2,798
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Carbon dots synthesized from microorganisms and food by-products: active and smart food packaging applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Anand, A., B. Unnikrishnan, S. C. Wei, C. P. Chou, L. Z. Zhang, and C. C. Huang. 2019. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents—A minireview. Nanoscale Horizons 4 (1):117–37. doi: 10.1039/c8nh00174j.
  • Anwar, S., H. Ding, M. Xu, X. Hu, Z. Li, J. Wang, L. Liu, L. Jiang, D. Wang, C. Dong, et al. 2019. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Applied Bio Materials 2 (6):2317–38. doi: 10.1021/acsabm.9b00112.
  • Bajpai, S. K., A. D’Souza, and B. Suhail. 2019. Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells. International Nano Letters 9 (3):203–12. doi: 10.1007/s40089-019-0271-9.
  • Bakshi, P. S., D. Selvakumar, K. Kadirvelu, and N. S. Kumar. 2020. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. International Journal of Biological Macromolecules 150:1072–83. doi: 10.1016/j.ijbiomac.2019.10.113.
  • Bing, W., H. Sun, Z. Yan, J. Ren, and X. Qu. 2016. Programmed bacteria death induced by carbon dots with different surface charge. Small (Weinheim an der Bergstrasse, Germany) 12 (34):4713–8. doi: 10.1002/smll.201600294.
  • Cai, T., B. Liu, E. Pang, W. Ren, S. Li, and S. Hu. 2020. A review on the preparation and applications of coal-based fluorescent carbon dots. New Carbon Materials 35 (6):646–66. doi: 10.1016/S1872-5805(20)60520-0.
  • Chen, J., J. Liu, J. Li, L. Xu, and Y. Qiao. 2017. One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging. Journal of Colloid and Interface Science 485:167–74. doi: 10.1016/j.jcis.2016.09.040.
  • Chen, R., G. Liu, X. Sun, X. Cao, W. He, X. Lin, Q. Liu, J. Zhao, Y. Pang, B. Li, et al. 2020. Chitosan derived nitrogen-doped carbon dots suppress osteoclastic osteolysis via downregulating ROS. Nanoscale 12 (30):16229–44. doi: 10.1039/D0NR02848G.
  • Choi, Y., X. T. Zheng, and Y. N. Tan. 2020. Bioinspired carbon dots (biodots): emerging fluorophores with tailored multiple functionalities for biomedical, agricultural and environmental applications. Molecular Systems Design & Engineering 5 (1):67–90. doi: 10.1039/C9ME00086K.
  • Cong, S., K. Liu, F. Qiao, Y. Song, and M. Tan. 2019. Biocompatible fluorescent carbon dots derived from roast duck for in vitro cellular and in vivo C. elegans bio-imaging. Methods (San Diego, Calif.) 168:76–83. doi: 10.1016/j.ymeth.2019.07.007.
  • Cuevas, A., B. B. Campos, R. Romero, M. Algarra, M. I. Vázquez, and J. Benavente. 2019. Eco-friendly modification of a regenerated cellulose based film by silicon, carbon and N-doped carbon quantum dots. Carbohydrate Polymers 206:238–44. doi: 10.1016/j.carbpol.2018.10.074.
  • da Silva Júnior, A. H., D. L. Pier Macuvele, H. G. Riella, C. Soares, and N. Padoin. 2021. Are carbon dots effective for ion sensing and antiviral applications? A state-of-the-art description from synthesis methods to cost evaluation. Journal of Materials Research and Technology 12:688–716. doi: 10.1016/j.jmrt.2021.02.069.
  • Das, B., P. Dadhich, P. Pal, and S. Dhara. 2016. Single step synthesized sulfur and nitrogen doped carbon nanodots from whey protein: Nanoprobes for longterm cell tracking crossing the barrier of photo-toxicity. RSC Advances 6 (65):60794–805. doi: 10.1039/C5RA25506F.
  • Das Purkayastha, M., A. K. Manhar, V. K. Das, A. Borah, M. Mandal, A. J. Thakur, and C. L. Mahanta. 2014. Antioxidative, hemocompatible, fluorescent carbon nanodots from an “end-of-pipe” agricultural waste: Exploring its new horizon in the food-packaging domain. Journal of Agricultural and Food Chemistry 62 (20):4509–4520. doi: 10.1021/jf500138f.
  • de Andrés, F., and Á. Ríos. 2021. Carbon dots—Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchemical Journal 161:105773. doi: 10.1016/j.microc.2020.105773.
