1,010
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Compendium of naringenin: potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile

, , &

References

  • Aguiñiga-Sánchez, I., M. Soto-Hernández, J. Cadena-Iñiguez, M. Suwalsky, J. R. Colina, I. Castillo, J. Rosado-Pérez, V. M. Mendoza-Núñez, and E. Santiago-Osorio. 2020. Phytochemical analysis and antioxidant and anti-inflammatory capacity of the extracts of fruits of the sechium hybrid. Molecules 25 (20):4637. doi: 10.3390/molecules25204637.
  • Agus, S., S. S. Achmadi, and N. R. Mubarik. 2017. Antibacterial activity of naringenin-rich fraction of pigeon pea leaves toward Salmonella thypi. Asian Pacific Journal of Tropical Biomedicine 7 (8):725–8. doi: 10.1016/j.apjtb.2017.07.019.
  • Ahmad, N., R. Ahmad, F. J. Ahmad, W. Ahmad, M. A. Alam, M. Amir, and A. Ali. 2020. Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi Journal of Biological Sciences 27 (1):500–17. doi: 10.1016/j.sjbs.2019.11.008.
  • Ahmadi, M. K., L. Fang, N. Moscatello, and B. A. Pfeifer. 2016. E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent. Metabolic Engineering 38:382–8. doi: 10.1016/j.ymben.2016.10.001.
  • Ahmadi, A., P. Hassandarvish, R. Lani, P. Yadollahi, A. Jokar, S. A. Bakar, and K. Zandi. 2016. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances 6 (73):69421–30. doi: 10.1039/C6RA16640G.
  • Ahsan, A. U., V. L. Sharma, A. Wani, and M. Chopra. 2020. Naringenin upregulates AMPK-mediated autophagy to rescue neuronal cells from β-Amyloid (1-42) evoked neurotoxicity. Molecular Neurobiology 57 (8):3589–602. doi: 10.1007/s12035-020-01969-4.
  • Akbarzadeh, A., R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, and K. Nejati-Koshki. 2013. Liposome: Classification, preparation, and applications. Nanoscale Research Letters 8 (1):1–9. doi: 10.1186/1556-276X-8-102.
  • Alam, N., M. Hossain, M. I. Khalil, M. Moniruzzaman, S. A. Sulaiman, and S. H. Gan. 2011. High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complementary and Alternative Medicine 11 (1):1–8. doi: 10.1186/1472-6882-11-65.
  • Alara, O. R., N. H. Abdurahman, and C. I. Ukaegbu. 2021. Extraction of phenolic compounds: A review. Current Research in Food Science 4:200–14. doi: 10.1016/j.crfs.2021.03.011.
  • Alberca, R. W., F M. E. Teixeira, D. R. Beserra, E. A. de Oliveira, M. M. de Souza Andrade, A. J. Pietrobon, and M. N. Sato. 2020. Perspective: The potential effects of naringenin in COVID-19. Frontiers in Immunology 11: 570919. doi: 10.3389/fimmu.2020.570919.
  • Albuquerque de Oliveira Mendes, L., C. S. Ponciano, A. H. Depieri Cataneo, P. F. Wowk, J. Bordignon, H. Silva, M. Vieira de Almeida, and E. P. Ávila. 2020. The anti-Zika virus and anti-tumoral activity of the citrus flavanone lipophilic naringenin-based compounds. Chemico-Biological Interactions 331:109218. doi: 10.1016/j.cbi.2020.109218.
  • Alvarez-Alvarez, R., A. Botas, S. M. Albillos, A. Rumbero, J. F. Martin, and P. Liras. 2015. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microbial Cell Factories 14 (1):178. doi: 10.1186/s12934-015-0373-7.
  • Amin, I. S. Majid, A. Farooq, H. A. Wani, F. Noor, R. Khan, S. Shakeel, S. A. Bhat, A. Ahmad, H. Madkhali, et al. 2020. Chapter 8 - Naringenin (4,5,7-trihydroxyflavanone) as a potent neuroprotective agent: From chemistry to medicine. In Studies in natural products chemistry, ed. R. Atta ur, vol. 65, 271–300. Netherlands: Elsevier. doi: 10.1016/B978-0-12-817905-5.00008-1.
  • Arafah, A., M. Rehman, T. M. Mir, A. F. Wali, R. Ali, W. Qamar, R. Khan, A. Ahmad, S. S. Aga, S. Alqahtani, et al. 2020. Multi-therapeutic potential of naringenin (4′, 5, 7-trihydroxyflavonone): experimental evidence and mechanisms. Plants 9 (12):1784. doi: 10.3390/plants9121784.
  • Araujo-León, J. A., R. Ortiz-Andrade, R. A. Vera-Sánchez, J. E. Oney-Montalvo, T. I. Coral-Martínez, and Z. Cantillo-Ciau. 2020. Development and optimization of a high sensitivity LC-MS/MS method for the determination of hesperidin and naringenin in rat plasma: pharmacokinetic approach. Molecules 25 (18):4241. doi: 10.3390/molecules25184241.
