1,962
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Sensory evaluation, chemical structures, and threshold concentrations of bitter-tasting compounds in common foodstuffs derived from plants and maillard reaction: A review

ORCID Icon, , ORCID Icon, & ORCID Icon

References

  • Abraham, K., R. Gürtler, K. Berg, G. Heinemeyer, A. Lampen, and K. E. Appel. 2011. Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Molecular Nutrition & Food Research 55 (5):667–78. doi: 10.1002/mnfr.201000564.
  • Adams, A., and N. De Kimpe. 2006. Chemistry of 2-acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine, 2-acetyl-2-thiazoline, and 5-acetyl-2,3-dihydro-4H-thiazine: Extraordinary Maillard flavor compounds. Chemical Reviews 106 (6):2299–319. doi: 10.1021/cr040097y.
  • Ayabe, T., T. Fukuda, and Y. Ano. 2020. Improving effects of hop-derived bitter acids in beer on cognitive functions: A new strategy for vagus nerve stimulation. Biomolecules 10 (1311):1–15. doi: 10.3390/biom10010131.
  • Behrens, M., A. Brockhoff, C. Kuhn, B. Bufe, M. Winnig, and W. Meyerhof. 2004. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochemical and Biophysical Research Communications 319 (2):479–85. doi: 10.1016/j.bbrc.2004.05.019.
  • Bin, Q., and D. G. Peterson. 2016. Identification of bitter compounds in whole wheat bread crumb. Food Chemistry 203:8–15. doi: 10.1016/j.foodchem.2016.01.116.
  • Blumberg, S., O. Frank, and T. Hofmann. 2010. Quantitative studies on the influence of the bean roasting parameters and hot water percolation on the concentrations of bitter compounds in coffee brew. Journal of Agricultural and Food Chemistry 58 (6):3720–8. doi: 10.1021/jf9044606.
  • Bohin, M. C., W. S. U. Roland, H. Gruppen, R. J. Gouka, H. T. W. M. van der Hijden, P. Dekker, G. Smit, and J. Vincken. 2013. Evaluation of the bitter-masking potential of food proteins for EGCG by a cell-based human bitter taste receptor assay and binding studies. Journal of Agricultural and Food Chemistry 61 (42):10010–10017. doi: 10.1021/jf4030823.
  • Boselli, E., R. B. Boulton, J. H. Thorngate, and N. G. Frega. 2004. Chemical and sensory characterization of DOC red wines from Marche (Italy) related to vintage and grape cultivars. Journal of Agricultural and Food Chemistry 52 (12):3843–54. doi: 10.1021/jf035457h.
  • Boughter, J. D. J., S. Raghow, T. M. Nelson, and S. D. Munger. 2005. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli. BMC Genetics 6:36. doi: 10.1186/1471-2156-6-36.
  • Bruhl, L., B. Matthaus, E. Fehling, B. Wiege, B. Lehmann, H. Lehmann, K. Bergander, K. Quiroga, A. Scheipers, O. Frank, et al. 2007. Identification of bitter off-taste compounds in the stored cold pressed linseed oil. Journal of Agricultural and Food Chemistry 55 (19):7864–8. doi: 10.1021/jf071136k.
  • Chen, Q., J. Zhao, Z. Guo, and X. Wang. 2010. Determination of caffeine content and main catechins contents in green tea (Camellia sinensis L.) using taste sensor technique and multivariate calibration. Journal of Food Composition and Analysis 23 (4):353–8. doi: 10.1016/j.jfca.2009.12.010.
  • Chen, Y., S. Liou, and C. Chen. 2004. Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence. European Food Research and Technology 218 (6):589–597. doi: 10.1007/s00217-004-0901-x.
  • Chen, W. C. 1979. Doctoral Thesis. University of Munich. Munich, Germany.
  • Chen, Z., J. Wu, Y. Zhao, F. Xu, and Y. Hu. 2012. Recent advances in bitterness evaluation methods. Analytical Methods 4 (3):599–608. doi: 10.1039/c2ay05701h.
  • Ciosek, P., and W. Wroblewski. 2007. Sensor arrays for liquid sensing-electronic tongue systems. The Analyst 132 (10):963–78. doi: 10.1039/b705107g.