  • Dehvari, K., S.-H. Chiu, J.-S. Lin, W. M. Girma, Y.-C. Ling, and J.-Y. Chang. 2020. Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomaterialia 114:343–57. doi: 10.1016/j.actbio.2020.07.022.
  • Dehvari, K., K. Y. Liu, P.-J. Tseng, G. Gedda, W. M. Girma, and J.-Y. Chang. 2019. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. Journal of the Taiwan Institute of Chemical Engineers 95:495–503. doi: 10.1016/j.jtice.2018.08.037.
  • Ding, H., F. Du, P. Liu, Z. Chen, and J. Shen. 2015. DNA-carbon dots function as fluorescent vehicles for drug delivery. ACS Applied Materials & Interfaces 7 (12):6889–97. doi: 10.1021/acsami.5b00628.
  • Dong, X., W. Liang, M. J. Meziani, Y.-P. Sun, and L. Yang. 2020. Carbon dots as potent antimicrobial agents. Theranostics 10 (2):671–86. doi: 10.7150/thno.39863.
  • Fan, H., M. Zhang, B. Bhandari, and C. Yang. 2020. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends in Food Science & Technology 95:86–96. doi: 10.1016/j.tifs.2019.11.008.
  • Fan, K., M. Zhang, and H. Chen. 2020. Effect of ultrasound treatment combined with carbon dots coating on the microbial and physicochemical quality of fresh-cut cucumber. Food and Bioprocess Technology 13 (4):648–60. doi: 10.1007/s11947-020-02424-x.
  • Fan, K., M. Zhang, D. Fan, and F. Jiang. 2019. Effect of carbon dots with chitosan coating on microorganisms and storage quality of modified-atmosphere-packaged fresh-cut cucumber. Journal of the Science of Food and Agriculture 99 (13):6032–41. doi: 10.1002/jsfa.9879.
  • Feng, X., Y. Zhao, Y. Jiang, M. Miao, S. Cao, and J. Fang. 2017. Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydrate Polymers 161:253–60. doi: 10.1016/j.carbpol.2017.01.030.
  • Feng, Z., K. H. Adolfsson, Y. Xu, H. Fang, M. Hakkarainen, and M. Wu. 2021. Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications. Sustainable Materials and Technologies 29:e00304. doi: 10.1016/j.susmat.2021.e00304.
  • Fernandes, S., J. C. G. Esteves da Silva, and L. Pinto da Silva. 2021. Comparative life cycle assessment of high-yield synthesis routes for carbon dots. NanoImpact 23:100332. doi: 10.1016/j.impact.2021.100332.
  • Fu, X., X. Fu, W. Li, Y. Chen, and Z. Cai. 2019. Ovalbumin as a precursor for green synthesis of highly fluorescent carbon dots for cell imaging. Journal of Biomedical Nanotechnology 15 (6):1232–40. doi: 10.1166/jbn.2019.2766.
  • Gao, Z., C. Zhao, Y. Li, and Y. Yang. 2019. Beer yeast-derived fluorescent carbon dots for photoinduced bactericidal functions and multicolor imaging of bacteria. Applied Microbiology and Biotechnology 103 (11):4585–93. doi: 10.1007/s00253-019-09782-3.
  • Gedda, G., C. Y. Lee, Y. C. Lin, and H. F. Wu. 2016. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensors and Actuators B: Chemical 224:396–403. doi: 10.1016/j.snb.2015.09.065.
  • Geng, J., X. Song, X. Zhang, S. Tie, L. Cao, and M. Tan. 2019. Hydrophilic food-borne nanoparticles from beef broth as novel nanocarriers for Zinc. Journal of Agricultural and Food Chemistry 67 (25):6995–7004. doi: 10.1021/acs.jafc.9b01372.
  • Ghorbani, M., R. Molaei, M. Moradi, H. Tajik, F. Salimi, S. A. Kousheh, and M. E. Koutamehr. 2021. Carbon dots-assisted degradation of some common biogenic amines: An in vitro study. LWT 136:110320. doi: 10.1016/j.lwt.2020.110320.
  • Hess, S. C., F. A. Permatasari, H. Fukazawa, E. M. Schneider, R. Balgis, T. Ogi, K. Okuyama, and W. J. Stark. 2017. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films. Journal of Materials Chemistry A 5 (10):5187–94. doi: 10.1039/C7TA00397H.
  • Hu, G., B. Lei, X. Jiao, S. Wu, X. Zhang, J. Zhuang, X. Liu, C. Hu, and Y. Liu. 2019. Synthesis of modified carbon dots with performance of ultraviolet absorption used in sunscreen. Optics Express 27 (5):7629–41. doi: 10.1364/OE.27.007629.
