3,851
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Sustainable food processing of selected North American native berries to support agroforestry

& ORCID Icon

References

  • Acır, A., M. Aktaş, and F. Danışman. 2014. Investigation of drying characteristics of blueberry using a new solar air collector design. In Progress in exergy, energy, and the environment, ed. I. Dincer, A. Midilli, and H. Kucuk, 695–701. New York: Springer International Publishing. doi: 10.1007/978-3-319-04681-5_66.
  • Afolabi, T., and S. Agarry. 2014. Mathematical modelling and simulation of the mass and heat transfer of batch convective air drying of tropical fruits. Chemical and Process Engineering Research 23:9–18.
  • Akbarian, M., N. Ghasemkhani, and F. Moayedi. 2013. Osmotic dehydration of fruits in food industrial: A review. International Journal of Biosciences 3:1–16. doi: 10.12692/ijb/4.1.42-57.
  • Ali, A., and D. B. Rahut. 2019. Healthy foods as proxy for functional foods: Consumers’ awareness, perception, and demand for natural functional foods in Pakistan. International Journal of Food Science 2019:6390650–12. doi: 10.1155/2019/6390650.
  • An, K., M. Fu, H. Zhang, D. Tang, Y. Xu, and G. Xiao. 2019. Effect of ethyl oleate pretreatment on blueberry (Vaccinium corymbosum L.): Drying kinetics, antioxidant activity, and structure of wax layer. Journal of Food Science and Technology 56 (2):783–91. doi: 10.1007/s13197-018-3538-7.
  • Anwar, K., K. Anwar Mohamad Said, M. Afizal, and M. Amin. 2016. Overview on the response surface methodology (RSM) in extraction processes. Journal of Applied Science & Process Engineering 2 (1):8–17. doi: 10.33736/jaspe.161.2015.
  • Araujo-Díaz, S. B., C. Leyva-Porras, P. Aguirre-Bañuelos, C. Álvarez-Salas, and Z. Saavedra-Leos. 2017. Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate Polymers 167:317–25. doi: 10.1016/j.carbpol.2017.03.065.
  • Aregbesola, O. A., B. S. Ogunsina, A. E. Sofolahan, and N. N. Chime. 2015. Mathematical modeling of thin layer drying characteristics of Dika (Irvingia gabonensis) nuts and kernels. Nigerian Food Journal 33 (1):83–9. doi: 10.1016/j.nifoj.2015.04.012.
  • Arellanes, N., P. Benito, M. E. Pérez, B. H. Zárate, and M. G. Alonso. 2017. Solar dehydration of blueberries (Vaccinium corymbosum L.). Acta Horticulturae 1180 (1180):491–6. doi: 10.17660/ActaHortic.2017.1180.69.
  • Aryal, S., M. K. Baniya, K. Danekhu, P. Kunwar, R. Gurung, and N. Koirala. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8 (4):96. doi: 10.3390/plants8040096.
  • Balasundram, N., K. Sundram, and S. Samman. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99 (1):191–203. doi: 10.1016/j.foodchem.2005.07.042.
  • Barba, F. J., H. Jäger, N. Meneses, M. J. Esteve, A. Frígola, and D. Knorr. 2012. Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innovative Food Science & Emerging Technologies 14:18–24. doi: 10.1016/j.ifset.2011.12.004.
  • Bassey, E. J., J.-H. Cheng, and D.-W. Sun. 2021. Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology 112:137–48. doi: 10.1016/j.tifs.2021.03.045.
  • Bednarska, M. A., and E. Janiszewska-Turak. 2020. The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. Journal of Food Science and Technology 57 (2):564–77. doi: 10.1007/s13197-019-04088-8.
  • Behera, S. K., H. Meena, S. Chakraborty, and B. C. Meikap. 2018. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology 28 (4):621–9. doi: 10.1016/j.ijmst.2018.04.014.
  • Berk, Z. 2013. In Food process engineering and technology, 2nd ed., 1–690. San Diego: Academic Press. doi: 10.1016/C2011-0-05296-1.
  • Bhandari, B. 2015. Handbook of industrial drying, fourth edition edited by A. S. Mujumdar. Drying Technology 33 (1):128–9. doi: 10.1080/07373937.2014.983704.
  • Bhandari, B., N. Bansal, M. Zhang, and P. Schuck. 2013. In Handbook of food powders: Processes and properties, 1–660. Cambridge: Woodhead Publishing Limited. doi: 10.1533/9780857098672.
  • Both, E. M., R. M. Boom, and M. A. I. Schutyser. 2020. Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technology 363:519–24. doi: 10.1016/j.powtec.2020.01.001.
  • Buckow, R., A. Kastell, N. S. Terefe, and C. Versteeg. 2010. Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice. Journal of Agricultural and Food Chemistry 58 (18):10076–84. doi: 10.1021/jf1015347.