  • Cohen, N. A. 2017. The genetics of the bitter taste receptor T2R38 in upper airway innate immunity and implications for chronic rhinosinusitis. The Laryngoscope 127 (1):44–51. doi: 10.1002/lary.26198.
  • Czepa, A., and T. Hofmann. 2003. Structural and sensory characterization of compounds contributing to the bitter off-taste of carrots (Daucus carota l.) and carrot puree. Journal of Agricultural and Food Chemistry 51 (13):3865–73. doi: 10.1021/jf034085.
  • Dagan-Wiener, A., A. Di Pizio, I. Nissim, M. S. Bahia, N. Dubovsk, E. Margulis, and M. Y. Niv. 2019. BitterDB: taste ligands and receptors database in 2019. Nucleic Acids Research 47 (D1):D1179–D1185. doi: 10.1093/nar/gky974.
  • Dawid, C., and T. Hofmann. 2012. Structural and sensory characterization of bitter tasting steroidal saponins from Asparagus Spears (Asparagus officinalis L.). Journal of Agricultural and Food Chemistry 60 (48):11889–900. doi: 10.1021/jf304085j.
  • de Freitas, V., and N. Mateus. 2001. Structural features of procyanidin interactions with salivary proteins. Journal of Agricultural and Food Chemistry 49 (2):940–5. doi: 10.1021/jf000981z.
  • Deshpande, D. A., W. C. H. Wang, E. L. McIlmoyle, K. S. Robinett, R. M. Schillinger, S. S. An, J. S. K. Sham, and S. B. Liggett. 2010. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nature Medicine 16 (11):1299. doi: 10.1038/nm.2237.
  • Dresel, M., A. Dunkel, and T. Hofmann. 2015. Sensomics analysis of key bitter compounds in the hard resin of hops (Humulus lupulus L.) and their contribution to the bitter profile of pilsner-type beer. Journal of Agricultural and Food Chemistry 63 (13):3402–3418. doi: 10.1021/acs.jafc.5b00239.
  • Drewnowski, A., and C. Gomez-Carneros. 2000. Bitter taste, phytonutrients, and the consumer: A review. The American Journal of Clinical Nutrition 72 (6):1424–1435. doi: 10.1093/ajcn/72.6.1424.
  • Drewnowski, A., S. A. Henderson, C. S. Hann, W. A. Berg, and M. T. Ruffin. 2000. Genetic taste markers and preferences for vegetables and fruit of female breast care patients. Journal of the American Dietetic Association 100 (2):191–197. doi: 10.1016/S0002-8223(00)00061-4.
  • Duggan, T., C. Dawid, S. Baur, and T. Hofmann. 2020. Characterization of bitter and astringent off-taste compounds in potato fibers. Journal of Agricultural and Food Chemistry 68 (41):11524. doi: 10.1021/acs.jafc.0c04853.
  • Edelmann, M., C. Dawid, K. Hochreiter, T. Ralla, T. D. Stark, H. Salminen, J. Weiss, and T. Hofmann. 2020. Molecularization of foam-active saponins from sugar beet side streams (Beta vulgaris ssp. vulgaris var. altissima). Journal of Agricultural and Food Chemistry 68 (39):10962–10974. doi: 10.1021/acs.jafc.0c04603.
  • Feng, Y., G. Su, H. Zhao, Y. Cai, C. Cui, D. Sun-Waterhouse, and M. Zhao. 2015. Characterisation of aroma profiles of commercial soy sauce by odour activity value and omission test. Food Chemistry 167:220–228. doi: 10.1016/j.foodchem.2014.06.057.
  • Formaker, B. K., J. R. Stapleton, S. D. Roper, and M. E. Frank. 2004. Responses of the rat chorda tympani nerve to glutamate-sucrose mixtures. Chemical Senses 29 (6):473–482. doi: 10.1093/chemse/bjh049.
  • Frank, O., and T. Hofmann. 2002. Reinvestigation of the chemical structure of bitter-tasting quinizolate and homoquinizolate and studies on their Maillard-type formation pathways using suitable (13)C-labeling experiments. Journal of Agricultural and Food Chemistry 50 (21):6027–6036. doi: 10.1021/jf020473k.