  • Hu, Q., X. Gong, L. Liu, and M. M. F. Choi. 2017. Characterization and analytical separation of fluorescent carbon nanodots. Ed. Miguel A Garcia. Journal of Nanomaterials 2017:1–23. doi: 10.1155/2017/1804178.
  • Hu, X., X. An, and L. Li. 2016. Easy synthesis of highly fluorescent carbon dots from albumin and their photoluminescent mechanism and biological imaging applications. Materials Science & Engineering. C, Materials for Biological Applications 58:730–6. doi: 10.1016/j.msec.2015.09.066.
  • Hua, X. W., Y. W. Bao, H. Y. Wang, Z. Chen, and F. G. Wu. 2017. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale 9 (6):2150–61. doi: 10.1039/c6nr06558a.
  • Huang, C.-C., Y.-S. Hung, Y.-M. Weng, W. Chen, and Y.-S. Lai. 2019. Sustainable development of carbon nanodots technology: Natural products as a carbon source and applications to food safety. Trends in Food Science & Technology 86:144–52. doi: 10.1016/j.tifs.2019.02.016.
  • Huang, X., and M. Tang. 2021. Research advance on cell imaging and cytotoxicity of different types of quantum dots. Journal of Applied Toxicology 41 (3):342–61. doi: 10.1002/jat.4083.
  • Huo, F., P. G. Karmaker, Y. Liu, B. Zhao, and X. Yang. 2020. Preparation and biomedical applications of multicolor carbon dots: Recent advances and future challenges. Particle & Particle Systems Characterization 37 (4):1900489. doi: 10.1002/ppsc.201900489.
  • Ji, X., X. Yuan, H. Nian, P. Song, Y. Xiang, Y. Wei, S. Wang, K. Qin, Q. Zhang, and Y. Tu. 2020. Yeast Cryptococcus podzolicus derived fluorescent carbon dots for multicolor cellular imaging and high selectivity detection of pollutant. Dyes and Pigments 182:108621. doi: 10.1016/j.dyepig.2020.108621.
  • Jiang, Q., Y. Jing, Y. Ni, R. Gao, and P. Zhou. 2020. Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for detection of ClO−. Microchemical Journal 157:105111. doi: 10.1016/j.microc.2020.105111.
  • Jusuf, B. N., N. S. Sambudi, Isnaeni, and S. Samsuri. 2018. Microwave-assisted synthesis of carbon dots from eggshell membrane ashes by using sodium hydroxide and their usage for degradation of methylene blue. Journal of Environmental Chemical Engineering 6 (6):7426–33. doi: 10.1016/j.jece.2018.10.032.
  • Kandra, R., and S. Bajpai. 2020. Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. Arabian Journal of Chemistry 13 (4):4882–94. doi: 10.1016/j.arabjc.2019.12.010.
  • Ken, K., C. Stephanie, H. Kit, and Y. K. Yong. 2018. Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano-Micro Letters 10 (4):1–46. doi: 10.1007/s40820-018-0223-3.
  • Khairol Anuar, N. K., H. L. Tan, Y. P. Lim, M. S. So’aib, and N. F. Abu Bakar. 2021. A Review on multifunctional carbon-dots synthesized from biomass waste: Design/fabrication, characterization and applications. Frontiers in Energy Research 9:67. doi: 10.3389/fenrg.2021.626549.
  • Khayal, A., V. Dawane, M. A. Amin, V. Tirth, V. K. Yadav, A. Algahtani, S. H. Khan, S. Islam, K. K. Yadav, and B.-H. Jeon. 2021. Advances in the methods for the synthesis of carbon dots and their emerging applications. Polymers 13 (18):3190. doi: 10.3390/polym18.
  • Konwar, A., N. Gogoi, G. Majumdar, and D. Chowdhury. 2015. Green chitosan-carbon dots nanocomposite hydrogel film with superior properties. Carbohydrate Polymers 115:238–45. doi: 10.1016/j.carbpol.2014.08.021.
  • Koshy, R. R., J. T. Koshy, S. K. Mary, S. Sadanandan, S. Jisha, and L. A. Pothan. 2021. Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork. Food Control 126:108039. doi: 10.1016/j.foodcont.2021.108039.
  • Kousheh, S. A., M. Moradi, H. Tajik, and R. Molaei. 2020. Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. International Journal of Biological Macromolecules 155:216–25. doi: 10.1016/j.ijbiomac.2020.03.230.
