1,118
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Chitosan and its composites-based delivery systems: advances and applications in food science and nutrition sector

, ORCID Icon &

References

  • Abaee, A., M. Mohammadian, and S. M. Jafari. 2017. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology 70:69–81. doi: 10.1016/j.tifs.2017.10.011.
  • Aider, M. 2010. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology 43 (6):837–42. doi: 10.1016/j.lwt.2010.01.021.
  • Alejandra, A. F., S. F. Robert, and M. B. Olga. 2018. Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. Journal of Food Engineering 229:72–82. doi: 10.1016/j.jfoodeng.2017.03.024.
  • Andishmand, H., H. Hamishehkar, A. Babazadeh, A. Taghvimi, M. A. Mohammadifar, and M. Tabibiazar. 2017. A colon targeted delivery system for resveratrol enriching in pH responsive-model. Pharmaceutical Sciences 23 (1):42–9. doi: 10.15171/PS.2017.07.
  • Assadpour, E., and S. M. Jafari. 2019. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition 59 (19):3129–51. doi: 10.1080/10408398.2018.1484687.
  • Atay, E., M. J. Fabra, M. Martínez-Sanz, L. G. Gomez-Mascaraque, A. Altan, and A. Lopez-Rubio. 2018. Development and characterization of chitosan/gelatin electrosprayed microparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocolloids 77:699–710. doi: 10.1016/j.foodhyd.2017.11.011.
  • Bepeyeva, A., J. M. S. de Barros, H. Albadran, A. K. Kakimov, Z. K. Kakimova, D. Charalampopoulos, and V. V. Khutoryanskiy. 2017. Encapsulation of Lactobacillus casei into calcium pectinate-chitosan beads for enteric delivery. Journal of Food Science 82 (12):2954–9. doi: 10.1111/1750-3841.13974.
  • Bilal, M., Y. P. Zhao, and H. M. N. Iqbal. 2020. Development and characterization of essential oils incorporated chitosan-based cues with antibacterial and antifungal potentialities. Journal of Radiation Research and Applied Sciences 13 (1):174–9. doi: 10.1080/16878507.2020.1719336.
  • Caddeo, C., O. Díez-Sales, R. Pons, C. Carbone, G. Ennas, G. Puglisi, A. M. Fadda, and M. Manconi. 2016. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. Journal of Colloid and Interface Science 461:69–78. doi: 10.1016/j.jcis.2015.09.013.
  • Casadidio, C., D. V. Peregrina, M. R. Gigliobianco, S. Y. Deng, R. Censi, and P. D. Martino. 2019. Chitin and chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Marine Drugs 17 (6):369. doi: 10.3390/md17060369.
  • Cazón, P., G. Velazquez, J. A. Ramírez, and M. Vázquez. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids 68:136–48. doi: 10.1016/j.foodhyd.2016.09.009.
  • Chang, H. W., T. B. Tan, P. Y. Tan, F. Abas, O. M. Lai, Y. Wang, Y. H. Wang, I. A. Nehdi, and C. P. Tan. 2018. Microencapsulation of fish oil using thiol-modified β-lactoglobulin fibrils/chitosan complex: A study on the storage stability and in vitro release. Food Hydrocolloids 80:186–94. doi: 10.1016/j.foodhyd.2018.02.002.
  • Chatterjee, N. S., R. Anandan, M. Navitha, K. K. Asha, K. A. Kumar, S. Mathew, and C. N. Ravishankar. 2016. Development of thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres for dietary supplementation. Journal of Food Science and Technology 53 (1):551–60. doi: 10.1007/s13197-015-2044-4.
  • Chen, S., Y. Cao, L. R. Ferguson, Q. Shu, and S. Garg. 2013. Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria. Journal of Microencapsulation 30 (2):103–15. doi: 10.3109/02652048.2012.700959.
