6,427
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021)

, , , , , , ORCID Icon & ORCID Icon show all

References

  • Akimoto, N., T. Ara, D. Nakajima, K. Suda, C. Ikeda, S. Takahashi, R. Muneto, M. Yamada, H. Suzuki, D. Shibata, et al. 2017. FlavonoidSearch: A system for comprehensive flavonoid annotation by mass spectrometry. Scientific Reports 7 (1):1–9. doi: 10.1038/s41598-017-01390-3.
  • Ananingsih, V. K., A. Sharma, and W. Zhou. 2013. Green tea catechins during food processing and storage: A review on stability and detection. Food Research International 50 (2):469–79. doi: 10.1016/j.foodres.2011.03.004.
  • Appeldoorn, M. M., J. P. Vincken, A. M. Aura, P. C. H. Hollman, and H. Gruppen. 2009. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites. Journal of Agricultural and Food Chemistry 57 (3):1084–92. doi: 10.1021/jf803059z. doi: 10.1021/jf803059z.
  • Bai, W. X., C. Wang, Y. J. Wang, W. J. Zheng, W. Wang, X. C. Wan, and G. H. Bao. 2017. Novel acylated flavonol tetraglycoside with inhibitory effect on lipid accumulation in 3t3-l1 cells from lu’an guapian tea and quantification of flavonoid glycosides in six major processing types of tea. Journal of Agricultural and Food Chemistry 65 (14):2999–3005. doi: 10.1021/acs.jafc.7b00239.
  • Carrasco-Pozo, C., M. Gotteland, R. L. Castillo, and C. Chen. 2015. 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, protects against pancreatic β-cells dysfunction induced by high cholesterol. Experimental Cell Research 334 (2):270–82. doi: 10.1016/j.yexcr.2015.03.021.
  • Cheng, J., F. H. Wu, P. Wang, J. P. Ke, X. C. Wan, M. H. Qiu, and G. H. Bao. 2018. Flavoalkaloids with a pyrrolidinone ring from Chinese ancient cultivated tea Xi-Gui. Journal of Agricultural and Food Chemistry 66 (30):7948–57. doi: 10.1021/acs.jafc.8b02266.
  • Cheng, L., Q. Yang, Z. Chen, J. Zhang, Q. Chen, Y. Wang, and X. Wei. 2020. Distinct changes of metabolic profile and sensory quality during Qingzhuan tea processing revealed by LC-MS-based metabolomics. Journal of Agricultural and Food Chemistry 68 (17):4955–65. doi: 10.1021/acs.jafc.0c00581.
  • Chen, L., F. Liu, Y. Yang, Z. Tu, J. Lin, Y. Ye, and P. Xu. 2021. Oxygen-enriched fermentation improves the taste of black tea by reducing the bitter and astringent metabolites. Food Research International (Ottawa, ON) 148:110613. doi: 10.1016/j.foodres.2021.110613.
  • Chen, T. T., and C. S. Yang. 2020. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: Implications on health effects. Critical Reviews in Food Science and Nutrition 60 (16):2691–709. doi: 10.1080/10408398.2019.1654430.
  • Chen, Z. M., and Y. S. Zhen. 2014. Health functions of tea. 1st ed. Beijing, China. Science Press. (In Chinese).
  • Chiu, F. L., and J. K. Lin. 2005. HPLC analysis of naturally occurring methylated catechins, 3’ ‘- and 4’ ‘-methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages. Journal of Agricultural and Food Chemistry 53 (18):7035–42. doi: 10.1021/jf0507442.
  • Chow, H. H. S., and I. A. Hakim. 2011. Pharmacokinetic and chemoprevention studies on tea in humans. Pharmacological Research 64 (2):105–12. doi: 10.1016/j.phrs.2011.05.007. doi: 10.1016/j.phrs.2011.05.007.
  • Chow, H. H. S., I. A. Hakim, D. R. Vining, J. A. Crowell, J. Ranger-Moore, W. M. Chew, C. A. Celaya, S. R. Rodney, Y. Hara, and D. S. Alberts. 2005. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of polyphenon E in healthy individuals. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 11 (12):4627–33. doi: 10.1158/1078-0432.CCR-04-2549.
  • Clifford, M. N., J. J. van der Hooft, and A. Crozier. 2013. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. The American Journal of Clinical Nutrition 98 (6 Suppl):1619S–30S. doi: 10.3945/ajcn.113.058958.
  • Dai, W. D., N. Lou, D. C. Xie, Z. Y. Hu, H. Y. Song, M. L. Lu, D. Shang, W. L. Wu, J. k Peng, P. Y. Yin, et al. 2020. N-Ethyl-2-pyrrolidinone-substituted flavan-3-ols with anti-inflammatory activity in lipopolysaccharide-stimulated macrophages are storage-related marker compounds for green tea. Journal of Agricultural and Food Chemistry 68 (43):12164–72. doi: 10.1021/acs.jafc.0c03952.
  • Dai, W. D., D. D. Qi, T. Yang, H. P. Lv, L. Guo, Y. Zhang, Y. Zhu, Q. H. Peng, D. C. Xie, J. F. Tan, et al. 2015. Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry 63 (44):9869–78. doi: 10.1021/acs.jafc.5b03967.
  • Dai, W. D., J. F. Tan, M. L. Lu, Y. Zhu, P. L. Li, Q. H. Peng, L. Guo, Y. Zhang, D. C. Xie, Z. Y. Hu, et al. 2018. Metabolomics investigation reveals that 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols are potential marker compounds of stored white teas. Journal of Agricultural and Food Chemistry 66 (27):7209–18. doi: 10.1021/acs.jafc.8b02038.
  • Davies, K. M., N. W. Albert, Y. F. Zhou, and K. E. Schwinn. 2018. Functions of flavonoid and betalain pigments in abiotic stress tolerance in plants. Annual Plant Reviews Online 1 (1):21–62. doi: 10.1002/9781119312994.apr0604.
  • de Vos, W. M., and E. A. de Vos. 2012. Role of the intestinal microbiome in health and disease: From correlation to causation. Nutrition Reviews 70 (suppl_1):S45–S56. doi: 10.1111/j.1753-4887.2012.00505.x.