  • Busso Casati, C., R. Baeza, and V. Sánchez. 2017. Comparison of the kinetics of monomeric anthocyanins loss and colour changes in thermally treated blackcurrant, Maqui berry and blueberry pulps from Argentina. Journal of Berry Research 7 (2):85–96. doi: 10.3233/JBR-170151.
  • Calín-Sánchez, Á., A. Kharaghani, K. Lech, A. Figiel, A. Carbonell-Barrachina, and E. Tsotsas. 2015. Drying kinetics and microstructural and sensory properties of black chokeberry (Aronia melanocarpa) as affected by drying method. Food and Bioprocess Technology 8 (1):63–74. doi: 10.1007/s11947-014-1383-x.
  • Candia-Muñoz, N., M. Ramirez-Bunster, Y. Vargas-Hernández, and L. Gaete-Garretón. 2015. Ultrasonic spray drying vs high vacuum and microwaves technology for blueberries. Physics Procedia 70. Proceedings of the 2015 ICU International Congress on Ultrasonics, Metz, France. 867–871. doi: 10.1016/j.phpro.2015.08.178.
  • Castro, A. M., E. Y. Mayorga, and F. L. Moreno. 2018. Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering 223:152–67. doi: 10.1016/j.jfoodeng.2017.12.012.
  • Celli, G. B., R. Dibazar, A. Ghanem, and M. S.-L. Brooks. 2016. Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Drying Technology 34 (10):1175–84. doi: 10.1080/07373937.2015.1099546.
  • Chen, Q., Z. Li, J. Bi, L. Zhou, J. Yi, and X. Wu. 2017. Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT 80:178–84. doi: 10.1016/j.lwt.2017.02.017.
  • Colín-Cruz, M. A., D. J. Pimentel-González, H. Carrillo-Navas, J. Alvarez-Ramírez, and A. Y. Guadarrama-Lezama. 2019. Co-encapsulation of bioactive compounds from blackberry juice and probiotic bacteria in biopolymeric matrices. LWT 110:94–101. doi: 10.1016/j.lwt.2019.04.064.
  • Correia, R., M. H. Grace, D. Esposito, and M. A. Lila. 2017. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chemistry 235:76–85. doi: 10.1016/j.foodchem.2017.05.042.
  • Ćujić, N., N. Stanisavljević, Š. Katarina, A. Kalušević, V. Nedovic, J. Samardzic, and T. Janković. 2018. Application of gum Arabic in the production of spray-dried chokeberry polyphenols, microparticles characterisation and in vitro digestion method. Lekovite Sirovine 38:10–8. doi: 10.1364/leksir1838009C.
  • Ćujić-Nikolić, N., N. Stanisavljević, K. Šavikin, A. Kalušević, V. Nedović, J. Samardžić, and T. Janković. 2019. Chokeberry polyphenols preservation using spray drying: effect of encapsulation using maltodextrin and skimmed milk on their recovery following in vitro digestion. Journal of Microencapsulation 36 (8):693–703. doi: 10.1080/02652048.2019.1667448.
  • Darniadi, S., P. Ho, and B. S. Murray. 2018. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: Evaluation of foam and powder properties. Journal of the Science of Food and Agriculture 98 (5):2002–10. doi: 10.1002/jsfa.8685.
  • Değirmencioğlu, N., O. Gürbüz, G. Karatepe, and R. Irkin. 2017. Influence of hot air drying on phenolic compounds and antioxidant capacity of blueberry (Vaccinium myrtillus) fruit and leaf. Journal of Applied Botany and Food Quality 90:115–25. doi: 10.5073/JABFQ.2017.090.014.
  • Deng, L.-Z., A. S. Mujumdar, Q. Zhang, X.-H. Yang, J. Wang, Z.-A. Zheng, Z.-J. Gao, and H.-W. Xiao. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – A comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1408–32. doi: 10.1080/10408398.2017.1409192.
  • Do Thi, N., and E.-S. Hwang. 2016. Effects of drying methods on contents of bioactive compounds and antioxidant activities of black chokeberries (Aronia melanocarpa). Food Science and Biotechnology 25 (1):55–61. doi: 10.1007/s10068-016-0008-8.
  • El Jemli, M., R. Kamal, I. Marmouzi, A. Zerrouki, Y. Cherrah, and K. Alaoui. 2016. Radical-scavenging activity and ferric reducing ability of Juniperus thurifera (L.), J. Oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Advances in Pharmacological Sciences 2016:6392656. doi: 10.1155/2016/6392656.
  • Eminoğlu, M. B., U. Yegül, and K. Sacilik. 2019. Drying characteristics of blackberry fruits in a convective hot-air dryer. HortScience 54 (9):1546–50. doi: 10.21273/HORTSCI14201-19.
  • Erbay, Z., and F. Icier. 2010. A review of thin layer drying of foods: Theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition 50 (5):441–64. doi: 10.1080/10408390802437063.
  • Food and Agriculture Organization. FAOSTAT. 2021. Accessed February 3, 2021. http://www.fao.org/faostat/en/#data/QC.