  • Lauria, A., and E. Lizundia. 2020. Luminescent carbon dots obtained from polymeric waste. Journal of Cleaner Production 262:121288. doi: 10.1016/j.jclepro.2020.121288.
  • Lee, H. U., S. Y. Park, E. S. Park, B. Son, S. C. Lee, J. W. Lee, Y.-C. Lee, K. S. Kang, M. I. Kim, H. G. Park, et al. 2015. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Scientific Reports 4 (1):7. doi: 10.1038/srep04665.
  • Li, Y., J. Bi, S. Liu, H. Wang, C. Yu, D. Li, B.-W. Zhu, and M. Tan. 2017. Presence and formation of fluorescence carbon dots in a grilled hamburger. Food & Function 8 (7):2558–65. doi: 10.1039/C7FO00675F.
  • Liao, W., F. Jahandideh, H. Fan, M. Son, and J. Wu. 2018. Egg protein-derived bioactive peptides: Preparation, efficacy, and absorption. In Advances in food and nutrition research, ed. F. B. Toldrá, Vol. 85, 1–58. Amsterdam: Academic Press. doi: 10.1016/bs.afnr.2018.02.001.
  • Lin, F., Y.-W. Bao, and F.-G. Wu. 2019. Carbon dots for sensing and killing microorganisms. C—Journal of Carbon Research 5 (2):33. doi: 10.3390/c020033.
  • Lin, F., C. Li, and Z. Chen. 2018a. Bacteria-derived carbon dots inhibit biofilm formation of Escherichia coli without affecting cell growth. Frontiers in Microbiology 9:259. doi: 10.3389/fmicb.2018.00259.
  • Lin, F., C. Li, and Z. Chen. 2018b. Exopolysaccharide-derived carbon dots for microbial viability assessment. Frontiers in Microbiology 9:2697. doi: 10.3389/fmicb.2018.02697.
  • Lin, F., C. Li, L. Dong, D. Fu, and Z. Chen. 2017. Imaging biofilm-encased microorganisms using carbon dots derived from L. plantarum. Nanoscale 9 (26):9056–9064. doi: 10.1039/c7nr01975k.
  • Liu, M. L., B. B. Chen, C. M. Li, and C. Z. Huang. 2019. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry 21 (3):449–471. doi: 10.1039/C8GC02736F.
  • Liu, R., J. Zhang, M. Gao, Z. Li, J. Chen, D. Wu, and P. Liu. 2015. A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers. RSC Advances 5 (6):4428–4433. doi: 10.1039/C4RA12077A.
  • Luo, X., Y. Han, X. Chen, W. Tang, T. Yue, and Z. Li. 2020. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends in Food Science & Technology 95:149–161. doi: 10.1016/j.tifs.2019.11.017.
  • Ma, Q., X. Lu, W. Wang, M. A. Hubbe, Y. Liu, J. Mu, J. Wang, J. Sun, and O. J. Rojas. 2021. Recent developments in colorimetric and optical indicators stimulated by volatile base nitrogen to monitor seafood freshness. Food Packaging and Shelf Life 28:100634. doi: 10.1016/j.fpsl.2021.100634.
  • Malhotra, B. D., and M. A. Ali. 2018. Nanomaterials in biosensors: Fundamentals and applications. In Micro and nano technologies, ed. B. D. Malhotra and M.A.B.T.-N. for B. Ali, 1–74. William Andrew Publishing. doi: 10.1016/B978-0-323-44923-6.00001-7.
  • Mandani, S., D. Dey, B. Sharma, and T. K. Sarma. 2017. Natural occurrence of fluorescent carbon dots in honey. Carbon 119:569–572. doi: 10.1016/j.carbon.2017.04.075.
  • Maruthapandi, M., K. Sharma, J. H. T. Luong, and A. Gedanken. 2020. Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots. Carbohydrate Polymers 243:116474. doi: 10.1016/j.carbpol.2020.116474.
  • Meng, W., X. Bai, B. Wang, Z. Liu, S. Lu, and B. Yang. 2019. Biomass‐derived carbon dots and their applications. Energy & Environmental Materials 2 (3):172–192. doi: 10.1002/eem2.12038.
  • Miao, Y., R. Wang, W. Yang, S. Liu, and G. Yan. 2020. Detection of biological mercaptan by DNA functionalized room temperature phosphorescent quantum dot nanocomposites. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 238:118420. doi: 10.1016/j.saa.2020.118420.
  • Molaei, M. J. 2019. Carbon quantum dots and their biomedical and therapeutic applications: A review. RSC Advances 9 (12):6460–6481. doi: 10.1039/C8RA08088G.
