1,554
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Recent developments in antifungal lactic acid bacteria: Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms

, , , , , , , & show all

References

  • Aunsbjerg, S. D., A. H. Honore, J. Marcussen, P. Ebrahimi, F. K. Vogensen, C. Benfeldt, T. Skov, and S. Knochel. 2015. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. International Journal of Food Microbiology 194:46–53. doi: 10.1016/j.ijfoodmicro.2014.11.007.
  • Axel, C., B. Brosnan, E. Zannini, A. Furey, A. Coffey, and E. K. Arendt. 2016. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. International Journal of Food Microbiology 239:86–94. doi: 10.1016/j.ijfoodmicro.2016.05.006.
  • Axel, C., E. Zannini, E. K. Arendt, D. M. Waters, and M. Czerny. 2014. Quantification of cyclic dipeptides from cultures of Lactobacillus brevis R2Δ by HRGC/MS using stable isotope dilution assay. Analytical and Bioanalytical Chemistry 406 (9–10):2433–44. doi: 10.1007/s00216-014-7620-3.
  • Baek, E., H. Kim, H. Choi, S. Yoon, and J. Kim. 2012. Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. Journal of Microbiology (Seoul, Korea) 50 (5):842–8. doi: 10.1007/s12275-012-2153-y.
  • Bian, X., Z. Muhammad, S. E. Evivie, G.-W. Luo, M. Xu, and G.-C. Huo. 2016. Screening of antifungal potentials of Lactobacillus helveticus KLDS 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented soybean milk during preservation. Food Control 66:183–9. doi: 10.1016/j.foodcont.2016.02.004.
  • Brosnan, B., A. Coffey, E. K. Arendt, and A. Furey. 2012. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Analytical and Bioanalytical Chemistry 403 (10):2983–95. doi: 10.1007/s00216-012-5955-1.
  • Brosnan, B., A. Coffey, E. K. Arendt, and A. Furey. 2014. The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria cultures. Talanta 129:364–73. doi: 10.1016/j.talanta.2014.05.006.
  • Chen, H., H. Ju, Y. Wang, G. Du, X. Yan, Y. Cui, Y. Yuan, and T. Yue. 2021. Antifungal activity and mode of action of Lactic acid bacteria isolated from Kefir against Penicillium expansum. Food Control 130 (6):108274. doi: 10.1016/j.foodcont.2021.108274.
  • Chen, Z., X. Li, and H. Gao. 2018. Production of proteinaceous antifungal substances from Lactobacillus plantarum ALAC-4 isolated from Inner Mongolian traditional fermented dairy food. International Journal of Dairy Technology 71:223–9. doi: 10.1111/1471-0307.12426.
  • Cheong, E. Y. L., A. Sandhu, J. Jayabalan, L. Thu Thi Kieu, N. Nguyen Thi, H. H. Thi My, J. Zwielehner, N. Bansal, and M. S. Turner. 2014. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control 46:91–7. doi: 10.1016/j.foodcont.2014.05.011.
  • Choi, H., J. S. Hwang, and G. L. Dong. 2013. Antifungal effect and pore-forming action of lactoferricin B like peptide derived from centipede Scolopendra subspinipes mutilans. Biochimica et Biophysica Acta 1828 (11):2745–50. doi: 10.1016/j.bbamem.2013.07.021.
  • Coda, R., C. G. Rizzello, F. Nigro, M. De Angelis, P. Arnault, and M. Gobbetti. 2008. Long-term fungal inhibitory activity of water-soluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage. Applied and Environmental Microbiology 74 (23):7391–8. doi: 10.1128/AEM.01420-08.
  • Crowley, S., J. Mahony, and D. van Sinderen. 2013a. Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiologica 58 (4):291–9. doi: 10.1007/s12223-012-0209-3.
  • Crowley, S., J. Mahony, and D. van Sinderen. 2013b. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology 33 (2):93–109. doi: 10.1016/j.tifs.2013.07.004.