  • Chen, L., T. Yang, Y. J. Song, G. W. Shu, and H. Chen. 2017. Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt. LWT - Food Science and Technology 81:274–80. doi: 10.1016/j.lwt.2017.04.005.
  • Cui, H. Y., M. Bai, M. M. A. Rashed, and L. Lin. 2018. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. International Journal of Food Microbiology 266:69–78. doi: 10.1016/j.ijfoodmicro.2017.11.019.
  • Dafe, A., H. Etemadi, H. Zarredar, and G. R. Mahdavinia. 2017. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. International Journal of Biological Macromolecules 97:299–307. doi: 10.1016/j.ijbiomac.2017.01.016.
  • Elieh-Ali-Komi, D., and M. R. Hamblin. 2016. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. The American Mathematical Monthly 4 (3):411–27. doi: 10.2307/4145104.
  • Esfanjani, A. F., E. Assadpour, and S. M. Jafari. 2018. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology 76:56–66. doi: 10.1016/j.tifs.2018.04.002.
  • Fan, Y. T., J. Yi, Y. Z. Zhang, and W. Yokoyama. 2018. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chemistry 239:1210–8. doi: 10.1016/j.foodchem.2017.07.075.
  • Ghasemi, S., S. M. Jafari, E. Assadpour, and M. Khomeiri. 2018. Nanoencapsulation of d -limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocolloids 77:152–62. doi: 10.1016/j.foodhyd.2017.09.030.
  • Gonçalves, B., M. Moeenfard, F. Rocha, A. Alves, B. N. Estevinho, and L. Santos. 2017. Microencapsulation of a natural antioxidant from coffee—chlorogenic acid (3-caffeoylquinic acid). Food and Bioprocess Technology 10 (8):1521–30. doi: 10.1007/s11947-017-1919-y.
  • Gumus, Z. P., and M. Soylak. 2021. Metal organic frameworks as nanomaterials for analysis of toxic metals in food and environmental applications. TrAC Trends in Analytical Chemistry 143:116417. doi: 10.1016/j.trac.2021.116417.
  • Hamed, S. F., A. F. Hashim, H. A. A. Hamid, K. A. Abd-Elsalam, I. Golonka, W. Musiał, and I. M. El-Sherbiny. 2020. Edible alginate/chitosan-based nanocomposite microspheres as delivery vehicles of omega-3 rich oils. Carbohydrate Polymers 239:116201. doi: 10.1016/j.carbpol.2020.116201.
  • Hasheminejad, N., F. Khodaiyan, and M. Safari. 2019. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chemistry 275:113–22. doi: 10.1016/j.foodchem.2018.09.085.
  • Holkem, A. T., and C. S. Favaro-Trindade. 2020. Potential of solid lipid microparticles covered by the protein-polysaccharide complex for protection of probiotics and proanthocyanidin-rich cinnamon extract. Food Research International (Ottawa, ON) 136:109520. doi: 10.1016/j.foodres.2020.109520.
  • Hong, D. Y., J. S. Lee, and H. G. Lee. 2016. Chitosan/poly-γ-glutamic acid nanoparticles improve the solubility of lutein. International Journal of Biological Macromolecules 85:9–15. doi: 10.1016/j.ijbiomac.2015.12.044.
  • Horuz, T. İ., and K. B. Belibağlı. 2018. Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chemistry 268:86–93. doi: 10.1016/j.foodchem.2018.06.017.
  • Huang, W.-T., M.-C. Chang, C.-Y. Chu, C.-C. Chang, M.-C. Li, and D.-M. Liu. 2019. Self-assembled amphiphilic chitosan: A time-dependent nanostructural evolution and associated drug encapsulation/elution mechanism. Carbohydrate Polymers 215:246–52. doi: 10.1016/j.carbpol.2019.03.083.
  • Huang, G.-Q., L.-Y. Cheng, J.-X. Xiao, S.-Q. Wang, and X.-N. Han. 2016. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization . Journal of Biomaterials Applications 31 (2):193–204. doi: 10.1177/0885328216651393.