  • Moradi, M., J. T. Guimarães, and S. Sahin. 2021. Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Current Opinion in Food Science 40:33–39. doi: 10.1016/j.cofs.2020.06.001.
  • Moradi, M., S. Kousheh, H. Almasi, A. Alizadeh, J. Guimarães, N. Yilmaz, and A. Lotfi. 2020. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Comprehensive Reviews in Food Science and Food Safety 19 (6):3390–3415. doi: 10.1111/1541-4337.12613.
  • Moradi, M., R. Molaei, and J. T. Guimarães. 2021. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology 143:109722. doi: 10.1016/j.enzmictec.2020.109722.
  • Moradi, M., H. Tajik, H. No, and S. R. Rohani. 2010. Potential inherent properties of chitosan and its applications in preserving muscle food. Journal of Chitin and Chitosan Science 15 (1):35–45.
  • Naghdi, T., M. Atashi, H. Golmohammadi, I. Saeedi, and M. Alanezhad. 2017. Carbon quantum dots originated from chitin nanofibers as a fluorescent chemoprobe for drug sensing. Journal of Industrial and Engineering Chemistry 52:162–167. doi: 10.1016/j.jiec.2017.03.039.
  • Patil, A. S., R. D. Waghmar, S. P. Pawar, S. T. Salunkhe, G. B. Kolekar, D. Sohn, and A. H. Gore. 2020. Photophysical insights of highly transparent, flexible and re-emissive PVA @ WTR-CDs composite thin films: A next generation food packaging material for UV blocking applications. Journal of Photochemistry and Photobiology A: Chemistry 400:112647. doi: 10.1016/j.jphotochem.2020.112647.
  • Pawar, S., U. K. Togiti, A. Bhattacharya, and A. Nag. 2019. Functionalized chitosan-carbon dots: A fluorescent probe for detecting trace amount of water in organic solvents. ACS Omega 4 (6):11301–11311. doi: 10.1021/acsomega.9b01208.
  • Pinto, T. d. S., P. N. S. Rodrigues, L. E. S. Marinho, R. M. Verly, J. P. Bretas Roa, L. C. A. de Oliveira, F. V. Pereira, M. T. Q. de Magalhães, and J. P. de Mesquita. 2019. Self-assembled hybrid nanocomposite films of carbon dots and hydrolyzed collagen. Materials Chemistry and Physics 230 (February):44–53. doi: 10.1016/j.matchemphys.2019.03.060.
  • Pramanik, S., S. Chatterjee, G. S. Kumar, and P. Sujatha Devi. 2018. Egg-shell derived carbon dots for base pair selective DNA binding and recognition. Physical Chemistry Chemical Physics 20 (31):20476–20488. doi: 10.1039/C8CP02872A.
  • Qin, K., D. Zhang, Y. Ding, X. Zheng, Y. Xiang, J. Hua, Q. Zhang, X. Ji, B. Li, and Y. Wei. 2020. Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in in vitro and in vivo imaging and p-nitrophenol detection. The Analyst 145 (1):177–183. doi: 10.1039/c9an01753d.
  • Radnia, F., N. Mohajeri, and N. Zarghami. 2020. New insight into the engineering of green carbon dots: Possible applications in emerging cancer theranostics. Talanta 209:120547. doi: 10.1016/j.talanta.2019.120547.
  • Rasouli, Y., M. Moradi, H. Tajik, and R. Molaei. 2021. Fabrication of anti-Listeria film based on bacterial cellulose and Lactobacillus sakei-derived bioactive metabolites; application in meat packaging. Food Bioscience 42:101218. doi: 10.1016/j.fbio.2021.101218.
  • Razavi, R., R. Molaei, M. Moradi, H. Tajik, P. Ezati, and A. Shafipour Yordshahi. 2020. Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film. Applied Nanoscience 10 (2):465–476. doi: 10.1007/s13204-019-01137-8.
  • Roy, S., P. Ezati, and J.-W. Rhim. 2021. Gelatin/carrageenan-based functional films with carbon dots from enoki mushroom for active food packaging applications. ACS Applied Polymer Materials. doi: 10.1021/acsapm.1c01175.
  • Sagar, S. S., and R. Naraian. 2018. Biosynthesis of nanoparticles by Penicillium and their medical applications. In New and future developments in microbial biotechnology and bioengineering, ed. V. K. Gupta and S. Rodriguez-Couto, 235–46. Amsterdam: Elsevier. doi: 10.1016/B978-0-444-63501-3.00013-2.