  • Dalie, D. K. D., A. M. Deschamps, and F. Richard-Forget. 2010. Lactic acid bacteria - Potential for control of mould growth and mycotoxins: A review. Food Control 21 (4):370–80. doi: 10.1016/j.foodcont.2009.07.011.
  • De Muynck, C., A. I. J. Leroy, S. De Maeseneire, F. Arnaut, W. Soetaert, and E. J. Vandamme. 2004. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiological Research 159 (4):339–46. doi: 10.1016/j.micres.2004.07.002.
  • de Souza, V. R., V. Popovic, K. Warriner, and T. Koutchma. 2020. A comparative study on the inactivation of Penicillium expansum spores on apple using light emitting diodes at 277 nm and a low-pressure mercury lamp at 253.7 nm. Food Control 110:107039. doi: 10.1016/j.foodcont.2019.107039.
  • Delavenne, E., J. Mounier, F. Deniel, G. Barbier, and G. L. Blay. 2012. Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period. International Journal of Food Microbiology 155 (3):185–90. doi: 10.1016/j.ijfoodmicro.2012.02.003.
  • Falguni, P., V. Shilpa, and B. Mann. 2010. Production of proteinaceous antifungal substances from Lactobacillus brevis NCDC 02. International Journal of Dairy Technology 63 (1):70–6. doi: 10.1111/j.1471-0307.2009.00553.x.
  • Fernandez, B., A. Vimont, E. Desfosses-Foucault, M. Daga, G. Arora, and I. Fliss. 2017. Antifungal activity of lactic and propionic acid bacteria and their potential as protective culture in cottage cheese. Food Control 78:350–6. doi: 10.1016/j.foodcont.2017.03.007.
  • Garnier, L., J. Mounier, S. Lê, A. Pawtowski, N. Pinon, B. Camier, M. Chatel, G. Garric, A. Thierry, E. Coton, et al. 2019. Development of antifungal ingredients for dairy products: From in vitro screening to pilot scale application. Food Microbiology 81:97–107. doi: 10.1016/j.fm.2018.11.003.
  • Garnier, L., J. Mounier, A. Pawtowski, N. Pinon, N. Frotté, E. Coton, and F. Valencebertel. 2015. High-throughput screening for antifungal activities of bacterial and fungal isolates in a cheese-like medium.
  • Garnier, L., M. L. Salas, N. Pinon, N. Wiernasz, A. Pawtowski, E. Coton, J. Mounier, and F. Valence. 2018. Technical note: High-throughput method for antifungal activity screening in a cheese-mimicking model. Journal of Dairy Science 101 (6):4971–6. doi: 10.3168/jds.2017-13518.
  • Garofalo, C., E. Zannini, L. Aquilanti, G. Silvestri, O. Fierro, G. Picariello, and F. Clementi. 2012. Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products. Journal of Agricultural and Food Chemistry 60 (31):7719–28. doi: 10.1021/jf301173u.
  • Gerez, C. L., M. I. Torino, M. D. Obregozo, and G. Font de Valdez. 2010. A ready-to-use antifungal starter culture improves the shelf life of packaged bread. Journal of Food Protection 73 (4):758–62. doi: 10.4315/0362-028x-73.4.758.
  • Gerez, C. L., M. J. Torres, G. Font de Valdez, and G. Rollán. 2013. Control of spoilage fungi by lactic acid bacteria. Biological Control 64 (3):231–7. doi: 10.1016/j.biocontrol.2012.10.009.
  • Ghosh, R., S. Barman, A. Mukhopadhyay, and N. C. Mandal. 2015. Biological control of fruit-rot of jackfruit by rhizobacteria and food grade lactic acid bacteria. Biological Control 83:29–36. doi: 10.1016/j.biocontrol.2014.12.020.
  • Gifford, J. L., H. N. Hunter, and H. J. Vogel. 2005. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cellular and Molecular Life Sciences: CMLS 62 (22):2588–98. doi: 10.1007/s00018-005-5373-z.