  • Deka, H., T. Barman, J. Dutta, A. Devi, P. Tamuly, R. K. Paul, and T. Karak. 2021. Catechin and caffeine content of tea (Camellia sinensis L.) leaf significantly differ with seasonal variation: A study on popular cultivars in North East India. Journal of Food Composition and Analysis 96:103684. doi: 10.1016/j.jfca.2020.103684.
  • Dong, F., J. H. Hu, Y. Z. Shi, M. Y. Liu, Q. F. Zhang, and J. Y. Ruan. 2019. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis). Plant Physiology and Biochemistry: PPB 138:48–57. doi: 10.1016/j.plaphy.2019.02.017.
  • Dong, F., Z. Y. Yang, P. M. He, and Z. Lin. 2008. Liquid chromatographic-mass spectrometric analysis of antioxidant compounds from Pu-erh tea. Journal of Chinese Institute of Food Science and Technology 8 (2):133–41. doi: 10.16429/j.1009-7848.2008.02.003.
  • Dou, J., V. S. Lee, J. T. Tzen, and M. R. Lee. 2007. Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. Journal of Agricultural and Food Chemistry 55 (18):7462–8. doi: 10.1021/jf0718603.
  • Drynan, J. W., M. N. Clifford, J. Obuchowicz, and N. Kuhnert. 2012. MALDI-TOF mass spectrometry: Avoidance of artifacts and analysis of caffeine-precipitated SII thearubigins from 15 commercial black teas. Journal of Agricultural and Food Chemistry 60 (18):4514–25. doi: 10.1021/jf205125y.
  • Engelhardt, U. H. 2020. Tea chemistry - What do and what don’t we know? - A micro review. Food Research International (Ottawa, ON) 132:109120. doi: 10.1016/j.foodres.2020.109120.
  • Engelhardt, U. H., C. Lakenbrink, and O. Pokorny. 2003. Proanthocyanidins, bisflavanols, and hydrolyzable tannins in green and black teas. In Nutraceutical beverages, ed. F. Shahidi, and D. K. Weerasinghe, 254–64. Washington, DC: American Chemical Society. https://pubs.acs.org/doi/abs/10.1021/bk-2004-0871.ch019.
  • Etxeberria, U., A. Fernández-Quintela, F. I. Milagro, L. Aguirre, J. A. Martínez, and M. P. Portillo. 2013. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. Journal of Agricultural and Food Chemistry 61 (40):9517–33. doi: 10.1021/jf402506c.
  • Fang, Z. T., W. T. Yang, C. Y. Li, D. Li, J. J. Dong, D. Zhao, H. R. Xu, J. H. Ye, X. Q. Zheng, Y. R. Liang, et al. 2021. Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China. Journal of Food Composition and Analysis 97:103772. doi: 10.1016/j.jfca.2020.103772.
  • Fraser, K., S. J. Harrison, G. A. Lane, D. E. Otter, Y. Hemar, S.-Y. Quek, and S. Rasmussen. 2012. HPLC–MS/MS profiling of proanthocyanidins in teas: A comparative study. Journal of Food Composition and Analysis 26 (1–2):43–51. doi: 10.1016/j.jfca.2012.01.004.
  • Fuchs, D., Y. De Graaf, R. Van Kerckhoven, and R. Draijer. 2014. Effect of tea theaflavins and catechins on microvascular function. Nutrients 6 (12):5772–85. doi: 10.3390/nu6125772.
  • Gai, Z., Y. Wang, Y. Ding, W. Qian, C. Qiu, H. Xie, L. Sun, Z. Jiang, Q. Ma, L. Wang, et al. 2020. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Scientific Reports 10 (1):12275. doi: 10.1038/s41598-020-69080-1.
  • Gaur, R., J. P. Ke, P. Zhang, Z. Yang, and G. H. Bao. 2020. Novel cinnamoylated flavoalkaloids identified in tea with acetylcholinesterase inhibition effect. Journal of Agricultural and Food Chemistry 68 (10):3140–8. doi: 10.1021/acs.jafc.9b08285.
  • Gonzales, G. B., G. Smagghe, C. Grootaert, M. Zotti, K. Raes, and J. Van Camp. 2015. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews 47 (2):175–90. doi: 10.3109/03602532.2014.1003649.
  • Guo, X.-Y., Y.-Q. Lv, Y. Ye, Z.-Y. Liu, X.-Q. Zheng, J.-L. Lu, Y.-R. Liang, and J.-H. Ye. 2021. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves. Food Chemistry 339:128088. doi: 10.1016/j.foodchem.2020.128088.
  • Halbwirth, H. 2010. The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. International Journal of Molecular Sciences 11 (2):595–621. doi: 10.3390/ijms11020595.
  • Han, W. Y., X. Li, and G. J. Ahammed. 2018. Stress physiology of tea in the face of climate change. 1st ed. Singapore: Springer. doi: 10.1007/978-981-13-2140-5.
  • Hashimoto, F., G. I. Nonaka, and I. Nishioka. 1987. Tannins and related compounds. lvi. isolation of four new acylated flavan-3-ols from oolong tea. Chemical and Pharmaceutical Bulletin 35 (2):611–6. doi: 10.1248/cpb.35.611.
  • He, H. F., K. Wei, J. F. Yin, and Y. Ye. 2021. Insight into tea flavonoids: Composition and chemistry. Food Reviews International 37 (8):812–23. doi: 10.1080/87559129.2020.1721530.
  • Ho, C. T., J. K. Lin, and F. Shahidi. 2008. Tea and tea products: Chemistry and health-promoting properties. 1st ed. Boca Raton: CRC press. doi: 10.1201/9781420008036.
  • Hodgson, A. B., R. K. Randell, K. Mahabir-Jagessar-T, S. Lotito, T. Mulder, D. J. Mela, A. E. Jeukendrup, and D. M. Jacobs. 2014. Acute effects of green tea extract intake on exogenous and endogenous metabolites in human plasma. Journal of Agricultural and Food Chemistry 62 (5):1198–208. doi: 10.1021/jf404872y.
  • Hou, D. X., S. Masuzaki, S. Tanigawa, F. Hashimoto, J. H. Chen, T. Sogo, and M. Fujii. 2010. Oolong tea theasinensins attenuate cyclooxygenase-2 expression in lipopolysaccharide (LPS)-activated mouse macrophages: Structure-activity relationship and molecular mechanisms. Journal of Agricultural and Food Chemistry 58 (24):12735–43. doi: 10.1021/jf103605j.