  • Sagbas, S., and N. Sahiner. 2019. Carbon dots: Preparation, properties, and application. In Nanocarbon and its composites; Preparation, properties and applications, ed. A. Khan, M. Jawaid, Inamuddin, and A. M. Asiri, 651–76. Cambridge: Woodhead Publishing. doi: 10.1016/B978-0-08-102509-3.00022-5.
  • Salimi, F., M. Moradi, H. Tajik, and R. Molaei. 2021. Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (Morus alba L.). Journal of the Science of Food and Agriculture 101 (8):3439–3447. doi: 10.1002/jsfa.10974.
  • Schmitz, F., M. B. Silva de Albuquerque, M. D. Alberton, I. C. Riegel-Vidotti, and L. M. Zimmermann. 2020. Zein films with ZnO and ZnO:Mg quantum dots as functional nanofillers: New nanocomposites for food package with UV-blocker and antimicrobial properties. Polymer Testing 91:106709. doi: 10.1016/j.polymertesting.2020.106709.
  • Shahshahanipour, M., B. Rezaei, A. A. Ensafi, and Z. Etemadifar. 2019. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug. Materials Science & Engineering. C, Materials for Biological Applications 98:826–833. doi: 10.1016/j.msec.2019.01.041.
  • Siddique, A. B., V. P. Singh, A. K. Pramanick, and M. Ray. 2020. Amorphous carbon dot and chitosan based composites as fluorescent inks and luminescent films. Materials Chemistry and Physics 249:122984. doi: 10.1016/j.matchemphys.2020.122984.
  • Singh, I., R. Arora, H. Dhiman, and R. Pahwa. 2018. Carbon quantum dots: Synthesis, characterization and biomedical applications. Turkish Journal of Pharmaceutical Sciences 15 (2):219–230. doi: 10.4274/tjps.63497.
  • Song, J., L. Zhao, Y. Wang, Y. Xue, Y. Deng, X. Zhao, and Q. Li. 2018. Carbon quantum dots prepared with chitosan for synthesis of CQDs/AuNPs for iodine ions detection. Nanomaterials 8 (12):1043. doi: 10.3390/nano812.
  • Song, X., H. Wang, R. Zhang, C. Yu, and M. Tan. 2018. Bio-distribution and interaction with dopamine of fluorescent nanodots from roasted chicken. Food & Function 9 (12):6227–6235. doi: 10.1039/C8FO01159A.
  • Song, Y., Y. Wu, H. Wang, S. Liu, L. Song, S. Li, and M. Tan. 2019. Carbon quantum dots from roasted Atlantic salmon (Salmo salar L.): Formation, biodistribution and cytotoxicity. Food Chemistry 293:387–395. doi: 10.1016/j.foodchem.2019.05.017.
  • Soni, H., and P. S. Pamidimukkala. 2018. Green synthesis of N, S co-doped carbon quantum dots from triflic acid treated palm shell waste and their application in nitrophenol sensing. Materials Research Bulletin 108:250–254. doi: 10.1016/j.materresbull.2018.08.033.
  • Su, H., J. Wang, and L. Yan. 2019. Homogeneously synchronous degradation of chitin into carbon dots and organic acids in aqueous solution. ACS Sustainable Chemistry & Engineering 7 (22):18476–18482. doi: 10.1021/acssuschemeng.9b04436.
  • Sui, B., Y. Li, and B. Yang. 2020. Nanocomposite hydrogels based on carbon dots and polymers. Chinese Chemical Letters 31 (6):1443–1447. doi: 10.1016/j.cclet.2019.08.023.
  • Tajik, S., Z. Dourandish, K. Zhang, H. Beitollahi, Q. Van Le, H. W. Jang, and M. Shokouhimehr. 2020. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Advances 10 (26):15406–15429. doi: 10.1039/D0RA00799D.
  • Tang, W., B. Wang, J. Li, Y. Li, Y. Zhang, H. Quan, and Z. Huang. 2019. Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. Journal of Materials Science 54 (2):1171–1183. doi: 10.1007/s10853-018-2877-0.
  • Tejwan, N., A. K. Saini, A. Sharma, T. A. Singh, N. Kumar, and J. Das. 2021. Metal-doped and hybrid carbon dots: A comprehensive review on their synthesis and biomedical applications. Journal of Controlled Release 330:132–150. doi: 10.1016/j.jconrel.2020.12.023.
  • Travlou, N. A., D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodríguez-Castellón, and T. J. Bandosz. 2018. S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon 135:104–111. doi: 10.1016/j.carbon.2018.04.018.