  • Farías-Cervantes, V. S., Y. Salinas-Moreno, A. Chávez-Rodríguez, G. Luna-Solano, H. Medrano-Roldan, and I. Andrade-González. 2020. Stickiness and agglomeration of blackberry and raspberry spray dried juices using agave fructans and maltodextrin as carrier agents. Czech Journal of Food Sciences 38 (No. 4):229–36. doi: 10.17221/350/2018-CJFS.
  • Farneti, B., I. Khomenko, M. Grisenti, M. Ajelli, E. Betta, A. A. Algarra, L. Cappellin, E. Aprea, F. Gasperi, F. Biasioli, et al. 2017. Exploring blueberry aroma complexity by chromatographic and direct-injection spectrometric techniques. Frontiers in Plant Science 8:617. doi: 10.3389/fpls.2017.00617.
  • Feng, H., Y. Yin, and J. Tang. 2012. Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling. Food Engineering Reviews 4 (2):89–106. doi: 10.1007/s12393-012-9048-x.
  • Fernandes, F. A. N., S. Rodrigues, C. L. Law, and A. S. Mujumdar. 2011. Drying of exotic tropical fruits: A comprehensive review. Food and Bioprocess Technology 4 (2):163–85. doi: 10.1007/s11947-010-0323-7.
  • Ferrari, C. C., S. P. M. Germer, and J. M. de Aguirre. 2012. Effects of spray-drying conditions on the physicochemical properties of blackberry powder. Drying Technology 30 (2):154–63. doi: 10.1080/07373937.2011.628429.
  • Ferreira Nogueira, G., L. G. Pereira Martin, F. M. Fakhouri, and R. Augustus de Oliveira. 2018. Microencapsulation of blackberry pulp with arrowroot starch and gum arabic mixture by spray drying. Journal of Microencapsulation 35 (5):482–93. doi: 10.1080/02652048.2018.1538264.
  • U.S. Department of Agriculture. FoodData Central. 2021. Accessed February 6, 2021. https://fdc.nal.usda.gov/.
  • Fracassetti, D., C. Del Bo’, P. Simonetti, C. Gardana, D. Klimis-Zacas, and S. Ciappellano. 2013. Effect of time and storage temperature on anthocyanin decay and antioxidant activity in wild blueberry (Vaccinium angustifolium) powder. Journal of Agricultural and Food Chemistry 61 (12):2999–3005. doi: 10.1021/jf3048884.
  • Franceschinis, L., D. M. Salvatori, N. Sosa, and C. Schebor. 2014. Physical and functional properties of blackberry freeze- and spray-dried powders. Drying Technology 32 (2):197–207. doi: 10.1080/07373937.2013.814664.
  • Fudholi, A., K. Sopian, M. H. Ruslan, M. A. Alghoul, and M. Y. Sulaiman. 2010. Review of solar dryers for agricultural and marine products. Renewable and Sustainable Energy Reviews 14 (1):1–30. doi: 10.1016/j.rser.2009.07.032.
  • Gancel, A.-L., A. Feneuil, O. Acosta, A. M. Pérez, and F. Vaillant. 2011. Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International 44 (7):2243–51. doi: 10.1016/j.foodres.2010.06.013.
  • Gawałek, J., and E. Domian. 2020. Tapioca dextrin as an alternative carrier in the spray drying of fruit juices – A case study of chokeberry powder. Foods 9 (8):1125. doi: 10.3390/foods9081125.
  • Gogate, P. R. 2015. 30 – The use of ultrasonic atomization for encapsulation and other processes in food and pharmaceutical manufacturing. In Power ultrasonics, ed. J.A. Gallego-Juárez and K.F. Graff, 911–35. Oxford: Woodhead Publishing. doi: 10.1016/B978-1-78242-028-6.00030-2.
  • Goula, A., and K. Adamopoulos. 2005. Spray drying of tomato pulp in dehumidified air. II. The effect on power properties. Journal of Food Engineering - Engineering 66 (1):35–42. doi: 10.1016/j.jfoodeng.2004.02.031.
  • Grabowski, S., M. Marcotte, D. Quan, A. R. Taherian, M. R. Zareifard, M. Poirier, and T. Kudra. 2007. Kinetics and quality aspects of Canadian blueberries and cranberries dried by osmo-convective method. Drying Technology 25 (2):367–74. doi: 10.1080/07373930601120563.
  • Hassimotto, N., R. Mota, B. Cordenunsi, and F. Lajolo. 2008. Physicochemical characterization and bioactive compounds of blackberry fruits (Rubus Sp.) grown in Brazil. Ciencia E Tecnologia De Alimentos – Ciencia Tecnol Aliment 28 (3): 702–08. doi: 10.1590/S0101-20612008000300029.
  • Hnin, K. K., M. Zhang, A. S. Mujumdar, and Y. Zhu. 2019. Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology 37 (12):1465–80. doi: 10.1080/07373937.2018.1510417.