  • Hu, J. G., L. J. Zhang, Y. Y. Sheng, K. R. Wang, Y. L. Shi, Y. R. Liang, and X. Q. Zheng. 2020. Screening tea hybrid with abundant anthocyanins and investigating the effect of tea processing on foliar anthocyanins intea. Folia Horticulturae 0 (0):279–90. doi: 10.2478/fhort-2020-0025.
  • Huang, J. C., L. Chen, B. Xue, Q. Y. Liu, S. Y. Ou, Y. Wang, and X. C. Peng. 2016. Different flavonoids can shape unique gut microbiota profile in vitro. Journal of Food Science 81 (9):H2273–H2279. doi: 10.1111/1750-3841.13411.
  • Huang, A., Z. D. Jiang, M. Tao, M. C. Wen, Z. P. Xiao, L. Zhang, M. Y. Zha, J. Y. Chen, Z. Q. Liu, and L. Zhang. 2021. Targeted and nontargeted metabolomics analysis for determining the effect of storage time on the metabolites and taste quality of keemun black tea. Food Chemistry 359:129950. doi: 10.1016/j.foodchem.2021.129950.
  • Huang, Y. N., K. Y. Xing, L. Qiu, Q. L. Wu, and H. Wei. 2021. Therapeutic. implications of functional tea ingredients for ameliorating inflammatory bowel disease: A focused review. Critical Reviews in Food Science and Nutrition:1–15. doi: 10.1080/10408398.2021.1884532.
  • Huang, H., Q. Y. Yao, E. H. Xia, and L. Z. Gao. 2018. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) Associated with Tea Flavor. Journal of Agricultural and Food Chemistry 66 (37):9828–38. doi: 10.1021/acs.jafc.8b01995.
  • Huang, F., X. Zheng, X. Ma, R. Jiang, W. Zhou, S. Zhou, Y. Zhang, S. Lei, S. Wang, J. Kuang, et al. 2019. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications 10 (1):4971. doi: 10.1038/s41467-019-12896-x.
  • Jiang, H. Y., T. Shii, Y. Matsuo, T. Tanaka, Z. H. Jiang, and I. Kouno. 2011. A new catechin oxidation product and polymeric polyphenols of post-fermented tea. Food Chemistry 129 (3):830–6. doi: 10.1016/j.foodchem.2011.05.031.
  • Jin, J. Q., Y. F. Chai, Y. F. Liu, J. Zhang, M. Z. Yao, and L. Chen. 2018. Hongyacha, a naturally caffeine-free tea plant from Fujian, China. Journal of Agricultural and Food Chemistry 66 (43):11311–9. doi: 10.1021/acs.jafc.8b03433.
  • Jing, T. T., W. K. Du, T. Gao, Y. Wu, N. Zhang, M. Y. Zhao, J. Y. Jin, J. M. Wang, W. Schwab, X. C. Wan, et al. 2021. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant, Cell & Environment 44 (4):1178–91. doi: 10.1111/pce.13861.
  • Jin, J. Q., J. Q. Ma, C. L. Ma, M. Z. Yao, and L. Chen. 2014. Determination of catechin content in representative Chinese tea germplasms. Journal of Agricultural and Food Chemistry 62 (39):9436–41. doi: 10.1021/jf5024559.
  • Jin, J. S., M. Touyama, T. Hisada, and Y. Benno. 2012. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiology and Immunology 56 (11):729–39. doi: 10.1111/j.1348-0421.2012.00502.x.
  • Kanegae, A., A. Sakamoto, H. Nakayama, Y. Nakazono, I. Yakashiro, Y. Matsuo, T. Tanaka, and K. Ishimaru. 2013. New phenolic compounds from Camellia sinensis L. fermented leaves. Journal of Natural Medicines 67 (3):652–6. doi: 10.1007/s11418-012-0704-5.
  • Kang, N. X., J. P. Zhao, Y. Zhou, Z. R. Peng, Y. L. Liu, Q. M. Xu, I. A. Khan, and S. L. Yang. 2021. New dihydropyrrole-substituted epicatechins from sun-dried Dongting-Biluochun tea leaves and their inhibitory activities on acetylcholinesterase. ACS Food Science & Technology 1 (3):310–5. doi: 10.1021/acsfoodscitech.1c00057.
  • Kawabata, J., K. Mizuhata, E. Sato, T. Nishioka, Y. Aoyama, and T. Kasai. 2003. 6-Hydroxyflavonoids as alpha-glucosidase inhibitors from marjoram (Origanum majorana) leaves . Bioscience, Biotechnology, and Biochemistry 67 (2):445–7. doi: 10.1271/bbb.67.445.
  • Khairudin, M. A. S., A. M. Mhd Jalil, and N. Hussin. 2021. Effects of polyphenols in tea (Camellia sinensis sp.) on the modulation of gut microbiota in human trials and animal studies. Gastroenterology Insights 12 (2):202–16. doi: 10.3390/gastroent12020018.
  • Kilel, E. C., A. K. Faraj, J. K. Wanyoko, F. N. Wachira, and V. Mwingirwa. 2013. Green tea from purple leaf coloured tea clones in kenya- their quality characteristics. Food Chemistry 141 (2):769–75. doi: 10.1016/j.foodchem.2013.03.051.
  • Koch, W. 2020. Theaflavins, thearubigins, and theasinensins. In Handbook of dietary phytochemicals, ed. J. B. Xiao, S. D. Sarker, and Y. Asakawa, 1–29. Singapore: Springer. doi: 10.1007/978-981-13-1745-3_20-1.
  • Lambert, J. D., M. J. Lee, L. Diamond, J. Ju, J. Hong, M. Bose, H. L. Newmark, and C. S. Yang. 2006. Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metabolism and Disposition: The Biological Fate of Chemicals 34 (1):8–11. doi: 10.1124/dmd.104.003434. doi: 10.1124/dmd.104.003434.
  • Li, X., G. J. Ahammed, X. N. Zhang, L. Zhang, P. Yan, L. P. Zhang, J. Y. Fu, and W. Y. Han. 2021b. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. Journal of Hazardous Materials 403:123922. doi: 10.1016/j.jhazmat.2020.123922.
  • Liao, Y. Y., Z. M. Yu, X. Y. Liu, L. T. Zeng, S. H. Cheng, J. L. Li, J. C. Tang, and Z. Y. Yang. 2019. Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) Leaves. Journal of Agricultural and Food Chemistry 67 (24):6716–24. doi: 10.1021/acs.jafc.9b01854.