  • Frank, O., G. Zehentbauer, and T. Hofmann. 2006. Bioresponse-guided decomposition of roast coffee beverage and identification of key bitter taste compounds. European Food Research and Technology 222 (5-6):492–508. doi: 10.1007/s00217-005-0143-6.
  • Frank, O., H. Ottinger, and T. Hofmann. 2001. Characterization of an intense bitter-tasting 1H,4H-quinolizinium-7-olate by application of the taste dilution analysis, a novel bioassay for the screening and identification of taste-active compounds in foods. Journal of Agricultural and Food Chemistry 49 (1):231–238. doi: 10.1021/jf0010073.
  • Frank, O., M. Jezussek, and T. Hofmann. 2001. Characterisation of novel 1H,4H-quinolizinium-7-olate chromophores by application of colour dilution analysis and high-speed countercurrent chromatography on thermally browned pentose/L-alanine solutions. European Food Research and Technology 213 (1):1–7. doi: 10.1007/s002170100317.
  • Frank, O., M. Jezussek, and T. Hofmann. 2003. Sensory activity, chemical structure, and synthesis of Maillard generated bitter-tasting 1-Oxo-2,3-dihydro-1H-indolizinium-6-olates. Journal of Agricultural and Food Chemistry 51 (9):2693–2699. doi: 10.1021/jf026098d.
  • Frank, O., S. Blumberg, C. Kunert, G. Zehentbauer, and T. Hofmann. 2007. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS. Journal of Agricultural and Food Chemistry 55 (5):1945–1954. doi: 10.1021/jf0632280.
  • Frank, O., S. Blumberg, G. Krumpel, and T. Hofmann. 2008. Structure determination of 3-O-caffeoyl-epi-gamma-quinide, an orphan bitter lactone in roasted coffee. Journal of Agricultural and Food Chemistry 56 (20):9581–9585. doi: 10.1021/jf802210a.
  • Frank, S., N. Wollmann, P. Schieberle, and T. Hofmann. 2011. Reconstitution of the flavor signature of dornfelder red wine on the basis of the natural concentrations of its key aroma and taste compounds. Journal of Agricultural and Food Chemistry 59 (16):8866–8874. doi: 10.1021/jf202169h.
  • Fritsch, H. T., and P. Schieberle. 2005. Identification based on quantitative measurements and aroma recombination of the character impact odorants in a Bavarian Pilsner-type beer. Journal of Agricultural and Food Chemistry 53 (19):7544–7551. doi: 10.1021/jf051167k.
  • Fujimoto, H., Y. Narita, K. Iwai, T. Hanzawa, T. Kobayashi, M. Kakiuchi, S. Ariki, X. Wu, K. Miyake, Y. Tahara, 2021. Bitterness compounds in coffee brew measured by analytical instruments and taste sensing system. Food Chemistry 342:128228. doi: 10.1016/j.foodchem.2020.128228.
  • Ginz, M., and U. H. Engelhardt. 2000. Identification of proline-based diketopiperazines in roasted coffee. Journal of Agricultural and Food Chemistry 48 (8):3528–3532. doi: 10.1021/jf991256v.
  • Ginz, M., and U. H. Engelhardt. 2001. Identification of new diketopiperazines in roasted coffee. European Food Research and Technology 213 (1):8–11. doi: 10.1007/s002170100322.
  • Glaser, P., C. Dawid, S. Meister, S. Bader-Mittermaier, M. Schott, P. Eisner, and T. Hofmann. 2020. Molecularization of bitter off-taste compounds in pea-protein isolates (Pisum sativum L.). Journal of Agricultural and Food Chemistry 68 (38):10374–10387. doi: 10.1021/acs.jafc.9b06663.
  • Gonzalo-Diago, A., M. Dizy, and P. Fernandez-Zurbano. 2014. Contribution of low molecular weight phenols to bitter taste and mouthfeel properties in red wines. Food Chemistry 154:187–198. doi: 10.1016/j.foodchem.2013.12.096.
  • Günther-Jordanland, K., C. Dawid, M. Dietz, and T. Hofmann. 2016. Key phytochemicals contributing to the bitter off-taste of oat (Avena sativa L.). Journal of Agricultural and Food Chemistry 64 (51):9639–9652. doi: 10.1021/acs.jafc.6b04995.