  • Huang, Y.-C., and T.-H. Kuo. 2016. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocolloids 53:261–9. doi: 10.1016/j.foodhyd.2015.02.006.
  • Huang, G.-Q., L.-N. Liu, X.-N. Han, and J.-X. Xiao. 2017. Intestine-targeted delivery potency of the O-carboxymethyl chitosan-gum Arabic coacervate: Effects of coacervation acidity and possible mechanism. Materials Science & Engineering. C, Materials for Biological Applications 79:423–9. doi: 10.1016/j.msec.2017.05.074.
  • Huang, X.-N., F.-Z. Zhou, T. Yang, S.-W. Yin, C.-H. Tang, and X.-Q. Yang. 2019. Fabrication and characterization of Pickering High Internal Phase Emulsions (HIPEs) stabilized by chitosan-caseinophosphopeptides nanocomplexes as oral delivery vehicles. Food Hydrocolloids 93:34–45. doi: 10.1016/j.foodhyd.2019.02.005.
  • Hu, B., F. G. Ma, Y. K. Yang, M. H. Xie, C. Zhang, Y. Xu, and X. X. Zeng. 2016. Antioxidant nanocomplexes for delivery of epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry 64 (17):3422–9. doi: 10.1021/acs.jafc.6b00931.
  • Hu, Q. B., T. R. Wang, M. Y. Zhou, J. Y. Xue, and Y. C. Luo. 2016. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic. International Journal of Biological Macromolecules 92:812–9. doi: 10.1016/j.ijbiomac.2016.07.089.
  • Hu, J., Y. D. Zhang, Z. B. Xiao, and X. G. Wang. 2018. Preparation and properties of cinnamon-thyme-ginger composite essential oil nanocapsules. Industrial Crops and Products 122:85–92. doi: 10.1016/j.indcrop.2018.05.058.
  • İlyasoğlu, H., M. Nadzieja, and Z. Guo. 2019. Caffeic acid grafted chitosan as a novel dual-functional stabilizer for food-grade emulsions and additive antioxidant property. Food Hydrocolloids 95:168–76. doi: 10.1016/j.foodhyd.2019.04.043.
  • Jeon, Y. O., J.-S. Lee, and H. G. Lee. 2016. Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Colloids and Surfaces B: Biointerfaces 147:224–33. doi: 10.1016/j.colsurfb.2016.07.062.
  • Jiang, M., Y. Hong, Z. B. Gu, L. Cheng, Z. F. Li, and C. M. Li. 2019. Preparation of a starch-based carrier for oral delivery of Vitamin E to the small intestine. Food Hydrocolloids 91:26–33. doi: 10.1016/j.foodhyd.2019.01.021.
  • Jiao, Z., X. D. Wang, Y. T. Yin, J. X. Xia, and Y. N. Mei. 2018. Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid. Journal of Microencapsulation 35 (3):272–80. doi: 10.1080/02652048.2018.1467509.
  • Karimirad, R., M. Behnamian, and S. Dezhsetan. 2019. Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. LWT - Food Science and Technology 106:218–28. doi: 10.1016/j.lwt.2019.02.062.
  • Katouzian, I., and S. M. Jafari. 2016. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology 53:34–48. doi: 10.1016/j.tifs.2016.05.002.
  • Kean, T., and M. Thanou. 2010. Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews 62 (1):3–11. doi: 10.1016/j.addr.2009.09.004.
  • Kim, S. 2018. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. International Journal of Polymer Science 2018:1–13. doi: 10.1155/2018/1708172.
  • Kumar, L. R. G., K. K. Anas, C. S. Tejpal, and S. Mathew. 2018. Food-grade biopolymers as efficient delivery systems for nutrients: An overview. In T. Gutiérrez (Ed.), Polymers for food applications, 401–22. Cham, Switzerland: Springer, Cham Inc. doi: 10.1007/978-3-319-94625-2_15.