  • Horszwald, A., H. Julien, and W. Andlauer. 2013. Characterisation of Aronia powders obtained by different drying processes. Food Chemistry 141 (3):2858–63. doi: 10.1016/j.foodchem.2013.05.103.
  • Huang, D., P. Yang, X. Tang, L. Luo, and B. Sunden. 2021. Application of infrared radiation in the drying of food products. Trends in Food Science & Technology 110:765–77. doi: 10.1016/j.tifs.2021.02.039.
  • Islam Shishir, M. R., Taip, F. S. N. Ab. Aziz, R. A. Talib, and Md, and S. Hossain Sarker. 2016. Optimization of spray drying parameters for pink guava powder using RSM. Food Science and Biotechnology 25 (2):461–8. doi: 10.1007/s10068-016-0064-0.
  • Jafari, S. M., and D. J. McClements. 2017. Nanotechnology approaches for increasing nutrient bioavailability. Advances in Food and Nutrition Research 81:1–30. doi: 10.1016/bs.afnr.2016.12.008.
  • Janiszewska-Turak, E., A. Sak, and D. Witrowa-Rajchert. 2019. Influence of the carrier material on the stability of chokeberry juice microcapsules. International Agrophysics 33 (4):517–25. doi: 10.31545/intagr/113530.
  • Jiménez-Aguilar, D. M., A. E. Ortega-Regules, J. D. Lozada-Ramírez, M. C. I. Pérez-Pérez, E. J. Vernon-Carter, and J. Welti-Chanes. 2011. Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis 24 (6):889–94. doi: 10.1016/j.jfca.2011.04.012.
  • Joardder, M. U. H., A. Karim, and C. Kumar. 2013. Effect of temperature distribution on predicting quality of microwave dehydrated food. Journal of Mechanical Engineering and Sciences 5:562–8. doi: 10.15282/jmes.5.2013.2.0053.
  • Kadam, D., R. Goyal, and M. Gupta. 2011. Mathematical modeling of convective thin layer drying of basil leaves. Journal of Medicinal Plant Research 5 (19):4721–30.
  • Kamiloglu, S., and E. Capanoglu. 2015. Polyphenol content in Figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties 18 (3):521–35. doi: 10.1080/10942912.2013.833522.
  • Karakashova, L., F. Babanovska-Milenkovska, M. Stojanova, and B. Karakashov. 2016. Comparison of qualities properties of fresh, frozen and solar dried chokeberry fruits. 25th International Scientific-Experts Congress on Agriculture and Food Industry 2014, Izmir. doi: 10.13140/RG.2.1.4506.1209.
  • Karam, M. C., J. Petit, D. Zimmer, E. B. Djantou, and J. Scher. 2016. Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering 188:32–49. doi: 10.1016/j.jfoodeng.2016.05.001.
  • Kassem, A. S., A. Z. Shokr, A. R. El-Mahdy, A. M. Aboukarima, and E. Y. Hamed. 2011. Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of the Saudi Society of Agricultural Sciences 10 (1):33–40. doi: 10.1016/j.jssas.2010.05.001.
  • Kaveh, M., E. Taghinezhad, and M. Aziz. 2020. Effects of physical and chemical pretreatments on drying and quality properties of blackberry (Rubus Spp.) in hot air dryer. Food Science & Nutrition 8 (7):3843–56. doi: 10.1002/fsn3.1678.
  • Kechinski, C. P., P. V. R. Guimarães, C. P. Z. Noreña, I. C. Tessaro, and L. D. F. Marczak. 2010. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. Journal of Food Science 75 (2):C173–6. doi: 10.1111/j.1750-3841.2009.01479.x.
  • Khuri, A. 2017. Response surface methodology and its applications in agricultural and food sciences. Biometrics & Biostatistics International Journal 5 (5):155–63. doi: 10.15406/bbij.2017.05.00141.
  • Khuri, A. I., and S. Mukhopadhyay. 2010. Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics 2 (2):128–49. doi: 10.1002/wics.73.
  • Kiliç, E. E., and İ. Çinar. 2019. Convective hot airdrying characteristics of selected vegetables. International Advanced Researches and Engineering Journal 3 (1):7–13.
  • Klemeš, J., R. Smith, and J.-K. Kim. 2008. Handbook of water and energy management in food processing, 1–1029. Cambridge: Woodhead Publishing.
  • Koner, S., P. Dash, V. Priya, and V. D. Rajeswari. 2019. 15 – Natural and artificial beverages: Exploring the pros and cons. In Natural Beverages, ed. A. M. Grumezescu and A. M. Holban, 427–45. Cambridge: Academic Press. doi: 10.1016/B978-0-12-816689-5.00015-8.
  • Krishnaiah, D., A. Bono, R. Sarbatly, R. Nithyanandam, and S. M. Anisuzzaman. 2015. Optimisation of spray drying operating conditions of Morinda citrifolia L. Fruit extract using response surface methodology. Journal of King Saud University – Engineering Sciences 27 (1):26–36. doi: 10.1016/j.jksues.2012.10.004.