  • Peleg, H., K. Gacon, S. Pascal, and A. C. Noble. 1999. Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. Journal of the Science of Food and Agriculture 79:1123–1128. doi: 10.1002/(SICI)1097-0010(199906)79:8 < 1123::AID-JSFA336 > 3.0.CO;2-D.
  • Hao, J., R. A. Speers, H. Fan, Y. Deng, and Z. Dai. 2020. A review of cyclic and oxidative bitter derivatives of alpha, iso-alpha and beta-hop acids. Journal of the American Society of Brewing Chemists 78 (2):89–102. doi: 10.1080/03610470.2020.1712641.
  • Haseleu, G., D. Intelmann, and T. Hofmann. 2009. Identification and RP-HPLC-ESI-MS/MS quantitation of bitter-tasting beta-acid transformation products in beer. Journal of Agricultural and Food Chemistry 57 (16):7480–7489. doi: 10.1021/jf901759y.
  • Haseleu, G., D. Intelmann, and T. Hofmann. 2009. Structure determination and sensory evaluation of novel bitter compounds formed from β-acids of hop (Humulus lupulus L.) upon wort boiling. Food Chemistry 116 (1):71–81. doi: 10.1016/j.foodchem.2009.02.008.
  • Hettinger, T. P., B. K. Formaker, and M. E. Frank. 2007. Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research 180 (1):4–17. doi: 10.1016/j.bbr.2007.02.027.
  • Hofmann, T. 1998. Acetylformoin–a chemical switch in the formation of colored Maillard reaction products from hexoses and primary and secondary amino acids. Journal of Agricultural and Food Chemistry 46 (10):3918–3928. doi: 10.1021/jf980512l.
  • Hofmann, T. 1999. Influence of L-cysteine on the formation of bitter-tasting aminohexose reductones from glucose and L-proline: Identification of a novel furo[2,3-b]thiazine. Journal of Agricultural and Food Chemistry 47 (11):4763–4768. doi: 10.1021/jf9903152.
  • Hu, L., J. Xu, Z. Qin, N. Hu, M. Zhou, L. Huang, and P. Wang. 2016. Detection of bitterness in vitro by a novel male mouse germ cell-based biosensor. Sensors and Actuators B: Chemical 223:461–469. doi: 10.1016/j.snb.2015.08.105.
  • Hu, L., L. Zou, Z. Qin, J. Fang, L. Huang, and P. Wang. 2017. A novel label-free bioengineered cell-based biosensor for salicin detection. Sensors and Actuators B: Chemical 238:1151–1158. doi: 10.1016/j.snb.2016.02.072.
  • Hufnagel, J. C., and T. Hofmann. 2008. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. Journal of Agricultural and Food Chemistry 56 (4):1376–1386. doi: 10.1021/jf073031n.
  • Hufnagel, J. C., and T. Hofmann. 2008. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. Journal of Agricultural and Food Chemistry 56 (19):9190–9199. doi: 10.1021/jf801742w.
  • Hwang, I. G., H. Y. Kim, K. S. Woo, S. H. Lee, J. Lee, and H. S. Jeong. 2013. Isolation and identification of the antioxidant DDMP from heated pear (Pyrus pyrifolia Nakai). Preventive Nutrition and Food Science 18 (1):76–79. doi: 10.3746/pnf.2013.18.1.076.
  • Intelmann, D., and T. Hofmann. 2010. On the autoxidation of bitter-tasting iso-alpha-acids in beer. Journal of Agricultural and Food Chemistry 58 (8):5059–5067. doi: 10.1021/jf100083e.
  • Intelmann, D., G. Haseleu, A. Dunkel, A. Lagemann, A. Stephan, and T. Hofmann. 2011. Comprehensive sensomics analysis of hop-derived bitter compounds during storage of beer. Journal of Agricultural and Food Chemistry 59 (5):1939–1953. doi: 10.1021/jf104392y.
  • Intelmann, D., G. Haseleu, and T. Hofmann. 2009. LC-MS/MS quantitation of hop-derived bitter compounds in beer using the ECHO technique. Journal of Agricultural and Food Chemistry 57 (4):1172–1182. doi: 10.1021/jf803040g.