  • Uthirakumar, P., M. Devendiran, T. H. Kim, and I. H. Lee. 2018. A convenient method for isolating carbon quantum dots in high yield as an alternative to the dialysis process and the fabrication of a full-band UV blocking polymer film. New Journal of Chemistry 42 (22):18312–18317. doi: 10.1039/C8NJ04615H.
  • Wang, D., L. Zhu, C. Mccleese, C. Burda, J.-F. Chen, and L. Dai. 2016. Fluorescent carbon dots from milk by microwave cooking. RSC Advances 6 (47):41516–41521. doi: 10.1039/C6RA06120F.
  • Wang, H., W. Su, and M. Tan. 2020. Endogenous fluorescence carbon dots derived from food items. Innovation 1 (1):100009. doi: 10.1016/j.xinn.2020.04.009.
  • Wang, H., Y. Xie, S. Liu, S. Cong, Y. Song, X. Xu, and M. Tan. 2017. Presence of fluorescent carbon nanoparticles in baked lamb: Their properties and potential application for sensors. Journal of Agricultural and Food Chemistry 65 (34):7553–7559. doi: 10.1021/acs.jafc.7b02913.
  • Wang, L., and H. S. Zhou. 2014. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Analytical Chemistry 86 (18):8902–8905. doi: 10.1021/ac502646x.
  • Wang, Q., X. Cheng, H. Li, F. Yu, Q. Wang, M. Yu, D. Liu, and J. Xia. 2020. A novel DNA quantum dots/aptamer-modified gold nanoparticles probe for detection of Salmonella typhimurium by fluorescent immunoassay. Materials Today Communications 25:101428. doi: 10.1016/j.mtcomm.2020.101428.
  • Wang, X., Y. Feng, P. Dong, and J. Huang. 2019. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Frontiers in Chemistry 7:671. doi: 10.3389/fchem.2019.00671.
  • Wang, X., P. Yang, Q. Feng, T. Meng, J. Wei, C. Xu, and J. Han. 2019. Green preparation of fluorescent carbon quantum dots from cyanobacteria for biological imaging. Polymers 11 (4):616. doi: 10.3390/polym11040616.
  • Wang, Y.-X., W.-Q. Li, C.-S. He, G.-N. Zhou, H.-Y. Yang, J.-C. Han, S.-Q. Huang, and Y. Mu. 2020. Efficient bioanode from poultry feather wastes-derived N-doped activated carbon: Performance and mechanisms. Journal of Cleaner Production 271:122012. doi: 10.1016/j.jclepro.2020.122012.
  • Wang, Z., T. Hu, R. Liang, and M. Wei. 2020. Application of zero-dimensional nanomaterials in biosensing. Frontiers in Chemistry 8:320. doi: 10.3389/fchem.2020.00320.
  • Wang, Z., X. Zhao, Z. Guo, P. Miao, and X. Gong. 2018. Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators. Organic Electronics 62:284–289. doi: 10.1016/j.orgel.2018.08.020.
  • Xu, L., Y. Li, S. Gao, Y. Niu, H. Liu, C. Mei, J. Cai, and C. Xu. 2020. Preparation and properties of cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite. Polymers 12 (5):1143. doi: 10.3390/polym12051143.
  • Xu, L., Y. Zhang, H. Pan, N. Xu, C. Mei, H. Mao, W. Zhang, J. Cai, and C. Xu. 2020. Preparation and performance of radiata-pine-derived polyvinyl alcohol/carbon quantum dots fluorescent films. Materials 13 (1):67. doi: 10.3390/ma13010067.
  • Xu, N., S. Gao, C. Xu, Y. Fang, L. Xu, and W. Zhang. 2021. Carbon quantum dots derived from waste acorn cups and its application as an ultraviolet absorbent for polyvinyl alcohol film. Applied Surface Science 556:149774. doi: 10.1016/j.apsusc.2021.149774.
  • Yang, M., B. Li, K. Zhong, and Y. Lu. 2018. Photoluminescence properties of N-doped carbon dots prepared in different solvents and applications in pH sensing. Journal of Materials Science 53 (4):2424–2433. doi: 10.1007/s10853-017-1700-7.
  • Yang, X., Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, and Y. Dou. 2014. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosensors & Bioelectronics 60:292–298. doi: 10.1016/j.bios.2014.04.046.
  • Yao, B., H. Huang, Y. Liu, and Z. Kang. 2019. Carbon dots: A small conundrum. Trends in Chemistry 1 (2):235–246. doi: 10.1016/j.trechm.2019.02.003.