  • Liao, Y. Y., X. C. Zhou, and L. T. Zeng. 2020. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Critical Reviews in Food Science and Nutrition:1–17. doi: 10.1080/10408398.2020.1868970.
  • Li, Q. Q., and T. V. de Wiele. 2021. Gut microbiota as a driver of the. interindividual variability of cardiometabolic effects from tea polyphenols. Critical Reviews in Food Science and Nutrition:1–27. doi: 10.1080/10408398.2021.1965536.
  • Li, Q., Y. L. Jin, R. G. Jiang, Y. Q. Xu, Y. Y. Zhang, Y. Luo, J. N. Huang, K. B. Wang, and Z. H. Liu. 2021a. Dynamic changes in the metabolite profile and taste characteristics of Fu brick tea during the manufacturing process. Food Chemistry 344:128576. doi: 10.1016/j.foodchem.2020.128576.
  • Li, X., G. J. Liu, W. Zhang, Y. L. Zhou, T. J. Ling, X. C. Wan, and G. H. Bao. 2018. Novel flavoalkaloids from white tea with inhibitory activity against the formation of advanced glycation end products. Journal of Agricultural and Food Chemistry 66 (18):4621–9. doi: 10.1021/acs.jafc.8b00650.
  • Li, S. M., C. Y. Lo, M. H. Pan, C. S. Lai, and C. T. Ho. 2013. Black tea: Chemical analysis and stability. Food and Function 4 (1):10–8. doi: 10.1039/c2fo30093a.
  • Lin, N., X. Y. Liu, W. F. Zhu, X. Cheng, X. H. Wang, X. C. Wan, and L. L. Liu. 2021. Ambient ultraviolet B signal modulates tea flavor characteristics via shifting a metabolic flux in flavonoid biosynthesis. Journal of Agricultural and Food Chemistry 69 (11):3401–14. doi: 10.1021/acs.jafc.0c07009.
  • Lin, Y. C., H. F. Lu, J. C. Chen, H. C. Huang, Y. H. Chen, Y. S. Su, C. Y. Tung, and C. Huang. 2020. Purple-leaf tea (Camellia sinensis L.) ameliorates high-fat diet induced obesity and metabolic disorder through the modulation of the gut microbiota in mice. BMC Complementary Medicine and Therapies 20 (1):376. doi: 10.1186/s12906-020-03171-4.
  • Li, W., L. Tan, Y. Zou, X. Tan, J. Huang, W. Chen, and Q. Tang. 2020b. The effects of ultraviolet A/B treatments on anthocyanin accumulation and gene expression in dark-purple tea cultivar ‘Ziyan’ (Camellia sinensis). Molecules 25 (2):354. doi: 10.3390/molecules25+020354.
  • Liu, Z. B., M. E. Bruins, W. J. C. de Bruijn, and J. P. Vincken. 2020. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. Journal of Food Composition and Analysis 86:103385. doi: 10.1016/j.jfca.2019.103385.
  • Liu, Z. B., W. J. C. de Bruijn, M. G. Sanders, S. S. Wang, M. E. Bruins, and J. P. Vincken. 2021. Insights in the recalcitrance of theasinensin A to human gut microbial degradation. Journal of Agricultural and Food Chemistry 69 (8):2477–84. doi: 10.1021/acs.jafc.1c00727.
  • Liu, L. F., X. Yi, A. Liu, W. J. Xiao, and Z. H. Gong. 2018. Research progress of tea anthocyanin. Journal of Tea Communication 45 (1):3–8. (In Chinese). doi: 10.3969/j.issn.1009-525X.2018.01.001.
  • Li, N., H. T. Zhu, D. Wang, M. Zhang, C. R. Yang, and Y. J. Zhang. 2020a. New flavoalkaloids with potent α-glucosidase and acetylcholinesterase inhibitory activities from Yunnan black tea ‘Jin-Ya’. Journal of Agricultural and Food Chemistry 68 (30):7955–63. doi: 10.1021/acs.jafc.0c02401.
  • Lo, Y.-H., Y.-J. Chen, C.-I. Chang, Y.-W. Lin, C.-Y. Chen, M.-R. Lee, V. S. Y. Lee, and J. T. C. Tzen. 2014. Teaghrelins, unique acylated flavonoid tetraglycosides in chin-shin oolong tea, are putative oral agonists of the ghrelin receptor. Journal of Agricultural and Food Chemistry 62 (22):5085–91. doi: 10.1021/jf501425m.
  • Loo, Y. T., K. Howell, M. Chan, P. Z. Zhang, and K. Ng. 2020. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Comprehensive Reviews in Food Science and Food Safety 19 (4):1268–9. doi: 10.1111/1541-4337.12563.
  • Luo, Z. M., H. X. Du, L. X. Li, M. Q. An, Z. Z. Zhang, X. C. Wan, G. H. Bao, L. Zhang, and T. J. Ling. 2013. Fuzhuanins A and B: The B-ring fission lactones of flavan-3-ols from Fuzhuan Brick-Tea. Journal of Agricultural and Food Chemistry 61 (28):6982–90. doi: 10.1021/jf401724w.
  • Luo, Y., S. S. Yu, J. Li, Q. Li, K. B. Wang, J. N. Huang, and Z. H. Liu. 2018. Molecular characterization of WRKY transcription factors that act as negative regulators of O-methylated catechin biosynthesis in tea plants (Camellia sinensis L.). Journal of Agricultural and Food Chemistry 66 (43):11234–43. doi: 10.1021/acs.jafc.8b02175.
  • Lv, H. P., W. D. Dai, J. F. Tan, L. Guo, Y. Zhu, and Z. Lin. 2015. Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities. Journal of Functional Foods 17:449–58. doi: 10.1016/j.jff.2015.05.043.
  • Lv, H. P., Z. Lin, Q. S. Zhong, and L. Wang. 2010. Study on the chemical component of E8 fraction from pu-erh tea. Journal of Tea Science 30 (6):423–8. (In Chinese). doi: 10.13305/j.cnki.jts.2010.06.014.
  • Lv, H. P., J. F. Tan, L. Guo, J. P. Gu, and Z. Lin. 2008. Study on the GCG in green tea. Journal of Tea Science 28 (2):79–82. (In Chinese).