  • International Standardization Organization. 2007. Sensory analysis general guidance for the design of test rooms. In: ISO, 8589-2007. Genva, Switzerland. https://www.iso.org/standard/36385.html.
  • Jaggupilli, A., R. Howard, J. D. Upadhyaya, R. P. Bhullar, and P. Chelikani. 2016. Bitter taste receptors: Novel insights into the biochemistry and pharmacology. The International Journal of Biochemistry & Cell Biology 77 (Pt B):184–196. doi: 10.1016/j.biocel.2016.03.005.
  • Jaskula, B., P. Kafarski, G. Aerts, and L. De Cooman. 2008. A kinetic study on the isomerization of hop alpha-acids. Journal of Agricultural and Food Chemistry 56 (15):6408–6415. doi: 10.1021/jf8004965.
  • Jiang, D. S., and D. G. Peterson. 2013. Identification of bitter compounds in whole wheat bread. Food Chemistry 141 (2):1345–1353. doi: 10.1016/j.foodchem.2013.03.021.
  • John, D. B., J. S. J. Steven, T. N. Derek, N. Obinna, and V. S. David. 2002. A brief-access test for bitter taste in mice. Chemical Senses 27 (2):133. doi: 10.1093/chemse/27.2.133.
  • Kim, T. H., H. S. Song, H. J. Jin, S. H. Lee, S. Namgung, U. Kim, T. H. Park, and S. Hong. 2011. "Bioelectronic super-taster" device based on taste receptor-carbon nanotube hybrid structures . Lab on a Chip 11 (13):2262–2267. doi: 10.1039/c0lc00648c.
  • Kreppenhofer, S., O. Frank, and T. Hofmann. 2011. Identification of (furan-2-yl)methylated benzene diols and triols as a novel class of bitter compounds in roasted coffee. Food Chemistry 126 (2):441–449. doi: 10.1016/j.foodchem.2010.11.008.
  • Kuhn, C., B. Bufe, M. Winnig, T. Hofmann, O. Frank, M. Behrens, T. Lewtschenko, J. P. Slack, C. D. Ward, and W. Meyerhof. 2004. Bitter taste receptors for saccharin and acesulfame K. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 24 (45):10260–10265. doi: 10.1523/JNEUROSCI.1225-04.2004.
  • Li, H., C. J. Wu, X. Y. Tang, and S. J. Yu. 2019. Determination of four bitter compounds in caramel colors and beverages using modified QuEChERS coupled with liquid chromatography-diode array detector-mass spectrometry. Food Analytical Methods 12 (7):1674–1683. doi: 10.1007/s12161-019-01500-z.
  • Li, H., W. C. Zhang, X. Y. Tang, C. J. Wu, S. J. Yu, and Z. Q. Zhao. 2021. Identification of bitter-taste compounds in class-III caramel colours. Flavour and Fragrance Journal 36 (3):404–411. doi: 10.1002/ffj.3652.
  • Liszt, K. I., R. Eder, S. Wendelin, and V. Somoza. 2015. Identification of catechin, syringic acid, and procyanidin B2 in wine as stimulants of gastric acid secretion. Journal of Agricultural and Food Chemistry 63 (35):7775–7783. doi: 10.1021/acs.jafc.5b02879.
  • Liu, X., D. Jiang, and D. G. Peterson. 2014. Identification of bitter peptides in whey protein hydrolysate. Journal of Agricultural and Food Chemistry 62 (25):5719–5725. doi: 10.1021/jf4019728.
  • Lu, Z., G. Xie, D. Wu, L. Yang, Z. Jin, Z. Hu, X. Xu, and J. Lu. 2021. Isolation and identification of the bitter compound from Huangjiu. Food Chemistry 349:129133. doi: 10.1016/j.foodchem.2021.129133.
  • Luo, Y., L. Kong, R. Xue, W. Wang, and X. Xia. 2020. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends in Food Science & Technology 96:222–232. doi: 10.1016/j.tifs.2019.12.026.
  • Maehashi, K., T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya. 2007. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Analytical Chemistry 79 (2):782–787. doi: 10.1021/ac060830g.