  • Krishnaswamy, K., and V. Orsat. 2017. Chapter 2. Sustainable delivery systems through green nanotechnology. In Nano- and microscale drug delivery systems: Design and fabrication. ed. A. M. Grumezescu, 17–32. Cambridge: Elsevier Science. doi: 10.1016/B978-0-323-52727-9.00002-9.
  • Kucner, A., R. Klewicki, and M. Sójka. 2013. The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits. Food and Bioprocess Technology 6 (8):2031–47. doi: 10.1007/s11947-012-0997-0.
  • Kucuk, H., A. Kilic, and A. Midilli. 2014. Common applications of thin layer drying curve equations and their evaluation criteria. In Progress in exergy, energy, and the environment, ed, eds. I. Dincer, A.Midilli, and H. Kucuk, 669–80. Cham: Springer. doi: 10.1007/978-3-319-04681-5_63.
  • Kulling, S. E., and H. M. Rawel. 2008. Chokeberry (Aronia melanocarpa) – A review on the characteristic components and potential health effects. Planta Medica 74 (13):1625–34. doi: 10.1055/s-0028-1088306.
  • Kumar, S., R. Sandhir, and S. Ojha. 2014. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes 7:560. doi: 10.1186/1756-0500-7-560.
  • Lo, A., J. C. Gallardo Brigido, A. Silva-Norman, I. Pilatowsky, O. García-Valladares, and J. Ramírez. 2018. Moisture content modeling and effective moisture diffusivity determination during convective solar drying of blackberry (Rubus Spp) and Basil (Ocimum basilicum L.). Paper presented at the IDS 2018. 21st International Drying Symposium Proceedings. doi: 10.4995/IDS2018.2018.7841.
  • Leyva-Porras, C., M. Z. Saavedra-Leos, E. Cervantes-González, P. Aguirre-Bañuelos, M. B. Silva-Cázarez, and C. Álvarez-Salas. 2019. Spray drying of blueberry juice-maltodextrin mixtures: evaluation of processing conditions on content of resveratrol. Antioxidants (Basel, Switzerland) 8 (10):437. doi: 10.3390/antiox8100437.
  • Li, K., M. Zhang, A. S. Mujumdar, and B. Chitrakar. 2019. Recent developments in physical field-based drying techniques for fruits and vegetables. Drying Technology 37 (15):1954–73. doi: 10.1080/07373937.2018.1546733.
  • López-Nicolás, J., and F. García‐Carmona. 2009. Enzymatic and nonenzymatic degradation of polyphenols. In Fruit and vegetable phytochemicals, eds. L.D. L.A. Rosa, E. Alvarez-Parrilla, G. A. González-Aguilar, 101–29. New Jersey: John Wiley & Sons, Ltd.
  • López‐Vidaña, E. C., I. P. Figueroa, E. G. A. Marcos, A. Navarro‐Ocaña, L. Hernández‐Vázquez, and J. A. Santiago‐Urbina. 2019. Solar drying kinetics and bioactive compounds of blackberry (Rubus fruticosus). Journal of Food Process Engineering 42 (4):e13018. doi: 10.1111/jfpe.13018.
  • Martín-Gómez, J., M. Varo, J. Merida, and M. Serratosa. 2020. Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT 120:108931. doi: 10.1016/j.lwt.2019.108931.
  • Martynenko, A., and Y. Chen. 2016. Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic (HTD) processing. Journal of Food Engineering 171:44–51. doi: 10.1016/j.jfoodeng.2015.10.008.
  • Mejia-Meza, E., J. Yáñez, N. Davies, B. Rasco, F. Younce, C. Remsberg, and C. Clary. 2008. Improving nutritional value of dried blueberries (Vaccinium corymbosum L.) combining microwave-vacuum, hot-air drying and freeze drying technologies. International Journal of Food Engineering 4 (5). doi: 10.2202/1556-3758.1364.
  • Moreno, J., M. Gonzales, P. Zúñiga, G. Petzold, K. Mella, and O. Muñoz. 2016. Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (Cv. Tifblue). Innovative Food Science & Emerging Technologies 36:112–9. doi: 10.1016/j.ifset.2016.06.005.
  • Mumtaz, M. W., A. Adnan, H. Mukhtar, U. Rashid, and M. Danish. 2017. Chapter fifteen – Biodiesel production through chemical and biochemical transesterification: Trends, technicalities, and future perspectives. In Clean energy for sustainable development, ed. M. G. Rasul, A. Kalam Azad, and S. C. Sharma, 465–85. London: Academic Press. doi: 10.1016/B978-0-12-805423-9.00015-6.
  • Natesan, V. T., P. Mani, T. J. S. Prasad, J. M. Krishna, and S. Sekar. 2020. Applications of thin layer modelling techniques and advances in drying of agricultural products. AIP Conference Proceedings 2311:090025. doi: 10.1063/5.0033995.