  • Kumar, L. R. G., N. S. Chatterjee, C. S. Tejpal, K. V. Vishnu, K. K. Anas, K. K. Asha, R. Anandan, and S. Mathew. 2017. Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies. International Journal of Biological Macromolecules 104 (Pt B):1986–95. doi: 10.1016/j.ijbiomac.2017.03.114.
  • Kumar, A., P. P. Singh, and B. Prakash. 2020. Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydrate Polymers 236:116050. doi: 10.1016/j.carbpol.2020.116050.
  • Kurakula, M., S. Gorityala, and K. Moharir. 2021. Recent trends in design and evaluation of chitosan-based colon targeted drug delivery systems: Update 2020. Journal of Drug Delivery Science and Technology 64:102579. doi: 10.1016/j.jddst.2021.102579.
  • Lan, Y. Q., L. Wang, S. F. Cao, Y. E. Zhong, Y. Q. Li, Y. Cao, and L. C. Zhao. 2017. Rational design of food-grade polyelectrolyte complex coacervate for encapsulation and enhanced oral delivery of oenothein B. Food & Function 8 (11):4070–80. doi: 10.1039/c7fo01009e.
  • Liang, J., H. Yan, X. L. Wang, Y. B. Zhou, X. L. Gao, P. Puligundla, and X. C. Wan. 2017. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chemistry 231:19–24. doi: 10.1016/j.foodchem.2017.02.106.
  • Liang, J., H. Yan, H.-J. Yang, H. W. Kim, X. C. Wan, J. Lee, and S. Ko. 2016. Synthesis and controlled-release properties of chitosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate. Food Science and Biotechnology 25 (6):1583–90. doi: 10.1007/s10068-016-0244-y.
  • Liang, J., H. Yan, J. Y. Zhang, W. Z. Dai, X. L. Gao, Y. B. Zhou, X. C. Wan, and P. Puligundla. 2017. Preparation and characterization of antioxidant edible chitosan films incorporated with epigallocatechin gallate nanocapsules. Carbohydrate Polymers 171:300–6. doi: 10.1016/j.carbpol.2017.04.081.
  • Li, R. W., L. Deng, Z. W. Cai, S. Y. Zhang, K. Wang, L. H. Li, S. Ding, and C. R. Zhou. 2017. Liposomes coated with thiolated chitosan as drug carriers of curcumin. Materials Science & Engineering. C, Materials for Biological Applications 80:156–64. doi: 10.1016/j.msec.2017.05.136.
  • Li, L., X. Q. Hu, M. Zhang, S. Y. Ma, F. L. Yu, S. Q. Zhao, N. Liu, Z. Y. Wang, Y. Wang, H. Guan, et al. 2017. Dual tumor-targeting nanocarrier system for siRNA delivery based on pRNA and modified chitosan. Molecular Therapy. Nucleic Acids 8:169–83. doi: 10.1016/j.omtn.2017.06.014.
  • Li, J. L., I.-C. Hwang, X. G. Chen, and H. J. Park. 2016. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocolloids 60:138–47. doi: 10.1016/j.foodhyd.2016.03.016.
  • Li, X.-M., X. H. Li, Z. Z. Wu, Y. Wang, J.-S. Cheng, T. Wang, and B. Zhang. 2020. Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of β-carotene: Protection effect and in vitro digestion study. Food Chemistry 315:126288. doi: 10.1016/j.foodchem.2020.126288.
  • Lim, H.-P., K.-W. Ho, C. K. S. Singh, C.-W. Ooi, B.-T. Tey, and E.-S. Chan. 2020. Pickering emulsion hydrogel as a promising food delivery system: Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery. Food Hydrocolloids 103:105659. doi: 10.1016/j.foodhyd.2020.105659.
  • Liu, F., Y. N. Liu, Z. L. Sun, D. B. Wang, H. H. Wu, L. H. Du, and D. Y. Wang. 2020. Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films. International Journal of Biological Macromolecules 164:3376–87. doi: 10.1016/j.ijbiomac.2020.08.152.