  • Manson, M. L., J. Safholm, M. Al-Ameri, P. Bergman, A. Orre, K. Sward, A. James, S. Dahlen, and M. Adner. 2014. Bitter taste receptor agonists mediate relaxation of human and rodent vascular smooth muscle. European Journal of Pharmacology 740:302–311. doi: 10.1016/j.ejphar.2014.07.005.
  • Marx, I. M. G., N. Rodrigues, L. G. Dias, A. C. A. Veloso, J. A. Pereira, D. A. Drunkler, and A. M. Peres. 2017. Quantification of table olives’ acid, bitter and salty tastes using potentiometric electronic tongue fingerprints. Lwt - Food Science and Technology 79:394–401. doi: 10.1016/j.lwt.2017.01.060.
  • Mayr, C. M., D. L. Capone, K. H. Pardon, C. A. Black, D. Pomeroy, and I. L. Francis. 2015. Quantitative analysis by GC-MS/MS of 18 aroma compounds related to oxidative off-flavor in wines. Journal of Agricultural and Food Chemistry 63 (13):3394–3401. doi: 10.1021/jf505803u.
  • Meilgaard, M. C., B. T. Carr, and G. V. Civille. 2006. Sensory evaluation techniques. 4th ed. Boca Raton, FL: CRC Press.
  • Melis, M., and I. T. Barbarossa. 2017. Taste perception of sweet, sour, salty, bitter, and umami and changes due to L-arginine supplementation, as a function of genetic ability to taste 6-n-propylthiouracil. Nutrients 9 (6):1–17. doi: 10.3390/nu9060541.
  • Narukawa, M., C. Noga, Y. Ueno, T. Sato, T. Misaka, and T. Watanabe. 2011. Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39. Biochemical and Biophysical Research Communications 405 (4):620–625. doi: 10.1016/j.bbrc.2011.01.079.
  • Newman, J., T. Egan, N. Harbourne, D. O’Riordan, J. C. Jacquier, and M. O’Sullivan. 2014. Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data. Talanta 126:46–53. doi: 10.1016/j.talanta.2014.03.036.
  • Papst, H. M. E., F. Ledl, and H. D. Belitz. 1984. Bitter tasting compounds in heated proline/sucrose mixtures. Z. Lebensm. Unters. Forsch 178:356–360.
  • Papst, H. M. E., F. Ledl, and H. D. Belitz. 1985. Bitter tasting compounds in heated mixtures of sucrose, maltose and L-proline. Z. Lebensm. Unters. Forsch 181:386–390.
  • Pu, Y., T. Ding, N. Zhang, P. Jiang, and D. Liu. 2017. Identification of bitter compounds from dried fruit of Ziziphus jujuba cv. International Journal of Food Properties 20 (sup1):S26–S35. doi: 10.1080/10942912.2017.1288133.
  • Qin, Z., B. Zhang, L. Hu, L. Zhuang, N. Hu, and P. Wang. 2016. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain-machine interface. Biosensors & Bioelectronics 78:374–380. doi: 10.1016/j.bios.2015.11.078.
  • Rodgers, S., R. C. Glen, and A. Bender. 2006. Characterizing bitterness: Identification of key structural features and development of a classification model. Journal of Chemical Information and Modeling 46 (2):569–576. doi: 10.1021/ci0504418.
  • Roland, W. S. U., J. P. Vincken, R. J. Gouka, L. van Buren, H. Gruppen, and G. Smit. 2011. Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39. Journal of Agricultural and Food Chemistry 59 (21):11764–11771. doi: 10.1021/jf202816u.
  • Rudnitskaya, A., H. H. Nieuwoudt, N. Muller, A. Legin, M. Du Toit, and F. F. Bauer. 2010. Instrumental measurement of bitter taste in red wine using an electronic tongue. Analytical and Bioanalytical Chemistry 397 (7):3051–3060. doi: 10.1007/s00216-010-3885-3.
  • Rudnitskaya, A., L. M. Schmidtke, A. Reis, M. R. M. Domingues, I. Delgadillo, B. Debus, D. Kirsanov, and A. Legin. 2017. Measurements of the effects of wine maceration with oak chips using an electronic tongue. Food Chemistry 229:20–27. doi: 10.1016/j.foodchem.2017.02.013.