  • Yao, Y.-Y., G. Gedda, W. M. Girma, C.-L. Yen, Y.-C. Ling, and J.-Y. Chang. 2017. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Applied Materials & Interfaces 9 (16):13887–13899. doi: 10.1021/acsami.7b01599.
  • Ye, Q., F. Yan, Y. Luo, Y. Wang, X. Zhou, and L. Chen. 2017. Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 173:854–862. doi: 10.1016/j.saa.2016.10.039.
  • Yong, H., X. Wang, X. Zhang, Y. Liu, Y. Qin, and J. Liu. 2019. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocolloids 94:93–104. doi: 10.1016/j.foodhyd.2019.03.012.
  • Yu, Y., C. Li, C. Chen, H. Huang, C. Liang, Y. Lou, X.-B. Chen, Z. Shi, and S. Feng. 2019. Saccharomyces-derived carbon dots for biosensing pH and vitamin B 12. Talanta 195:117–126. doi: 10.1016/j.talanta.2018.11.010.
  • Yuan, C., X. Qin, Y. Xu, X. Li, Y. Chen, R. Shi, and Y. Wang. 2020. Carbon quantum dots originated from chicken blood as peroxidase mimics for colorimetric detection of biothiols. Journal of Photochemistry and Photobiology A: Chemistry 396:112529. doi: 10.1016/j.jphotochem.2020.112529.
  • Yuan, Y., B. Guo, L. Hao, N. Liu, Y. Lin, W. Guo, X. Li, and B. Gu. 2017. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids and Surfaces. B, Biointerfaces 159:349–359. doi: 10.1016/j.colsurfb.2017.07.030.
  • Zhang, J., Y. Yuan, G. Liang, and S.-H. Yu. 2015. Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Advanced Science 2 (4):1500002. doi: 10.1002/advs.201500002.
  • Zhang, L., X.-Z. Cheng, L. Kuang, A.-Z. Xu, R.-P. Liang, and J.-D. Qiu. 2017. Simple and highly selective detection of arsenite based on the assembly-induced fluorescence enhancement of DNA quantum dots. Biosensors & Bioelectronics 94:701–706. doi: 10.1016/j.bios.2017.03.057.
  • Zhang, L., X. Na, B. Lai, Y. Song, H. Wang, and M. Tan. 2021. Effects of fluorescent carbon dots from the baked lamb on energy and lipid metabolism. Food Chemistry 338:127832. doi: 10.1016/j.foodchem.2020.127832.
  • Zhang, S., D. Zhang, Y. Ding, J. Hua, B. Tang, X. Ji, Q. Zhang, Y. Wei, K. Qin, and B. Li. 2019. Bacteria-derived fluorescent carbon dots for highly selective detection of p-nitrophenol and bioimaging . The Analyst 144 (18):5497–5503. doi: 10.1039/c9an01103j.
  • Zhang, Y., Z. Gao, W. Zhang, W. Wang, J. Chang, and J. Kai. 2018. Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. Sensors and Actuators B: Chemical 262:928–937. doi: 10.1016/j.snb.2018.02.079.
  • Zhang, Z., W. Sun, and P. Wu. 2015. Highly photoluminescent carbon dots derived from egg white: Facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustainable Chemistry & Engineering 3 (7):1412–1418. doi: 10.1021/acssuschemeng.5b00156.
  • Zhao, C., Y. Jiao, F. Hu, and Y. Yang. 2018. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 190:360–367. doi: 10.1016/j.saa.2017.09.037.
  • Zhao, L., M. Zhang, H. Wang, and S. Devahastin. 2020. Effect of carbon dots in combination with aqueous chitosan solution on shelf life and stability of soy milk. International Journal of Food Microbiology 326:108650. doi: 10.1016/j.ijfoodmicro.2020.108650.
  • Zhao, Y., Y. Zhang, X. Liu, H. Kong, Y. Wang, G. Qin, P. Cao, X. Song, X. Yan, Q. Wang, et al. 2017. Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Scientific Reports 7 (1):4452. doi: 10.1038/s41598-017-04073-1.
  • Zhou, R., L. Zhao, Y. Wang, S. Hameed, J. Ping, L. Xie, and Y. Ying. 2020. Recent advances in food-derived nanomaterials applied to biosensing. TrAC Trends in Analytical Chemistry 127:115884. doi: 10.1016/j.trac.2020.115884.
  • Zhu, X., H. Jin, C. Gao, R. Gui, and Z. Wang. 2017. Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites. Talanta 162:65–71. doi: 10.1016/j.talanta.2016.10.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.