  • Nayak, B., R. H. Liu, and J. Tang. 2015. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains – A review. Critical Reviews in Food Science and Nutrition 55 (7):887–918. doi: 10.1080/10408398.2011.654142.
  • Nemzer, B., L. Vargas, X. Xia, M. Sintara, and H. Feng. 2018. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chemistry 262:242–50. doi: 10.1016/j.foodchem.2018.04.047.
  • Ngamwonglumlert, L., and S. Devahastin. 2018. 8 – Microstructure and its relationship with quality and storage stability of dried foods. In Food microstructure and its relationship with quality and stability, ed. S. Devahastin, 139–59. Woodhead publishing series in food science, technology and nutrition. Cambridge: Woodhead Publishing. doi: 10.1016/B978-0-08-100764-8.00008-3.
  • Nile, S. H., and S. W. Park. 2014. Edible berries: Bioactive components and their effect on human health. Nutrition 30 (2):134–44. doi: 10.1016/j.nut.2013.04.007.
  • Nogueira, G. F., C. T. Soares, L. G. P. Martin, F. M. Fakhouri, and R. A. de Oliveira. 2020. Influence of spray drying on bioactive compounds of blackberry pulp microencapsulated with arrowroot starch and gum Arabic mixture. Journal of Microencapsulation 37 (1):65–76. doi: 10.1080/02652048.2019.1693646.
  • Oancea, S., and F. Călin. 2016. Changes in total phenolics and anthocyanins during blackberry, raspberry and cherry jam processing and storage. Romanian Biotechnological Letters 21:11232–7.
  • Onwude, D. I., N. Hashim, R. B. Janius, N. M. Nawi, and K. Abdan. 2016. Modeling the thin-layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety 15 (3):599–618. doi: 10.1111/1541-4337.12196.
  • Parikh, D. 2015. Vacuum drying: Basics and application. Chemical Engineering 122 (4).
  • Patil, V., A. K. Chauhan, and R. P. Singh. 2014. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology 253:230–6. doi: 10.1016/j.powtec.2013.11.033.
  • Petkovic, M., Đurović, I. N. Miletic, A. Lukyanov, Е. Ключка, J. Radovanović, and D. Donskoy. 2020. Model of convective drying of black chokeberry (Aronia melanocarpa l.). XXV Savetovanje O Biotehnologiji 2:563–9.
  • Petkovic, M., I. Đurović, N. Miletic, and J. Radovanović. 2019. Effect of convective drying method of chokeberry (Aronia melanocarpa L.) on drying kinetics, bioactive components and sensory characteristics of bread with chokeberry powder. Periodica Polytechnica Chemical Engineering 63 (4):600–8. doi: 10.3311/PPch.13783.
  • Phisut, N. 2012. Spray drying technique of fruit juice powder: Some factors influencing the properties of product. International Food Research Journal 19:1297–306.
  • Pomeranz, Y., and C. E. Meloan. 1994. Determination of moisture. In Food analysis: Theory and practice, ed. Y. Pomeranz and C. E. Meloan, 575–601. Boston, MA: Springer US. doi: 10.1007/978-1-4615-6998-5_34.
  • Prakash, O., and A. Kumar. 2013. Historical review and recent trends in solar drying systems. International Journal of Green Energy 10 (7):690–738. doi: 10.1080/15435075.2012.727113.
  • Quintero, J., A. Naranajo, G. Ciro, and J. Rojas. 2017. Vegetable proteins: Non-sensitizing encapsulation agents for bioactive compounds. Allergen. 4: 43–65. doi: 10.5772/intechopen.70378.
  • Reque, P., R. Steffens, A. Martins da Silva, A. Jablonski, S. Flôres, A. Rios, and E. Jong. 2014. Characterization of blueberry fruits (Vaccinium Spp.) and derived products. Food Science and Technology (Campinas) 34 (4):773–9. doi: 10.1590/1678-457X.6470.
  • Reyes, A., A. Evseev, A. Mahn, V. Bubnovich, R. Bustos, and E. Scheuermann. 2011. Effect of operating conditions in freeze-drying on the nutritional properties of blueberries. International Journal of Food Sciences and Nutrition 62 (3):303–6. doi: 10.3109/09637486.2010.534078.
  • Rezvankhah, A., Z. Emam-Djomeh, and G. Askari. 2020. Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology 38 (1–2):235–58. doi: 10.1080/07373937.2019.1653906.
  • Rigon, R. T., and C. P. Zapata Noreña. 2016. Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (Rubus fruticosus). Journal of Food Science and Technology 53 (3):1515–24. doi: 10.1007/s13197-015-2111-x.
  • Rodriguez, A., M. J. Zaro, M. L. Lemoine, and R. H. Mascheroni. 2016. Comparison of two alternatives of combined drying to processing of blueberries (ÓNeal): Evaluation of the final quality. Drying Technology 34 (8):974–85. doi: 10.1080/07373937.2015.1089886.