  • Gupta, R., and S. Srivastava. 2014. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiology 42:1–7. doi: 10.1016/j.fm.2014.02.005.
  • Honore, A. H., S. D. Aunsbjerg, P. Ebrahimi, M. Thorsen, C. Benfeldt, S. Knochel, and T. Skov. 2016. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Analytical and Bioanalytical Chemistry 408 (1):83–96. doi: 10.1007/s00216-015-9103-6.
  • Janisiewicz, W. J., T. J. Tworkoski, and C. Sharer. 2000. Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology 90 (11):1196–200. doi: 10.1094/PHYTO.2000.90.11.1196.
  • Jukonyte, R., D. Zadeike, E. Bartkiene, V. Lele, D. Cernauskas, S. Suproniene, and G. Juodeikiene. 2018. A potential of brown rice polish as a substrate for the lactic acid and bioactive compounds production by the lactic acid bacteria newly isolated from cereal-based fermented products. LWT 97:323–31. doi: 10.1016/j.lwt.2018.07.012.
  • Juodeikiene, G., E. Bartkiene, D. Cernauskas, D. Cizeikiene, D. Zadeike, V. Lele, and V. Bartkevics. 2018. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT 89:307–14. doi: 10.1016/j.lwt.2017.10.061.
  • Kharazian, Z. A., G. S. Jouzani, M. Aghdasi, M. Khorvash, M. Zamani, and H. Mohammadzadeh. 2017. Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biological Control 110:33–43. doi: 10.1016/j.biocontrol.2017.04.004.
  • Khodaei, D., and Z. Hamidi-Esfahani. 2019. Influence of bioactive edible coatings loaded with Lactobacillus plantarum on physicochemical properties of fresh strawberries. Postharvest Biology and Technology 156:110944. doi: 10.1016/j.postharvbio.2019.110944.
  • Lappa, I. K., S. Mparampouti, B. Lanza, and E. Z. Panagou. 2018. Control of Aspergillus carbonarius in grape berries by Lactobacillus plantarum: A phenotypic and gene transcription study. International Journal of Food Microbiology 275:56–65. doi: 10.1016/j.ijfoodmicro.2018.04.001.
  • Lavermicocca, P., F. Valerio, A. Evidente, S. Lazzaroni, A. Corsetti, and M. Gobbetti. 2000. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology 66 (9):4084–90. doi: 10.1128/AEM.66.9.4084-4090.2000.
  • Le Lay, C., E. Coton, G. Le Blay, J.-M. Chobert, T. Haertle, Y. Choiset, N. N. Van Long, L. Meslet-Cladiere, and J. Mounier. 2016. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. International Journal of Food Microbiology 239:79–85. doi: 10.1016/j.ijfoodmicro.2016.06.020.
  • Le Lay, C., J. Mounier, V. Vasseur, A. Weill, G. Le Blay, G. Barbier, and E. Coton. 2016. In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control 60:247–55. doi: 10.1016/j.foodcont.2015.07.034.
  • Leyva Salas, M., A. Thierry, M. Lemaitre, G. Garric, M. Harel-Oger, M. Chatel, S. Le, J. Mounier, F. Valence, and E. Coton. 2018. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Frontiers in Microbiology 9:1787. doi: 10.3389/fmicb.2018.01787.
  • Li, H., L. Liu, S. Zhang, H. Uluko, W. Cui, and J. Lv. 2013. Potential use of Lactobacillus casei AST18 as a bioprotective culture in yogurt. Food Control 34 (2):675–80. doi: 10.1016/j.foodcont.2013.06.023.
  • Lipińska, L., R. Klewicki, M. Sójka, R. Bonikowski, D. Żyżelewicz, K. Kołodziejczyk, and E. Klewicka. 2018. Antifungal activity of Lactobacillus pentosus ŁOCK 0979 in the presence of polyols and galactosyl-polyols. Probiotics and Antimicrobial Proteins 10 (2):186–200. doi: 10.1007/s12602-017-9344-0.