  • Lv, H. P., T. Yang, C. Y. Ma, C. P. Wang, J. Shi, Y. Zhang, Q. H. Peng, J. F. Tan, L. Guo, and Z. Lin. 2014. Analysis of naturally occurring 3″-Methyl-epigallocatechin gallate in 71 major tea cultivars grown in China and its processing characteristics. Journal of Functional Foods 7:727–36. doi: 10.1016/j.jff.2013.12.009.
  • Lv, H. P., Q. S. Zhong, Z. Lin, L. Wang, J. F. Tan, and L. Guo. 2012. Aroma characterisation of Pu-erh tea using headspace-solid phase microextraction combined with GC/MS and GC–olfactometry. Food Chemistry 130 (4):1074–81. doi: 10.1016/j.foodchem.2011.07.135.
  • Ma, C. Y., H. P. Lv, X. Z. Zhang, Z. M. Chen, J. Shi, M. L. Lu, and Z. Lin. 2013. Identification of regioisomers of methylated kaempferol and quercetin by ultra high performance liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) tandem mass spectrometry combined with diagnostic fragmentation pattern analysis. Analytica Chimica Acta 795:15–24. doi: 10.1016/j.aca.2013.07.038.
  • Maeda-Yamamoto, M., K. Ema, M. Monobe, Y. Tokuda, and H. Tachibana. 2012. Epicatechin-3-O-(3″-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L.) and its in vitro inhibitory effect on histamine release. Journal of Agricultural and Food Chemistry 60 (9):2165–70. doi: 10.1021/jf204497b.
  • Manaharan, T., D. Appleton, H. M. Cheng, and U. D. Palanisamy. 2012. Flavonoids isolated from Syzygiumaqueum leaf extract as potential antihyperglycaemicagents. Food Chemistry 132 (4):1802–7. doi: 10.1016/j.foodchem.2011.11.147.
  • Maritim, T. K., M. Masand, R. Seth, and R. K. Sharma. 2021. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Scientific Reports 11 (1):1–14. doi: 10.1038/s41598-020-80437-4.
  • Mei, Y., H. Xie, S. R. Liu, J. Y. Zhu, S. Q. Zhao, and C. L. Wei. 2021. Metabolites and transcriptional profiling analysis reveal the molecular mechanisms of the anthocyanin metabolism in the “Zijuan” tea plant (Camellia sinensis var. assamica). Journal of Agricultural and Food Chemistry 69 (1):414–27. doi: 10.1021/acs.jafc.0c06439.
  • Meng, X. H., N. Li, H. T. Zhu, D. Wang, C. R. Yang, and Y. J. Zhang. 2019. Plant resources, chemical constituents, and bioactivities of tea plants from the genus Camellia section Thea. Journal of Agricultural and Food Chemistry 67 (19):5318–49. doi: 10.1021/acs.jafc.8b05037.
  • Meng, X. H., H. T. Zhu, H. Yan, D. Wang, C. R. Yang, and Y. J. Zhang. 2018. C-8 N-Ethyl-2-pyrrolidinone-substituted flavan-3-ols from the leaves of Camellia sinensis var. pubilimba. Journal of Agricultural and Food Chemistry 66 (27):7150–5. doi: 10.1021/acs.jafc.8b02066.
  • Mok, S. Y., and S. Lee. 2013. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chemistry 136 (2):969–74. doi: 10.1016/j.foodchem.2012.08.091.
  • Mulvihill, E. E., and M. W. Huff. 2012. Protection from metabolic dysregulation, obesity, and atherosclerosis by citrus flavonoids: Activation of hepatic PGC1α-mediated fatty acid oxidation. PPAR Research 2012:857142. doi: 10.1155/2012/857142.
  • Murota, K., Y. Nakamura, and M. Uehara. 2018. Flavonoid metabolism: The interaction of metabolites and gut microbiota. Bioscience, Biotechnology, and Biochemistry 82 (4):600–10. doi: 10.1080/09168451.2018.1444467.
  • Neilson, A. P., and M. G. Ferruzzi. 2011. Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa. Annual Review of Food Science and Technology 2:125–51. doi: 10.1146/annurev-food-022510-133725.
  • Ng, K. W., Z. J. Cao, H. B. Chen, Z. Z. Zhao, L. Zhu, and T. Yi. 2018. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk. Critical Reviews in Food Science and Nutrition 58 (17):2957–80. doi: 10.1080/10408398.2017.1347556.
  • Oesterle, I., D. Braun, D. Berry, L. Wisgrill, A. Rompel, and B. Warth. 2021. Polyphenol exposure, metabolism, and analysis: A global exposomics perspective. Annual Review of Food Science and Technology 12:461–84. doi: 10.1146/annurev-food-062220-090807.
  • Okumura, H., M. Ichitani, T. Takihara, and K. K. Kunimoto. 2008. Effect of cyclodextrins on the thermal epimerization of tea catechins. Food Science and Technology Research 14 (1):83–8. doi: 10.3136/fstr.14.83.
  • Panche, A. N., A. D. Diwan, and S. R. Chandra. 2016. Flavonoids: An overview. Journal of Nutritional Science 5:e47. doi: 10.1017/jns.2016.41.
  • Pei, R. S., X. C. Liu, and B. Bolling. 2020. Flavonoids and gut health. Current Opinion in Biotechnology 61:153–9. doi: 10.1016/j.copbio.2019.12.018.
  • Peluso, I., C. Miglio, G. Morabito, F. Ioannone, and M. Serafini. 2015. Flavonoids and immune function in human: A systematic review. Critical Reviews in Food Science and Nutrition 55 (3):383–95. doi: 10.1080/10408398.2012.656770.
  • Peterson, J., J. Dwyer, S. Bhagwat, D. Haytowitz, J. Holden, A. L. Eldridge, G. Beecher, and J. Aladesanmi. 2005. Major flavonoids in dry tea. Journal of Food Composition and Analysis 18 (6):487–501. doi: 10.1016/j.jfca.2004.05.006.
  • Preedy, V. R. 2013. Tea in health and disease prevention. London: Academic Press. doi: 10.1016/C2010-0-64948-0.
  • Ren, N., E. Kim, B. Li, H. B. Pan, T. T. Tong, C. S. Yang, and Y. Y. Tu. 2019. Flavonoids alleviating insulin resistance through inhibition of inflammatory signaling. Journal of Agricultural and Food Chemistry 67 (19):5361–73. doi: 10.1021/acs.jafc.8b05348.