  • Ruiz-Cabrera, M. A., and S. J. Schmidt. 2015. Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. Journal of Food Engineering 146:36–43. doi: 10.1016/j.jfoodeng.2014.08.023.
  • Sablani, S. S., P. K. Andrews, N. M. Davies, T. Walters, H. Saez, and L. Bastarrachea. 2011. Effects of air and freeze drying on phytochemical content of conventional and organic berries. Drying Technology 29 (2):205–16. doi: 10.1080/07373937.2010.483047.
  • Sadowska, K., A. Jadwiga, and Ł. Klóska. 2017. Influence of freezing, lyophilisation and air-drying on the total monomeric anthocyanins, vitamin C and antioxidant capacity of selected berries. International Journal of Food Science & Technology 52 (5):1246–51. doi: 10.1111/ijfs.13391.
  • Sadowska, A., F. Świderski, R. Rakowska, and E. Hallmann. 2017. The functional properties of chokeberry and kale powders obtained by an innovative method of fluidised-bed jet milling with drying compared to freeze drying. International Journal of Food Engineering 13 (6). doi: 10.1515/ijfe-2016-0310.
  • Sadowska, A., F. Świderski, R. Rakowska, and E. Hallmann. 2019. Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying. Food Science and Biotechnology 28 (4):1073–81. doi: 10.1007/s10068-019-00556-1.
  • Sagar, V. R., and P. Suresh Kumar. 2010. Recent advances in drying and dehydration of fruits and vegetables: A review. Journal of Food Science and Technology 47 (1):15–26. doi: 10.1007/s13197-010-0010-8.
  • Samoticha, J., A. Wojdyło, and K. Lech. 2016. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT – Food Science and Technology 66:484–9. doi: 10.1016/j.lwt.2015.10.073.
  • Sapei, L., and L. Hwa. 2014. Study on the kinetics of vitamin c degradation in fresh strawberry juices. Procedia Chemistry 9. Bali: International Conference and Workshop on Chemical Engineering UNPAR 2013 (ICCE UNPAR 2013), 62–8. doi: 10.1016/j.proche.2014.05.008.
  • Sarkis, J. R., D. P. Jaeschke, G. D. Mercali, I. C. Tessaro, and L. D. F. Marczak. 2013. Degradation kinetics of anthocyanins in blackberry pulp during ohmic and conventional heating. International Food Research Journal 26 (1):87–97.
  • Selvi, N. J., B. Gurunathan, and A. Singh. 2014. Effect of various pretreatment methods on osmotic dehydration of fruits for qualitative and quantitative advantage. International Journal of ChemTech Research 6 (12):4995–5001.
  • Sharif, N., S. Khoshnoudi-Nia, and S. M. Jafari. 2020. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International 132:109077. doi: 10.1016/j.foodres.2020.109077.
  • Shi, J., Z. Pan, T. H. McHugh, D. Wood, E. Hirschberg, and D. Olson. 2008. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT – Food Science and Technology 41 (10):1962–72. doi: 10.1016/j.lwt.2008.01.003.
  • Shishir, M. R. I., and W. Chen. 2017. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology 65:49–67. doi: 10.1016/j.tifs.2017.05.006.
  • Skrovankova, S., D. Sumczynski, J. Mlcek, T. Jurikova, and J. Sochor. 2015. Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences 16 (10):24673–706. doi: 10.3390/ijms161024673.
  • Song, C., Z. Li, T. Wu, V. Raghavan, X. Ma, and H. Chen. 2020. Mass transfer during osmotic dehydration and its effect on anthocyanin retention of microwave vacuum-dried blackberries. Journal of the Science of Food and Agriculture 100 (1):102–9. doi: 10.1002/jsfa.9999.
  • Soong, Y.-Y., and P. J. Barlow. 2004. Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry 88 (3):411–7. doi: 10.1016/j.foodchem.2004.02.003.
  • Stratta, L., L. C. Capozzi, S. Franzino, and R. Pisano. 2020. Economic analysis of a freeze-drying cycle. Processes 8 (11):1399. doi: 10.3390/pr8111399.
  • Sumic, M., N. Tepic, D. Jokic, and V. Malbasa. 2015. Optimization of frozen wild blueberry vacuum drying process. Hemijska Industrija 69 (1):77–84. doi: 10.2298/HEMIND131212022S.
  • Sutar, P., and S. Prasad. 2008. Microwave drying technology-recent developments and R&D needs in India. Proceedings of 42nd ISAE Annual Convention, Bhopal. 1–3.
  • Taghinezhad, E., M. Kaveh, E. Khalife, and G. Chen. 2021. Drying of organic blackberry in combined hot air-infrared dryer with ultrasound pretreatment. Drying Technology 39 (14):2075–17. doi: 10.1080/07373937.2020.1753066.