  • Ryan, L. A. M., F. Dal Bello, E. K. Arendt, and P. Koehler. 2009. Detection and quantitation of 2,5-diketopiperazines in wheat sourdough and bread. Journal of Agricultural and Food Chemistry 57 (20):9563–9568. doi: 10.1021/jf902033v.
  • Saenz-Navajas, M., V. Ferreira, M. Dizy, and P. Fernandez-Zurbano. 2010. Characterization of taste-active fractions in red wine combining HPLC fractionation, sensory analysis and ultra performance liquid chromatography coupled with mass spectrometry detection. Analytica Chimica Acta 673 (2):151–159. doi: 10.1016/j.aca.2010.05.038.
  • Scharbert, S., and T. Hofmann. 2005. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. Journal of Agricultural and Food Chemistry 53 (13):5377–5384. doi: 10.1021/jf050294d.
  • Scharbert, S., N. Holzmann, and T. Hofmann. 2004. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry 52 (11):3498–3508. doi: 10.1021/jf049802u.
  • Schmiech, L., D. Uemura, and T. Hofmann. 2008. Reinvestigation of the bitter compounds in carrots (Daucus carota L.) by using a molecular sensory science approach. Journal of Agricultural and Food Chemistry 56 (21):10252–10260. doi: 10.1021/jf8023358.
  • Sindt, L., M. Gammacurta, P. Waffo-Teguo, D. Dubourdieu, and A. Marchal. 2016. Taste-guided isolation of bitter lignans from quercus petraea and their identification in wine. Journal of Natural Products 79 (10):2432–2438. doi: 10.1021/acs.jnatprod.6b00142.
  • Singldinger, B., A. Dunkel, D. Bahmann, C. Bahmann, D. Kadow, B. Bisping, and T. Hofmann. 2018. New taste-active 3-( O-β-d-Glucosyl)-2-oxoindole-3-acetic Acids and Diarylheptanoids in Cimiciato-Infected Hazelnuts. Journal of Agricultural and Food Chemistry 66 (18):4660–4673. doi: 10.1021/acs.jafc.8b01216.
  • Slack, J. P., A. Brockhoff, C. Batram, S. Menzel, C. Sonnabend, S. Born, M. M. Galindo, S. Kohl, S. Thalmann, L. Ostopovici-Halip, et al. 2010. Modulation of bitter taste perception by a small molecule hTAS2R antagonist. Current Biology: CB 20 (12):1104–1109. doi: 10.1016/j.cub.2010.04.043.
  • Smyth, H., and D. Cozzolino. 2013. Instrumental methods (spectroscopy, electronic nose, and tongue) as tools to predict taste and aroma in beverages: Advantages and limitations. Chemical Reviews 113 (3):1429–1440. doi: 10.1021/cr300076c.
  • Soares, S., E. Brandao, N. Mateus, and V. de Freitas. 2017. Sensorial properties of red wine polyphenols: Astringency and bitterness. Critical Reviews in Food Science and Nutrition 57 (5):937–948. doi: 10.1080/10408398.2014.946468.
  • Soares, S., S. Kohl, S. Thalmann, N. Mateus, W. Meyerhof, and V. De Freitas. 2013. Different phenolic compounds activate distinct human bitter taste receptors. Journal of Agricultural and Food Chemistry 61 (7):1525–1533. doi: 10.1021/jf304198k.
  • Song, H. S., O. S. Kwon, S. H. Lee, S. J. Park, U. Kim, J. Jang, and T. H. Park. 2013. Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Letters 13 (1):172–178. doi: 10.1021/nl3038147.
  • Stamatelopoulou, E., S. Agriopoulou, E. Dourtoglou, A. Chatzilazarou, F. Drosou, M. Marinea, and V. Dourtoglou. 2018. Diketopiperazines in wines. Journal of Wine Research 29 (1):37–48. doi: 10.1080/09571264.2018.1433137.
  • Stark, T., and T. Hofmann. 2005a. Isolation, structure determination, synthesis, and sensory activity of N-phenylpropenoyl-l-amino acids from Cocoa (Theobroma cacao). Journal of Agricultural and Food Chemistry 53 (13):5419–5428. doi: 10.1021/jf050458q.