  • Liu, Y., J. H. Galani Yamdeu, Y. Y. Gong, and C. Orfila. 2020. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Comprehensive Reviews in Food Science and Food Safety 19 (4):1521–60. doi: 10.1111/1541-4337.12562.
  • Li, H., S. Zhang, J. Lu, L. Liu, H. Uluko, X. Pang, Y. Sun, H. Xue, L. Zhao, F. Kong, et al. 2014. Antifungal activities and effect of Lactobacillus casei AST18 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control 43:57–64. doi: 10.1016/j.foodcont.2014.02.045.
  • Luz, C., V. D’Opazo, J. M. Quiles, R. Romano, J. Manes, and G. Meca. 2020. Biopreservation of tomatoes using fermented media by lactic acid bacteria. LWT 130:109618. doi: 10.1016/j.lwt.2020.109618.
  • Luz, C., R. Saladino, F. B. Luciano, J. Manes, and G. Meca. 2017. In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT - Food Science and Technology 81:128–35. doi: 10.1016/j.lwt.2017.03.053.
  • Lynch, K. M., A. M. Pawlowska, B. Brosnan, A. Coffey, E. Zannini, A. Furey, P. L. H. McSweeney, D. M. Waters, and E. K. Arendt. 2014. Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. International Dairy Journal 34 (1):167–73. doi: 10.1016/j.idairyj.2013.07.017.
  • Lynch, K. M., E. Zannini, J. Guo, C. Axel, E. K. Arendt, S. Kildea, and A. Coffey. 2016. Control of Zymoseptoria tritici cause of septoria tritici blotch of wheat using antifungal Lactobacillus strains. Journal of Applied Microbiology 121 (2):485–94. doi: 10.1111/jam.13171.
  • Ma, J., Y. Hong, L. Deng, L. Yi, and K. Zeng. 2019. Screening and characterization of lactic acid bacteria with antifungal activity against Penicillium digitatum on citrus. Biological Control 138:104044. doi: 10.1016/j.biocontrol.2019.104044.
  • Magnusson, J., and J. Schnurer. 2001. Lactobacillus coryniformis subsp. Coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology 67 (1):1–5. doi: 10.1128/AEM.67.1.1-5.2001.
  • Magnusson, J., K. Strom, S. Roos, J. Sjogren, and J. Schnurer. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters 219 (1):129–35. doi: 10.1016/S0378-1097(02)01207-7.
  • Makki, G. M., S. M. Kozak, K. G. Jencarelli, and S. D. Alcaine. 2020. Evaluation of the efficacy of commercial protective cultures against mold and yeast in queso fresco. Journal of Dairy Science 103 (11):9946–57. doi: 10.3168/jds.2020-18769.
  • Matei, G. M., S. Matei, A. Matei, C. P. Cornea, E. M. Draghici, and I. O. Jerca. 2016. Bioprotection of fresh food products against blue mold using lactic acid bacteria with antifungal properties. Romanian Biotechnological Letters 21 (1):11201–8.
  • Matevosyan, L. A., I. L. Bazukyan, and A. H. Trchounian. 2020. Antifungal activity of lactic acid bacteria isolates and their associations: The effects of Ca and Mg divalent cations. Current Microbiology 77 (6):959–66. doi: 10.1007/s00284-020-01897-5.
  • Matevosyan, L., I. Bazukyan, and A. Trchounian. 2019. Antifungal and antibacterial effects of newly created lactic acid bacteria associations depending on cultivation media and duration of cultivation. BMC Microbiology 19 (1):102. doi: 10.1186/s12866-019-1475-x.
  • McNair, L. K. F., S. Siedler, J. M. O. Vinther, A. M. Hansen, A. R. Neves, C. Garrigues, A. K. Jager, H. Franzyk, and D. Staerk. 2018. Identification and characterization of a new antifungal peptide in fermented milk product containing bioprotective Lactobacillus cultures. FEMS Yeast Research 18 (8):8. doi: 10.1093/femsyr/foy094.