  • Rothenberg, D. O. N., C. B. Zhou, and L. Y. Zhang. 2018. A review on the weight-loss effects of oxidized tea polyphenols. Molecules 23 (5):1176. doi: 10.3390/molecules23051176.
  • Salaritabar, A., B. Darvishi, F. Hadjiakhoondi, A. Manayi, A. Sureda, S. F. Nabavi, L. R. Fitzpatrick, S. M. Nabavi, and A. Bishayee. 2017. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World Journal of Gastroenterology 23 (28):5097–114. doi: 10.3748/wjg.v23.i28.5097.
  • Samynathan, R., M. Thiruvengadam, S. H. Nile, M. A. Shariati, M. Rebezov, R. K. Mishra, B. Venkidasamy, S. Periyasamy, I. Chung, and M. Paterio. 2021. Recent insights on tea metabolites, their biosynthesis and chemo-preventing effects: A review. Critical Reviews in Food Science and Nutrition:1–20. doi: 10.1080/10408398.2021.1984871.
  • Sanlier, N., B. B. Gokcen, and M. Altuğ. 2018. Tea consumption and disease correlations. Trends in Food Science & Technology 78:95–106. doi: 10.1016/j.tifs.2018.05.026.
  • Santangelo, R., A. Silvestrini, and C. Mancuso. 2019. Ginsenosides, catechins, quercetin and gut microbiota: Current evidence of challenging interactions. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 123:42–9. doi: 10.1016/j.fct.2018.10.042.
  • Savvides, A., S. Ali, M. Tester, and V. Fotopoulos. 2016. Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends in Plant Science 21 (4):329–40. doi: 10.1016/j.tplants.2015.11.003.
  • Sender, R., S. Fuchs, and R. Milo. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology 14 (8):e1002533. doi: 10.1371/journal.pbio.1002533.
  • Shao, C. Y., C. Y. Zhang, Z. D. Lv, and C. W. Shen. 2021. Pre-and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis). Scientia Horticulturae 281:109984. doi: 10.1016/j.scienta.2021.109984.
  • Sharma, N., H. T. Phan, M. Chikae, Y. Takamura, A. F. Azo‐Oussou, and M. D. C. Vestergaard. 2020. Black tea polyphenol theaflavin as promising antioxidant and potential copper chelator. Journal of the Science of Food and Agriculture 100 (7):3126–35. doi: 10.1002/jsfa.10347.
  • Shi, J., W. J. Ma, C. P. Wang, W. L. Wu, J. Tian, Y. Zhang, Y. L. Shi, J. T. Wang, Q. H. Peng, Z. Lin, et al. 2021b. Impact of various microbial-fermented methods on the chemical profile of dark tea using a single raw tea material. Journal of Agricultural and Food Chemistry 69 (14):4210–22. doi: 10.1021/acs.jafc.1c00598.
  • Shi, J., J. Simal-Gandara, J. F. Mei, W. J. Ma, Q. H. Peng, Y. L. Shi, Q. Xu, Z. Lin, and H. P. Lv. 2021a. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas. Food Chemistry 363:130278. doi: 10.1016/j.foodchem.2021.130278.
  • Shi, J., J. T. Wang, H. P. Lv, Q. H. Peng, M. Schreiner, S. Baldermann, and Z. Lin. 2021c. Integrated proteomic and metabolomic analyses reveal the importance of aroma precursor accumulation and storage in methyl jasmonate-primed tea leaves. Horticulture Research 8 (1):1–14. doi: 10.1038/s41438-021-00528-9.
  • Song, W., X. F. Zhu, X. D. Ding, H. B. Yang, S. T. Qin, H. Chen, and S. D. Wei. 2017. Structural features, antioxidant and tyrosinase inhibitory activities of proanthocyanidins in leaves of two tea cultivars. International Journal of Food Properties 20 (6):1348–58. doi: 10.1080/10942912.2016.1209682.
  • Stodt, U., and U. H. Engelhardt. 2013. Progress in the analysis of selected tea constituents over the past 20 years. Food Research International 53 (2):636–48. doi: 10.1016/j.foodres.2012.12.052.
  • Su, X. Q., G. J. Zhang, Y. Ma, M. Chen, S. H. Chen, S. M. Duan, J. Q. Wan, F. Hashimoto, H. P. Lv, J. H. Li, et al. 2016. Isolation, identification, and biotransformation of teadenol a from solid state fermentation of pu-erh tea and in vitro antioxidant activity. Applied Sciences 6 (6):161. doi: 10.3390/app6060161.
  • Tanaka, T., S. Watarumi, M. Fujieda, and I. Kouno. 2005. New black tea polyphenol having N-ethyl-2-pyrrolidinone moiety derived from tea amino acid theanine: Isolation, characterization and partial synthesis. Food Chemistry 93 (1):81–7. doi: 10.1016/j.foodchem.2004.09.013.
  • Tang, H., J. C. Tang, J. Y. Liu, B. Zhou, and Y. Y. Chen. 2021. Metabolomics analyses reveal anthocyanins-rich accumulation in naturally mutated purple-leaf tea (Camellia sinensis L.). All Life 14 (1):744–55. doi:10.1080/26895293.2021.1968509.
  • Tao, M. K., M. Xu, H. T. Zhu, R. R. Cheng, D. Wang, C. R. Yang, and Y. J. Zhang. 2014. New phenylpropanoid-substituted flavan-3-ols from Pu-er ripe tea. Natural Product Communications 9 (8):1167–70. doi: 10.1177/1934578X1400900827.
  • Thilakarathna, S. H., and H. P. V. Rupasinghe. 2013. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5 (9):3367–87. doi: 10.3390/nu5093367.
  • Tian, L. W., M. K. Tao, M. Xu, J. Hu, H. T. Zhu, W. Y. Xiong, D. Wang, C. R. Yang, and Y. J. Zhang. 2014. Carboxymethyl- and carboxyl-catechins from ripe pu-er tea. Journal of Agricultural and Food Chemistry 62 (50):12229–34. doi: 10.1021/jf5036959.
  • Tomás-Barberán, F. A., and J. C. Espín. 2019. Effect of food structure and processing on (poly)phenol-gut microbiota interactions and the effects on human health. Annual Review of Food Science and Technology 10:221–38. doi: 10.1146/annurev-food-032818-121615.
