15. doi: 10.1016/j.biotechadv.2013.10.012.
  • Yu, H., Y. Zhao, C. Guo, Y. Gan, and H. Huang. 2015. The role of proline substitutions within flexible regions on thermostability of luciferase. Biochimica et Biophysica Acta 1854 (1):65–72. doi: 10.1016/j.bbapap.2014.10.017.
  • Zeiske, T., K. A. Stafford, and A. G. Palmer. 2016. Thermostability of enzymes from molecular dynamics simulations. Journal of Chemical Theory and Computation 12 (6):2489–92. doi: 10.1021/acs.jctc.6b00120.
  • Zhang, S., and Z. Wu. 2011. Identification of amino acid residues responsible for increased thermostability of feruloyl esterase A from Aspergillus niger using the PoPMuSiC algorithm. Bioresource Technology 102 (2):2093–6. doi: 10.1016/j.biortech.2010.08.019.
  • Zhang, W., M. Jia, S. Yu, T. Zhang, L. Zhou, B. Jiang, and W. Mu. 2016. Improving the thermostability and catalytic efficiency of the d-psicose 3-epimerase from Clostridium bolteae ATCC BAA-613 using site-directed mutagenesis. Journal of Agricultural and Food Chemistry 64 (17):3386–93. doi: 10.1021/acs.jafc.6b01058.
  • Zhang, W., Y. Zhang, J. Huang, Z. Chen, T. Zhang, C. Guang, and W. Mu. 2018. Thermostability improvement of the d-allulose 3-epimerase from Dorea sp. CAG317 by site-directed mutagenesis at the interface regions. Journal of Agricultural and Food Chemistry 66 (22):5593–601. doi: 10.1021/acs.jafc.8b01200.
  • Zhang, Y., T. Geary, and B. K. Simpson. 2019. Genetically modified food enzymes: A review. Current Opinion in Food Science 25:14–8. doi: 10.1016/j.cofs.2019.01.002.
  • Zhang, Z., L. Wang, Y. Gao, J. Zhang, M. Zhenirovskyy, and E. Alexov. 2012. Predicting folding free energy changes upon single point mutations. Bioinformatics (Oxford, England) 28 (5):664–71. doi: 10.1093/bioinformatics/bts005.
  • Zhang, Z., J. Yang, P. Xie, Y. Gao, J. Bai, C. Zhang, L. Liu, Q. Wang, and X. Gao. 2020. Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering. Enzyme and Microbial Technology 142:109679. doi: 10.1016/j.enzmictec.2020.109679.
  • Zhou, Y., B. Pérez, W. Hao, J. Lv, R. Gao, and Z. Guo. 2019. The additive mutational effects from surface charge engineering: A compromise between enzyme activity, thermostability and ionic liquid tolerance. Biochemical Engineering Journal 148:195–204. doi: 10.1016/j.bej.2018.07.020.
  • Zhou, C., Y. Xue, and Y. Ma. 2010. Enhancing the thermostability of alpha-glucosidase from Thermoanaerobacter tengcongensis MB4 by single proline substitution. Journal of Bioscience and Bioengineering 110 (1):12–7. doi: 10.1016/j.jbiosc.2009.12.002.
  • Zouari Ayadi, D., A. Hmida Sayari, H. Ben Hlima, S. Ben Mabrouk, M. Mezghani, and S. Bejar. 2015. Improvement of Trichoderma reesei xylanase II thermal stability by serine to threonine surface mutations. International Journal of Biological Macromolecules 72:163–70. doi: 10.1016/j.ijbiomac.2014.08.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.