  • Moga, A., M. Vergara-Barberan, M. J. Lerma-Garcia, E. J. Carrasco-Correa, J. M. Herrero-Martinez, and E. F. Simo-Alfonso. 2021. Determination of antibiotics in meat samples using analytical methodologies: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):1681–716. doi: 10.1111/1541-4337.12702.
  • Muhialdin, B. J., H. L. Algboory, H. Kadum, N. K. Mohammed, N. Saari, Z. Hassan, and A. S. M. Hussin. 2020. Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control 109:106898. doi: 10.1016/j.foodcont.2019.106898.
  • Muhialdin, B. J., Z. Hassan, F. Abu Bakar, and N. Saari. 2016. Identification of antifungal peptides produced by Lactobacillus plantarum IS10 grown in the MRS broth. Food Control 59:27–30. doi: 10.1016/j.foodcont.2015.05.022.
  • Mun, S. Y., S. K. Kim, E. R. Woo, and H. C. Chang. 2019. Purification and characterization of an antimicrobial compound produced by Lactobacillus plantarum EM showing both antifungal and antibacterial activities. LWT 114:108403. doi: 10.1016/j.lwt.2019.108403.
  • Nakata, H., H. Hasegawa, H. Sakurai, and M. Tamura. 2010. Distinctive flavor and strong antifungal activity in a sourdough bread made using unique lactic acid bacteria obtained from a sugar factory. Nippon Shokuhin Kagaku Kogaku Kaishi 57 (2):85–90. doi: 10.3136/nskkk.57.85.
  • Oliveira, P. M., B. Brosnan, A. Furey, A. Coffey, E. Zannini, and E. K. Arendt. 2015. Lactic acid bacteria bioprotection applied to the malting process. Part I: Strain characterization and identification of antifungal compounds. Food Control 51:433–443. doi: 10.1016/j.foodcont.2014.07.004.
  • Oliveira, P. M., E. Zannini, and E. K. Arendt. 2014. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiology 37:78–95. doi: 10.1016/j.fm.2013.06.003.
  • Omedi, J. O., W. Huang, and J. Zheng. 2019. Effect of sourdough lactic acid bacteria fermentation on phenolic acid release and antifungal activity in pitaya fruit substrate. LWT 111:309–317. doi: 10.1016/j.lwt.2019.05.038.
  • Ouiddir, M., G. Bettache, M. L. Salas, A. Pawtowski, C. Donot, S. Brahimi, K. Mabrouk, E. Coton, and J. Mounier. 2019. Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products. Food Microbiology 82:160–170. doi: 10.1016/j.fm.2019.01.020.
  • Paula Junqueira-Goncalves, M., E. Alarcon, and K. Niranjan. 2016. The efficacy of potassium sorbate-coated packaging to control postharvest gray mold in raspberries, blackberries and blueberries. Postharvest Biology and Technology 111:205–208. doi: 10.1016/j.postharvbio.2015.09.014.
  • Prema, P., D. Smila, A. Palavesam, and G. Immanuel. 2010. Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food and Bioprocess Technology 3 (3):379–386. doi: 10.1007/s11947-008-0127-1.
  • Rather, I. A., B. J. Seo, V. J. R. Kumar, U. H. Choi, K. H. Choi, J. H. Lim, and Y. H. Park. 2013. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Letters in Applied Microbiology 57 (1):69–76. doi: 10.1111/lam.12077.
  • Rizzello, C. G., A. Cassone, R. Coda, and M. Gobbetti. 2011. Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chemistry 127 (3):952–959. doi: 10.1016/j.foodchem.2011.01.063.
  • Ruggirello, M., D. Nucera, M. Cannoni, A. Peraino, F. Rosso, M. Fontana, L. Cocolin, and P. Dolci. 2019. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International (Ottawa, ON) 115:519–525. doi: 10.1016/j.foodres.2018.10.002.