  • Liu, F., and C.-H. Tang. 2016. Soy glycinin as food-grade Pickering stabilizers: Part. III. Fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-carotene. Food Hydrocolloids 56:434–44. doi: 10.1016/j.foodhyd.2016.01.002.
  • Liu, J. H., J. Xiao, F. Li, Y. Shi, D. P. Li, and Q. R. Huang. 2018. Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: Preparation, characterization and antimicrobial activity. Food Control 91:302–10. doi: 10.1016/j.foodcont.2018.04.020.
  • Li, X.-M., Z.-Z. Wu, B. Zhang, Y. Pan, R. Meng, and H.-Q. Chen. 2019. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chemistry 293:197–203. doi: 10.1016/j.foodchem.2019.04.096.
  • Luckanagul, J. A., C. Pitakchatwong, P. R. N. Bhuket, C. Muangnoi, P. Rojsitthisak, S. Chirachanchai, Q. Wang, and P. Rojsitthisak. 2018. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydrate Polymers 181:1119–27. doi: 10.1016/j.carbpol.2017.11.027.
  • Mohsenabadi, N., A. Rajaei, M. Tabatabaei, and A. Mohsenifar. 2018. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules 112:148–55. doi: 10.1016/j.ijbiomac.2018.01.034.
  • Moreno, M. A., L. G. Gómez-Mascaraque, M. Arias, I. C. Zampini, J. E. Sayago, L. L. P. Ramos, G. Schmeda-Hirschmann, A. López-Rubio, and M. I. Isla. 2018. Electrosprayed chitosan microcapsules as delivery vehicles for vaginal phytoformulations. Carbohydrate Polymers 201:425–37. doi: 10.1016/j.carbpol.2018.08.084.
  • Muxika, A., A. Etxabide, J. Uranga, P. Guerrero, and K. de la Caba. 2017. Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules 105 (Pt 2):1358–68. doi: 10.1016/j.ijbiomac.2017.07.087.
  • Mwangi, W. W., H. P. Lim, L. E. Low, B. T. Tey, and E. S. Chan. 2020. Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science & Technology 100:320–32. doi: 10.1016/j.tifs.2020.04.020.
  • Pandey, P., S. Mettu, H. N. Mishra, M. Ashokkumar, and G. J. O. Martin. 2021. Multilayer co-encapsulation of probiotics and γ-amino butyric acid (GABA) using ultrasound for functional food applications. LWT 146:111432. doi: 10.1016/j.lwt.2021.111432.
  • Peng, S. F., L. Q. Zou, W. L. Liu, Z. L. Li, W. Liu, X. T. Hu, X. Chen, and C. M. Liu. 2017. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydrate Polymers 156:322–32. doi: 10.1016/j.carbpol.2016.09.060.
  • Pérez-Córdoba, L. J., I. T. Norton, H. K. Batchelor, K. Gkatzionis, F. Spyropoulos, and P. J. A. Sobral. 2018. Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids 79 (2018):544–59. doi: 10.1016/j.foodhyd.2017.12.012.
  • Prezotti, F. G., F. I. Boni, N. N. Ferreira, D. S. Silva, A. Almeida, T. Vasconcelos, B. Sarmento, M. P. D. Gremião, and B. S. F. Cury. 2020. Oral nanoparticles based on gellan gum/pectin for colon-targeted delivery of resveratrol. Drug Development and Industrial Pharmacy 46 (2):236–45. doi: 10.1080/03639045.2020.1716374.
  • Rajabi, H., S. M. Jafari, G. Rajabzadeh, M. Sarfarazi, and S. Sedaghati. 2019. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids and Surfaces A: Physicochemical and Engineering Aspects 578:123644. doi: 10.1016/j.colsurfa.2019.123644.