  • Tsuji, P. A., R. N. Winn, and T. Walle. 2006. Accumulation and metabolism of the anticancer flavonoid 5,7-dimethoxyflavone compared to its unmethylated analog chrysin in the Atlantic killifish. Chemico-Biological Interactions 164 (1–2):85–92. doi: 10.1016/j.cbi.2006.08.023.
  • Wang, M. Q., J. Firrman, L. S. Liu, and K. Yam. 2019b. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Research International 2019:7010467. doi: 10.1155/2019/7010467.
  • Wang, W., X. W. Fu, X. L. Dai, F. Hua, G. X. Chu, M. J. Chu, F. L. Hu, T. J. Ling, L. P. Gao, Z. W. Xie, et al. 2017. Novel acetylcholinesterase inhibitors from Zijuan tea and biosynthetic pathway of caffeoylated catechin in tea plant. Food Chemistry 237:1172–8. doi: 10.1016/j.foodchem.2017.06.011. doi: 10.1016/j.foodchem.2017.06.011.
  • Wang, Q. P., J. S. Gong, Y. Chisti, and S. Sirisansaneeyakul. 2016. Production of theabrownins using a crude fungal enzyme concentrate. Journal of Biotechnology 231:250–9. doi: 10.1016/j.jbiotec.2016.06.010.
  • Wang, P. Q., Y. J. Liu, L. J. Zhang, W. Z. Wang, H. Hou, Y. Zhao, X. L. Jiang, J. Yu, H. R. Tan, Y. S. Wang, et al. 2020. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins. The Plant Journal: For Cell and Molecular Biology 101 (1):18–36. doi: 10.1111/tpj.14515.
  • Wang, P. Q., G. L. Ma, L. J. Zhang, Y. Li, Z. P. Fu, X. Y. Kan, Y. H. Han, H. Y. Wang, X. L. Jiang, Y. J. Liu, et al. 2019a. A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 67 (5):1418–28. doi: 10.1021/acs.jafc.8b06207.
  • Wang, H. F., G. J. Provan, and K. Helliwell. 2000. Tea flavonoids: Their functions, utilisation and analysis. Trends in Food Science & Technology 11 (4–5):152–60. doi: 10.1016/S0924-2244(00)00061-3.
  • Wang, P., J. Yu, S. Jin, S. Chen, C. Yue, W. Wang, S. Gao, H. Cao, Y. Zheng, M. Gu, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8 (1):1–15. doi: 10.1038/s41438-021-00542-x.
  • Wang, W. N., L. Zhang, S. Wang, S. P. Shi, Y. Jiang, N. Li, and P. F. Tu. 2014. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity . Food Chemistry 152:539–45. doi: 10.1016/j.foodchem.2013.10.117.
  • Weerawatanakorn, M., W. L. Hung, M. H. Pan, S. M. Li, D. X. Li, X. C. Wan, and C. T. Ho. 2015. Chemistry and health beneficial effects of oolong tea and theasinensins. Food Science and Human Wellness 4 (4):133–46. doi: 10.1016/j.fshw.2015.10.002.
  • Wei, K., L. Y. Wang, Y. Z. Zhang, L. Ruan, H. L. Li, L. Y. Wu, L. Y. Xu, C. C. Zhang, X. G. Zhou, H. Cheng, et al. 2019. A coupled role for CsMYB75 and CSGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal: For Cell and Molecular Biology 97 (5):825–40. doi: 10.1111/tpj.14161.
  • Wei, C. L., H. Yang, S. B. Wang, J. Zhao, C. Liu, L. P. Gao, E. H. Xia, Y. Lu, Y. L. Tai, G. B. She, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115 (18):E4151–E4158. doi: 10.1073/pnas.1719622115.
  • Wen, L. R., Y. M. Jiang, J. L. Yang, Y. P. Zhao, M. M. Tian, and B. Yang. 2017. Structure, bioactivity, and synthesis of methylated flavonoids. Annals of the New York Academy of Sciences 1398 (1):120–9. doi: 10.1111/nyas.13350.
  • Wen, X., and T. Walle. 2006a. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metabolism and Disposition: The Biological Fate of Chemicals 34 (10):1786–92. doi: 10.1124/dmd.106.011122.
  • Wen, X., and T. Walle. 2006b. Methylation protects dietary flavonoids from rapid hepatic metabolism. Xenobiotica; the Fate of Foreign Compounds in Biological Systems 36 (5):387–97. doi: 10.1080/00498250600630636.
  • Wu, Z. H., S. M. Huang, T. T. Li, N. Li, D. D. Han, B. Zhang, Z. Z. Xu, S. Y. Zhang, J. M. Pang, S. L. Zhang, et al. 2021b. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 9 (1):184. doi: 10.1186/s40168-021-01115-9.
  • Wulandari, R. A., M. Amano, T. Yanagita, T. Tanaka, I. Kouno, D. Kawamura, and K. Ishimaru. 2011. New phenolic compounds from Camellia sinensis L. leaves fermented with Aspergillus sp. Journal of Natural Medicines 65 (3–4):594–7. doi: 10.1007/s11418-011-0515-0.
  • Wu, M., Q. Y. Luo, R. X. Nie, X. P. Yang, Z. Z. Tang, and H. Chen. 2021. Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Critical Reviews in Food Science and Nutrition 61 (13):2175–93. doi: 10.1080/10408398.2020.1773390.
  • Wu, W. L., T. Tong, Y. Hu, H. Zhou, X. Yin, and S. G. Zhang. 2021a. Camellia ptilophylla and specific chemical components, their health beneficial effects. Journal of Tea Science 41 (5):593–607. (In Chinese). doi: 10.3969/j.issn.1000-369X.2021.05.001.
  • Xia, E. H., H. B. Zhang, J. Sheng, K. Li, Q. J. Zhang, C. Kim, Y. Zhang, Y. Liu, T. Zhu, W. Li, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10 (6):866–77. doi: 10.1016/j.molp.2017.04.002.
  • Xiao, J. B. 2017. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Critical Reviews in Food Science and Nutrition 57 (9):1874–905. doi: 10.1080/10408398.2015.1032400.
  • Xie, D. C., W. D. Dai, M. L. Lu, J. F. Tan, Y. Zhang, M. Chen, and Z. Lin. 2019. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Food Research International 125:108635. doi: 10.1016/j.foodres.2019.108635.