  • Russo, P., M. P. Arena, D. Fiocco, V. Capozzi, D. Drider, and G. Spano. 2017. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology 247:48–54. doi: 10.1016/j.ijfoodmicro.2016.04.027.
  • Ryan, L. A. M., E. Zannini, F. Dal Bello, A. Pawlowska, P. Koehler, and E. K. Arendt. 2011. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. International Journal of Food Microbiology 146 (3):276–283. doi: 10.1016/j.ijfoodmicro.2011.02.036.
  • Sadiq, F. A., B. Yan, F. Tian, J. Zhao, H. Zhang, and W. Chen. 2019. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18 (5):1403–1436. doi: 10.1111/1541-4337.12481.
  • Salas, M. L., J. Mounier, M.-B. Maillard, F. Valence, E. Coton, and A. Thierry. 2019. Identification and quantification of natural compounds produced by antifungal bioprotective cultures in dairy products. Food Chemistry 301:125260. doi: 10.1016/j.foodchem.2019.125260.
  • Sangmanee, P., and T. Hongpattarakere. 2014. Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Control 40:224–233. doi: 10.1016/j.foodcont.2013.12.005.
  • Sathe, S. J., N. N. Nawani, P. K. Dhakephalkar, and B. P. Kapadnis. 2007. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. Journal of Applied Microbiology 103 (6):2622–2628. doi: 10.1111/j.1365-2672.2007.03525.x.
  • Schaefer, L., T. A. Auchtung, K. E. Hermans, D. Whitehead, B. Borhan, and R. A. Britton. 2010. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology (Reading, England) 156 (Pt 6):1589–1599. doi: 10.1099/mic.0.035642-0.
  • Schmidt, M., K. M. Lynch, E. Zannini, and E. K. Arendt. 2018. Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control 88:139–148. doi: 10.1016/j.foodcont.2017.11.041.
  • Schnurer, J., and J. Magnusson. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology 16 (1–3):70–78. doi: 10.1016/j.tifs.2004.02.014.
  • Sedaghat, H., M. H. Eskandari, M. Moosavi-Nasab, and S. S. Shekarforoush. 2016. Application of non-starter lactic acid bacteria as biopreservative agents to control fungal spoilage of fresh cheese. International Dairy Journal 56:87–91. doi: 10.1016/j.idairyj.2016.01.006.
  • Siedler, S., R. Balti, and A. R. Neves. 2019. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Current Opinion in Biotechnology 56:138–146. doi: 10.1016/j.copbio.2018.11.015.
  • Strom, K., J. Sjogren, A. Broberg, and J. Schnurer. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology 68 (9):4322–4327. doi: 10.1128/AEM.68.9.4322-4327.2002.
  • Sun, L., X. Li, Y. Zhang, W. Yang, G. Ma, N. Ma, Q. Hu, and F. Pei. 2020. A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control 109:106914. doi: 10.1016/j.foodcont.2019.106914.
  • Svanström, Å. 2013. Trehalose metabolism and stress resistance in Aspergillus niger. Acta Universitatis Agriculturae Sueciae.
  • Takahashi, M., S. Inoue, K. Hayama, K. Ninomiya, and S. Abe. 2012. Inhibition of Candida mycelia growth by a medium chain fatty acids, capric acid in vitro and its therapeutic efficacy in murine oral candidiasis. Medical Mycology Journal 53 (4):255–261. doi: 10.3314/mmj.53.255.
  • Tamminen, A., P. Happonen, D. Barth, S. Holmström, and M. G. Wiebe. 2020. High throughput, small scale methods to characterise the growth of marine fungi. PLoS One 15 (8):e0236822.
  • Thery, T., K. M. Lynch, and E. K. Arendt. 2019. Natural antifungal peptides/proteins as model for novel food preservatives. Comprehensive Reviews in Food Science and Food Safety 18 (5):1327–1360. doi: 10.1111/1541-4337.12480.