  • Stark, T., and T. Hofmann. 2005b. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted Cocoa Nibs (Theobroma cacao). Journal of Agricultural and Food Chemistry 53 (18):7222–7231. doi: 10.1021/jf051313m.
  • Stark, T., S. Bareuther, and T. Hofmann. 2005. Sensory-guided decomposition of roasted Cocoa Nibs (Theobroma cacao) and structure determination of taste-active polyphenols. Journal of Agricultural and Food Chemistry 53 (13):5407–5418. doi: 10.1021/jf050457y.
  • Stark, T., S. Bareuther, and T. Hofmann. 2006. Molecular definition of the taste of roasted Cocoa Nibs (Theobroma cacao) by means of quantitative studies and sensory experiments. Journal of Agricultural and Food Chemistry 54 (15):5530–5539. doi: 10.1021/jf0608726.
  • Terry, L. A., S. F. White, and L. J. Tigwell. 2005. The application of biosensors to fresh produce and the wider food industry. Journal of Agricultural and Food Chemistry 53 (5):1309–1316. doi: 10.1021/jf040319t.
  • Vlasov, Y., A. Legin, and A. Rudnitskaya. 2002. Electronic tongues and their analytical application. Analytical and Bioanalytical Chemistry 373 (3):136–146. doi: 10.1007/s00216-002-1310-2.
  • Weber, F., K. Greve, D. Durner, U. Fischer, and P. Winterhalter. 2013. Sensory and chemical characterization of phenolic polymers from red wine obtained by gel permeation chromatography. American Journal of Enology and Viticulture 64 (1):15–25. doi: 10.5344/ajev.2012.12074.
  • Wesoły, M., K. Cal, P. Ciosek, and W. Wróblewski. 2017a. Influence of dissolution-modifying excipients in various pharmaceutical formulations on electronic tongue results. Talanta 162:203–209. doi: 10.1016/j.talanta.2016.10.018.
  • Wesoły, M., M. Zabadaj, A. Amelian, K. Winnicka, W. Wróblewski, and P. Ciosek. 2017b. Tasting cetirizine-based microspheres with an electronic tongue. Sensors and Actuators B: Chemical 238:1190–1198. doi: 10.1016/j.snb.2016.06.147.
  • Wiener, A., M. Shudler, A. Levit, and M. Y. Niv. 2012. BitterDB: A database of bitter compounds. Nucleic Acids Research 40 (Database issue):D413–D419. doi: 10.1093/nar/gkr755.
  • Wu, C., L. Du, L. Zou, L. Huang, and P. Wang. 2013. A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers. The Analyst 138 (20):5989–5994. doi: 10.1039/c3an01291c.
  • Xu, J., J. Cao, N. Iguchi, D. Riethmacher, and L. Huang. 2013. Functional characterization of bitter-taste receptors expressed in mammalian testis. Molecular Human Reproduction 19 (1):17–28. doi: 10.1093/molehr/gas040.
  • Xu, Y., Y. Zhang, J. Chen, F. Wang, Q. Du, and J. Yin. 2018. Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chemistry 258:16–24. doi: 10.1016/j.foodchem.2018.03.042.
  • Yang, Q., X. Mei, Z. Wang, X. Chen, R. Zhang, Q. Chen, and J. Kan. 2021. Comprehensive identification of non-volatile bitter-tasting compounds in Zanthoxylum bungeanum Maxim. by untargeted metabolomics combined with sensory-guided fractionation technique. Food Chemistry 347:129085. doi: 10.1016/j.foodchem.2021.129085.
  • Zhang, L., and D. G. Peterson. 2018. Identification of bitter compounds in extruded corn puffed products. Food Chemistry 254:185–192. doi: 10.1016/j.foodchem.2018.01.161.
  • Zhang, L., Q. Cao, D. Granato, Y. Xu, and C. T. Ho. 2020. Association between chemistry and taste of tea: A review. Trends in Food Science & Technology 101:139–149. doi: 10.1016/j.tifs.2020.05.015.
  • Zhang, Y., P. Talalay, C. G. Cho, and G. H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proceedings of the National Academy of Sciences of the United States of America 89 (6):2399–2403. https://www.jstor.org/stable/2358712. doi: 10.1073/pnas.89.6.2399.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.