  • Taşkın, O. 2020. Evaluation of freeze drying for whole, half cut and puree black chokeberry (Aronia melanocarpa L.). Heat and Mass Transfer 56:2503–13. doi: 10.1007/s00231-020-02867-0.
  • Tatar Turan, F., A. Cengiz, D. Sandıkçı, M. Dervisoglu, and T. Kahyaoglu. 2016. Influence of an ultrasonic nozzle in spray-drying and storage on the properties of blueberry powder and microcapsules. Journal of the Science of Food and Agriculture 96 (12):4062–76. doi: 10.1002/jsfa.7605.
  • Tylewicz, U., M. Nowacka, B. Martín-García, A. Wiktor, and A. M. Gómez Caravaca. 2018. 5 – Target sources of polyphenols in different food products and their processing by-products. In Polyphenols: Properties, recovery, and applications, ed. C. M. Galanakis, 135–75. Cambridge: Woodhead Publishing. doi: 10.1016/B978-0-12-813572-3.00005-1.
  • USDA National Agricultural Statistics Service. 2021. Quick Stats. United States Department of Agriculture. Accessed June 22, 2021. https://quickstats.nass.usda.gov/.
  • Vega-Galvez, A., E. Lara, V. Flores, K. D. Scala, and R. Lemus-Mondaca. 2012. Effect of selected pretreatments on convective drying process of blueberries (Var. O’neil). Food and Bioprocess Technology 5 (7):2797–8. doi: 10.1007/s11947-011-0656-x.
  • Viljakainen, S., A. Visti, and S. Laakso. 2002. Concentrations of organic acids and soluble sugars in juices from Nordic berries. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science 52 (2):101–9. doi: 10.1080/090647102321089846.
  • Wilkowska, A., W. Ambroziak, J. Adamiec, and A. Czyżowska. 2017. Preservation of antioxidant activity and polyphenols in chokeberry juice and wine with the use of microencapsulation. Journal of Food Processing and Preservation 41 (3):e12924. doi: 10.1111/jfpp.12924.
  • Wilkowska, A., W. Ambroziak, A. Czyżowska, and J. Adamiec. 2016. Effect of microencapsulation by spray drying and freeze drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Polish Journal of Food and Nutrition Sciences 66 (1):11–6. doi: 10.1515/pjfns-2015-0015.
  • Wray, D., and H. S. Ramaswamy. 2015. Microwave-osmotic/microwave-vacuum drying of whole cranberries: Comparison with other methods. Journal of Food Science 80 (12):E2792–2802. doi: 10.1111/1750-3841.13132.
  • Yadav, A. K., and S. V. Singh. 2014. Osmotic dehydration of fruits and vegetables: A review. Journal of Food Science and Technology 51 (9):1654–73. doi: 10.1007/s13197-012-0659-2.
  • Yamamoto, C., T. L. Neoh, H. Honbou, T. Furuta, S. Kimura, and H. Yoshii. 2012. Formation of a polymer-coated inclusion complex of D-limonene and β-cyclodextrin by spray drying. Drying Technology 30 (15):1714–9. doi: 10.1080/07373937.2012.699487.
  • Yu, Y., T. Z. Jin, X. Fan, and Y. Xu. 2017. osmotic dehydration of blueberries pretreated with pulsed electric fields: Effects on dehydration kinetics, and microbiological and nutritional qualities. Drying Technology 35 (13):1543–51. doi: 10.1080/07373937.2016.1260583.
  • Yu, Y., T. Z. Jin, and G. Xiao. 2017. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. Journal of Food Processing and Preservation 41 (6):e13303. doi: 10.1111/jfpp.13303.
  • Yuan, W., L. Zhou, G. Deng, P. Wang, D. Creech, and S. Li. 2011. Anthocyanins, phenolics, and antioxidant capacity of Vaccinium L. in Texas, USA. Pharmaceutical Crops 2 (1):11–23. doi: 10.2174/2210290601102010011.
  • Zhao, Y. 2007. Berry fruit: Value-added products for health promotion. Berry fruit: Value-added products for health promotion. Boca Raton, FL: CRC Press.
  • Zielinska, M., and M. Markowski. 2016. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.). Food Chemistry 196:1188–96. doi: 10.1016/j.foodchem.2015.10.054.
  • Zielinska, M., and A. Michalska. 2016. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry 212:671–80. doi: 10.1016/j.foodchem.2016.06.003.
  • Zielinska, M., and A. Michalska. 2018. The influence of convective, microwave vacuum and microwave-assisted drying on blueberry pomace physicochemical properties. International Journal of Food Engineering 14 (3):1–14. doi: 10.1515/ijfe-2017-0332.
  • Zielinska, M. P. and Sadowski, W. Błaszczak. 2016. Combined hot air convective drying and microwave-vacuum drying of blueberries (Vaccinium corymbosum L.): Drying kinetics and quality characteristics. Drying Technology 34 (6):665–84. doi: 10.1080/07373937.2015.1070358.