  • Rajaei, A., M. Hadian, A. Mohsenifar, T. Rahmani-Cherati, and M. Tabatabaei. 2017. A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packaging and Shelf Life 14:137–45. doi: 10.1016/j.fpsl.2017.10.005.
  • Ramalingam, P., S. W. Yoo, and Y. T. Ko. 2016. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Research International 84:113–9. doi: 10.1016/j.foodres.2016.03.031.
  • Rezaei, A., M. Fathi, and S. M. Jafari. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids. 88:146–62. doi: 10.1016/j.foodhyd.2018.10.003.
  • Romić, M. D., A. Sušac, J. Lovrić, B. Cetina-Čižmek, J. Filipović-Grčić, and A. Hafner. 2019. Evaluation of stability and in vitro wound healing potential of melatonin loaded (lipid enriched) chitosan based microspheres. Acta Pharmaceutica (Zagreb, Croatia) 69 (4):635–48. doi: 10.2478/acph-2019-0049.
  • Rostami, M., M. Ghorbani, M. Aman-Mohammadi, M. Delavar, M. Tabibiazar, and S. Ramezani. 2019. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system. International Journal of Biological Macromolecules 135:698–705. doi: 10.1016/j.ijbiomac.2019.05.187.
  • Sahariah, P., D. Cibor, D. Zielińska, M. Á. Hjálmarsdóttir, D. Stawski, and M. Másson. 2019. The effect of molecular weight on the antibacterial activity of N,N,N-trimethyl chitosan (TMC). International Journal of Molecular Sciences 20 (7):1743. doi: 10.3390/ijms20071743.
  • Shah, B. R., C. L. Zhang, Y. Li, and B. Li. 2016. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Research International (Ottawa, Ont.) 89 (Pt 1):399–407. doi: 10.1016/j.foodres.2016.08.022.
  • Sharifi, S., M. Rezazad-Bari, M. Alizadeh, H. Almasi, and S. Amiri. 2021. Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocolloids 113:106496. doi: 10.1016/j.foodhyd.2020.106496.
  • Shetta, A., J. Kegere, and W. Mamdouh. 2019. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. International Journal of Biological Macromolecules 126:731–42. doi: 10.1016/j.ijbiomac.2018.12.161.
  • Shu, G. W., Y. X. He, L. Chen, Y. G. Song, J. P. Meng, and H. Chen. 2017. Microencapsulation of Lactobacillus acidophilus by xanthan-chitosan and its stability in yoghurt. Polymers 9 (12):733. doi: 10.3390/polym9120733.
  • Sotelo-Boyás, M. E., Z. N. Correa-Pacheco, S. Bautista-Baños, and M. L. Corona-Rangel. 2017. Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT - Food Science and Technology 77:15–20. doi: 10.1016/j.lwt.2016.11.022.
  • Talón, E., K. T. Trifkovic, V. A. Nedovic, B. M. Bugarski, M. Vargas, A. Chiralt, and C. González-Martínez. 2017. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers 157:1153–61. doi: 10.1016/j.carbpol.2016.10.080.
  • Tan, C., M. Arshadi, M. C. Lee, M. Godec, M. Azizi, B. Yan, H. Eskandarloo, T. W. Deisenroth, R. H. Darji, T. V. Pho, et al. 2019. A robust aqueous core-shell-shell coconut-like nanostructure for stimuli-responsive delivery of hydrophilic cargo. ACS Nano 13 (8):9016–27. doi: 10.1021/acsnano.9b03049.
  • Tang, D.-W., S.-H. Yu, Y.-C. Ho, B.-Q. Huang, G.-J. Tsai, H.-Y. Hsieh, H.-W. Sung, and F.-L. Mi. 2013. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocolloids 30 (1):33–41. doi: 10.1016/j.foodhyd.2012.04.014.