  • Thery, T., Y. O’Callaghan, N. O’Brien, and E. K. Arendt. 2018. Optimisation of the antifungal potency of the amidated peptide H-Orn-Orn-Trp-Trp-NH2 against food contaminants. International Journal of Food Microbiology 265:40–48. doi: 10.1016/j.ijfoodmicro.2017.10.024.
  • Tiwari, S. K., and S. Srivastava. 2008. Purification and characterization of plantaricin LR14: A novel bacteriocin produced by Lactobacillus plantarum LR/14. Applied Microbiology and Biotechnology 79 (5):759–767. doi: 10.1007/s00253-008-1482-6.
  • Valerio, F., M. D. Biase, V. M. T. Lattanzio, and P. Lavermicocca. 2016. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. International Journal of Food Microbiology 222:1–7. doi: 10.1016/j.ijfoodmicro.2016.01.011.
  • Valerio, F., M. Favilla, P. De Bellis, A. Sisto, S. de Candia, and P. Lavermicocca. 2009. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Systematic and Applied Microbiology 32 (6):438–448. doi: 10.1016/j.syapm.2009.01.004.
  • Varsha, K. K., L. Devendra, G. Shilpa, S. Priya, A. Pandey, and K. M. Nampoothiri. 2015. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. International Journal of Food Microbiology 211:44–50. doi: 10.1016/j.ijfoodmicro.2015.06.025.
  • Varsha, K. K., and K. M. Nampoothiri. 2016. Appraisal of lactic acid bacteria as protective cultures. Food Control 69:61–64. doi: 10.1016/j.foodcont.2016.04.032.
  • Varsha, K. K., S. Priya, L. Devendra, and K. M. Nampoothiri. 2014. Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties. Applied Biochemistry and Biotechnology 172 (7):3402–3413. doi: 10.1007/s12010-014-0779-4.
  • Vimont, A., B. Fernandez, G. Ahmed, H. P. Fortin, and I. Fliss. 2019. Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt. International Journal of Food Microbiology 289:182–188. doi: 10.1016/j.ijfoodmicro.2018.09.005.
  • Wang, Z., X. Mei, M. Du, K. Chen, M. Jiang, K. Wang, Z. Zalán, and J. Kan. 2020. Potential modes of action of Pseudomonas fluorescens ZX during biocontrol of blue mold decay on postharvest citrus. Journal of the Science of Food and Agriculture 100 (2):744–754. doi: 10.1002/jsfa.10079.
  • Wang, H., Y. Sun, C. Chen, Z. Sun, Y. Zhou, F. Shen, H. Zhang, and Y. Dai. 2013. Genome shuffling of Lactobacillus plantarum for improving antifungal activity. Food Control 32 (2):341–347. doi: 10.1016/j.foodcont.2012.12.020.
  • Wang, H., Y. Yan, J. Wang, H. Zhang, and W. Qi. 2012. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS One 7 (1):e29452. doi: 10.1371/journal.pone.0029452.
  • Yan, B., J. Zhao, D. Fan, F. Tian, H. Zhang, and W. Chen. 2017. Antifungal activity of Lactobacillus plantarum against Penicillium roqueforti in vitro and the preservation effect on Chinese steamed bread. Journal of Food Processing and Preservation 41 (3):e12969. doi: 10.1111/jfpp.12969.
  • Yanina Bustos, A., G. Font de Valdez, and C. Luciana Gerez. 2018. Optimization of phenyllactic acid production by Pediococcus acidilactici CRL 1753. Application of the formulated bio-preserver culture in bread. Biological Control 123:137–143. doi: 10.1016/j.biocontrol.2018.05.017.
  • Zheng, J., S. Wittouck, E. Salvetti, C. M. A. P. Franz, H. M. B. Harris, P. Mattarelli, P. W. O’Toole, B. Pot, P. Vandamme, J. Walter, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70 (4):2782–2858. doi: 10.1099/ijsem.0.004107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.