  • Xing, L. J., H. Zhang, R. L. Qi, R. Tsao, and Y. Mine. 2019. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. Journal of Agricultural and Food Chemistry 67 (4):1029–43. doi: 10.1021/acs.jafc.8b06146.
  • Xu, B., H. Y. Jiang, J. J. Xue, Q. L. Liu, J. Y. Zhang, and Y. Wang. 2014. Forming mechanism of TSs and TFs in tea fresh leaf suspension fermentation. Chinese Agricultural Science Bulletin 30 (22):140–7. (In Chinese).
  • Xu, S. S., J. J. Wang, Y. M. Wei, W. W. Deng, X. C. Wan, G. H. Bao, Z. W. Xie, T. J. Ling, and J. M. Ning. 2019. Metabolomics based on UHPLC-Orbitrap-MS and global natural product social molecular networking reveals effects of time scale and environment of storage on the metabolites and taste quality of raw pu-erh tea. Journal of Agricultural and Food Chemistry 67 (43):12084–93. doi: 10.1021/acs.jafc.9b05314.
  • Ye, M., M. M. Liu, M. Erb, G. Glauser, J. Zhang, X. W. Li, and X. L. Sun. 2021. Indole primes defence signalling and increases herbivore resistance in tea plants. Plant, Cell & Environment 44 (4):1165–77. doi: 10.1111/pce.13897.
  • Ye, Y. L., J. N. Yan, J. L. Cui, S. H. Mao, M. F. Li, X. L. Liao, and H. R. Tong. 2018. Dynamic changes in amino acids, catechins, caffeine and gallic acid in green tea during withering. Journal of Food Composition and Analysis 66:98–108. doi: 10.1016/j.jfca.2017.12.008.
  • Zeng, X. Q., Y. Xi, and W. B. Jiang. 2019. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review. Critical Reviews in Food Science and Nutrition 59 (13):2125–35. doi: 10.1080/10408398.2018.1439880.
  • Zhang, L., C. Ho, J. Zhou, J. S. Santos, L. Armstrong, and D. Granato. 2019b. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18 (5):1474–95. doi: 10.1111/1541-4337.12479.
  • Zhang, J., Z. X. Liang, T. Zhang, Z. Q. Li, J. J. Zhu, P. C. Zhang, and W. J. Xiao. 2019a. Dynamic changes of main quality components during yellow tea processing. Food Science 40 (16):200–5. doi: 10.7506/spkx1002-6630-20181004-015.
  • Zhang, Y. T., Q. Li, H. Xing, X. F. Lu, L. S. Zhao, K. K. Qu, and K. S. Bi. 2013. Evaluation of antioxidant activity of ten compounds in different tea samples by means of an on-line HPLC–DPPH assay. Food Research International 53 (2):847–56. doi: 10.1016/j.foodres.2013.03.026.
  • Zhao, F., M. J. Chen, S. Jin, S. Y. Wang, W. J. Yue, L. X. Zhang, and N. X. Ye. 2022. Macro-composition quantification combined with metabolomics analysis uncovered key dynamic chemical changes of aging white tea. Food Chemistry 366:130593. doi: 10.1016/j.foodchem.2021.130593.
  • Zhao, J., P. H. Li, T. Xia, and X. C. Wan. 2020. Exploring plant metabolic genomics: Chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40 (5):667–88. doi: 10.1080/07388551.2020.1752617.
  • Zhao, X. C., X. S. Zeng, N. Lin, S. W. Yu, A. R. Fernie, and J. Zhao. 2021. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator–repressor network. Horticulture Research 8 (1):1–18. doi: 10.1038/s41438-021-00545-8.
  • Zheng, C., J. Q. Ma, C. L. Ma, S. Y. Shen, Y. F. Liu, and L. Chen. 2019. Regulation of growth and flavonoid formation of tea plants (Camellia sinensis) by Blue and Green Light. Journal of Agricultural and Food Chemistry 67 (8):2408–19. doi: 10.1021/acs.jafc.8b07050.
  • Zheng, Y. Y., X. Zeng, T. T. Chen, W. Peng, and W. W. Su. 2020. Chemical profile, antioxidative, and gut microbiota modulatory properties of ganpu tea: A derivative of pu-erh tea. Nutrients 12 (1):224. doi: 10.3390/nu12010224.
  • Zhou, J., Y. Wu, P. Long, C.-T. Ho, Y. Wang, Z. Kan, L. Cao, L. Zhang, and X. Wan. 2019. LC-MS-based metabolomics reveals the chemical changes of polyphenols during high-temperature roasting of large-leaf yellow tea. Journal of Agricultural and Food Chemistry 67 (19):5405–12. doi: 10.1021/acs.jafc.8b05062.
  • Zhou, Z. H., Y. J. Zhang, M. Xu, and C. R. Yang. 2005. Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea . Journal of Agricultural and Food Chemistry 53 (22):8614–7. doi: 10.1021/jf051390h.
  • Zhu, Y. F., J. J. Chen, X. M. Ji, X. Hu, T. J. Ling, Z. Z. Zhang, G. H. Bao, and X. C. Wan. 2015. Changes of major tea polyphenols and production of four new B-ring fission metabolites of catechins from post-fermented Jing-Wei Fu brick tea. Food Chemistry 170:110–7. doi: 10.1016/j.foodchem.2014.08.075.
  • Zhu, X. J., J. R. Liao, X. L. Xia, F. Xiong, Y. Li, J. Z. Shen, B. Wen, Y. C. Ma, Y. H. Wang, and W. P. Fang. 2019. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature. BMC Plant Biology 19 (1):43. doi: 10.1186/s12870-019-1646-9.
  • Zhu, J. Y., Q. S. Xu, S. Q. Zhao, X. B. Xia, X. M. Yan, Y. L. An, X. Z. Mi, L. X. Guo, L. Samarina, and C. L. Wei. 2020. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Plant Science: An International Journal of Experimental Plant Biology 290:110306. doi: 10.1016/j.plantsci.2019.110306.
  • Zmora, N., G. Zilberman-Schapira, J. Suez, U. Mor, M. Dori-Bachash, S. Bashiardes, E. Kotler, M. Zur, D. Regev-Lehavi, R. B.-Z. Brik, et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174 (6):1388–405. doi: 10.1016/j.cell.2018.08.041.