  • Tejpal, C. S., N. S. Chatterjee, K. Elavarasan, R. G. K. Lekshmi, R. Anandan, K. K. Asha, B. Ganesan, S. Mathew, and C. N. Ravishankar. 2017. Dietary supplementation of thiamine and pyridoxine-loaded vanillic acid-grafted chitosan microspheres enhances growth performance, metabolic and immune responses in experimental rats. International Journal of Biological Macromolecules 104:1874–81. doi: 10.1016/j.ijbiomac.2017.03.120.
  • Vaziri, A. S., I. Alemzadeh, M. Vossoughi, and A. C. Khorasani. 2018. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydrate Polymers 199:266–75. doi: 10.1016/j.carbpol.2018.07.002.
  • Vishnu, K. V., N. S. Chatterjee, K. K. Ajeeshkumar, R. G. K. Lekshmi, C. S. Tejpal, S. Mathew, and C. N. Ravishankar. 2017. Microencapsulation of sardine oil: Application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydrate Polymers 174:540–8. doi: 10.1016/j.carbpol.2017.06.076.
  • Wang, M., Y. Y. Fu, Y. G. Shi, G. W. Chen, X. M. Li, H. Zhang, and Y. L. Shen. 2018. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method. Food Hydrocolloids 77:577–87. doi: 10.1016/j.foodhyd.2017.10.036.
  • Wang, C., X. D. Gao, Z. Q. Chen, Y. Chen, and H. X. Chen. 2017. Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review. Polymers 9 (12):689. doi: 10.3390/polym9120689.
  • Wang, M. W., J. Yang, M. Li, Y. F. Wang, H. Wu, L. Xiong, and Q. J. Sun. 2019. Enhanced viability of layer-by-layer encapsulated Lactobacillus pentosus using chitosan and sodium phytate. Food Chemistry 285:260–5. doi: 10.1016/j.foodchem.2019.01.162.
  • Wei, Z. H., and Y. X. Gao. 2016a. Evaluation of structural and functional properties of chitosan-chlorogenic acid complexes. International Journal of Biological Macromolecules 86:376–82. doi: 10.1016/j.ijbiomac.2016.01.084.
  • Wei, Z. H., and Y. X. Gao. 2016b. Physicochemical properties of β-carotene emulsions stabilized by chitosan–chlorogenic acid complexes. LWT - Food Science and Technology 71:295–301. doi: 10.1016/j.lwt.2016.04.007.
  • Wei, Z. H., and Y. X. Gao. 2016c. Physicochemical properties of β-carotene bilayer emulsions coated by milk proteins and chitosan–EGCG conjugates. Food Hydrocolloids 52:590–9. doi: 10.1016/j.foodhyd.2015.08.002.
  • Wei, Z. H., and Q. R. Huang. 2019. Assembly of Protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper. Journal of Agricultural and Food Chemistry 67 (5):1344–52. doi: 10.1021/acs.jafc.8b06063.
  • Xia, T. H., C. H. Xue, and Z. H. Wei. 2021. Physicochemical characteristics, applications and research trends of edible pickering emulsions. Trends in Food Science & Technology 107:1–15. doi: 10.1016/j.tifs.2020.11.019.
  • Xiang, T., J. W. Yang, S. S. Li, J. Y. Li, and W. Situ. 2019. Improvement in bioactive protein storage stability and colon-targeted release: A simple double-layer chitosan-based particle. Journal of Microencapsulation 36 (5):474–84. doi: 10.1080/02652048.2019.1646336.
  • Xiao, J.-X., C.-P. Zhu, L.-Y. Cheng, J. Yang, and G.-Q. Huang. 2018. pH-Dependent intestine-targeted delivery potency of the O-carboxymethyl chitosan - gum Arabic coacervates. International Journal of Biological Macromolecules 117:315–22. doi: 10.1016/j.ijbiomac.2018.05.183.
  • Xiong, K., L. Y. Zhou, J. Y. Wang, A. G. Ma, D. Fang, L. Xiong, and Q. J. Sun. 2020. Construction of food-grade pH-sensitive nanoparticles for delivering functional food ingredients. Trends in Food Science & Technology 96:102–13. doi: 10.1016/j.tifs.2019.12.019.
  • Yildiz, E., G. Sumnu, and L. N. Kahyaoglu. 2021. Monitoring freshness of chicken breast by using natural halochromic curcumin loaded chitosan/PEO nanofibers as an intelligent package. International Journal of Biological Macromolecules 170:437–46. doi: 10.1016/j.ijbiomac.2020.12.160.
  • Yu, M. T., N. Ji, Y. F. Wang, L. Dai, L. Xiong, and Q. J. Sun. 2021. Starch-based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Comprehensive Reviews in Food Science and Food Safety 20 (1):1075–100. doi: 10.1111/1541-4337.12677.
  • Yuan, D., J. C. Jacquier, and E. D. O’Riordan. 2017. Entrapment of protein in chitosan-tripolyphosphate beads and its release in an in vitro digestive model. Food Chemistry 229:495–501. doi: 10.1016/j.foodchem.2017.02.107.
  • Yuan, D., J. C. Jacquier, and E. D. O’Riordan. 2018. Entrapment of proteins and peptides in chitosan-polyphosphoric acid hydrogel beads: A new approach to achieve both high entrapment efficiency and controlled in vitro release. Food Chemistry 239:1200–9. doi: 10.1016/j.foodchem.2017.07.021.
  • Zaeim, D., M. Sarabi-Jamab, B. Ghorani, R. Kadkhodaee, and R. H. Tromp. 2017. Electrospray assisted fabrication of hydrogel microcapsules by single- and double-stage procedures for encapsulation of probiotics. Food and Bioproducts Processing 102:250–9. doi: 10.1016/j.fbp.2017.01.004.
  • Zareie, Z., F. T. Yazdi, and S. A. Mortazavi. 2020. Development and characterization of antioxidant and antimicrobial edible films based on chitosan and gamma-aminobutyric acid-rich fermented soy protein. Carbohydrate Polymers 244:116491. doi: 10.1016/j.carbpol.2020.116491.
  • Zhang, S., J. Chen, X. Yin, X. Wang, B. Qiu, L. Zhu, and Q. Lin. 2017. Microencapsulation of tea tree oil by spray‐drying with methyl cellulose as the emulsifier and wall material together with chitosan/alginate. Journal of Applied Polymer Science 134(13):44662. doi: 10.1002/app.44662.
  • Zhang, X. H., Y. T. Li, M. M. Guo, T. Z. Jin, S. A. Arabi, Q. He, B. B. Ismail, Y. Q. Hu, and D. H. Liu. 2021. Antimicrobial and UV blocking properties of composite chitosan films with curcumin grafted cellulose nanofiber. Food Hydrocolloids 112:106337. doi: 10.1016/j.foodhyd.2020.106337.
  • Zhang, X. H., D. H. Liu, T. Z. Jin, W. J. Chen, Q. He, Z. P. Zou, H. H. Zhao, X. Q. Ye, and M. M. Guo. 2021. Preparation and characterization of gellan gum-chitosan polyelectrolyte complex films with the incorporation of thyme essential oil nanoemulsion. Food Hydrocolloids 114:106570. doi: 10.1016/j.foodhyd.2020.106570.
  • Zhao, H. Y., L. Wang, T. Belwal, Y. H. Jiang, D. Li, Y. Q. Xu, Z. S. Luo, and L. Li. 2020. Chitosan-based melatonin bilayer coating for maintaining quality of fresh-cut products. Carbohydrate Polymers 235:115973. doi: 10.1016/j.carbpol.2020.115973.
  • Zhu, K., H. Tu, P. Yang, C. Qiu, D. Zhang, A. Lu, L. Luo, F. Chen, X. Liu, L. Chen, et al. 2019. Mechanically strong chitin fibers with nanofibril structure, biocompatibility, and biodegradability. Chemistry of Materials 31 (6):2078–87. doi: 10.1021/acs.chemmater.8b05183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.