  • Bagetta, D., A. Maruca, A. Lupia, F. Mesiti, R. Catalano, I. Romeo, F. Moraca, F. A. Ambrosio, G. Costa, A. Artese, et al. 2020. Mediterranean products as promising source of multi-target agents in the treatment of metabolic syndrome. European Journal of Medicinal Chemistry 186:111903. doi: 10.1016/j.ejmech.2019.111903.
  • Balderas, E., J. Zhang, E. Stefani, and L. Toro. 2015. Mitochondrial BKCa channel. Frontiers in Physiology 6:104. doi: 10.3389/fphys.2015.00104.
  • Bao, L., F. Liu, H.-b. Guo, Y. Li, B.-b. Tan, W.-x. Zhang, and Y.-h. Peng. 2016. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 37 (8):11365–74. doi: 10.1007/s13277-016-5013-2.
  • Barreca, D., G. Gattuso, E. Bellocco, A. Calderaro, D. Trombetta, A. Smeriglio, G. Lagana, M. Daglia, S. Meneghini, and S. M. Nabavi. 2017. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors (Oxford, England) 43 (4):495–506. doi: 10.1002/biof.1363.
  • Benabderrahmane, W., M. Lores, O. Benaissa, J. P. Lamas, T. de Miguel, A. Amrani, F. Benayache, and S. Benayache. 2021. Polyphenolic content and bioactivities of Crataegus oxyacantha L. (Rosaceae). Natural Product Research 35 (4):627–32. doi: 10.1080/14786419.2019.1582044.
  • Bhandari, S. R., and J. G. Lee. 2016. Ripening-dependent changes in antioxidants, color attributes, and antioxidant activity of seven tomato (Solanum lycopersicum L.) cultivars. Journal of Analytical Methods in Chemistry 2016:5498618. doi: 10.1155/2016/5498618.
  • Bhia, M., M. Motallebi, B. Abadi, A. Zarepour, M. Pereira-Silva, F. Saremnejad, A. C. Santos, A. Zarrabi, A. Melero, S. M. Jafari, et al. 2021. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics 13 (2):291. doi: 10.3390/pharmaceutics13020291.
  • Biesaga, M. 2011. Influence of extraction methods on stability of flavonoids. Journal of Chromatography. A 1218 (18):2505–12. doi: 10.1016/j.chroma.2011.02.059.
  • Bower, A. M., L. M. Real Hernandez, M. A. Berhow, and E. G. de Mejia. 2014. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. Journal of Agricultural and Food Chemistry 62 (26):6147–58. doi: 10.1021/jf500639f.
  • Bugianesi, R., M. Salucci, C. Leonardi, R. Ferracane, G. Catasta, E. Azzini, and G. Maiani. 2004. Effect of domestic cooking on human bioavailability of naringenin, chlorogenic acid, lycopene and beta-carotene in cherry tomatoes. European Journal of Nutrition 43 (6):360–6. doi: 10.1007/s00394-004-0483-1.
  • Burke, A. C., B. G. Sutherland, D. E. Telford, M. R. Morrow, C. G. Sawyez, J. Y. Edwards, M. Drangova, and M. W. Huff. 2018. Intervention with citrus flavonoids reverses obesity and improves metabolic syndrome and atherosclerosis in obese Ldlr−/− mice. Journal of Lipid Research 59 (9):1714–28. doi: 10.1194/jlr.M087387.
  • Burke, A. C., B. G. Sutherland, D. E. Telford, M. R. Morrow, C. G. Sawyez, J. Y. Edwards, and M. W. Huff. 2019. Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr-/- mice. Atherosclerosis 286:60–70. doi: 10.1016/j.atherosclerosis.2019.05.009.
  • Burke, A. C., D. E. Telford, J. Y. Edwards, B. G. Sutherland, C. G. Sawyez, and M. W. Huff. 2019. Naringenin supplementation to a chow diet enhances energy expenditure and fatty acid oxidation, and reduces adiposity in lean, pair‐fed Ldlr−/− mice. Molecular Nutrition & Food Research 63 (6):1800833. doi: 10.1002/mnfr.201800833.
  • Cao, R., X. Wu, H. Guo, X. Pan, R. Huang, G. Wang, and J. Liu. 2021. Naringin exhibited therapeutic effects against DSS-induced mice ulcerative colitis in intestinal barrier–dependent manner. Molecules 26 (21):6604. doi: 10.3390/molecules26216604.
  • Carceller, J. M., J. P. M. Galán, R. Monti, J. C. Bassan, M. Filice, S. Iborra, J. Yu, and A. Corma. 2019. Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chemistry 21 (4):839–49. doi: 10.1039/C8GC03661F.
  • Carneiro, S. B., F. Costa Duarte, L. Heimfarth, J. S. Siqueira Quintans, L. J. Quintans-Júnior, V. F. D. Veiga Júnior, and Á, A. Neves de Lima. 2019. Cyclodextrin⁻drug inclusion complexes: In vivo and in vitro approaches. International Journal of Molecular Sciences 20 (3):642. doi: 10.3390/ijms20030642.
  • Castrillo, M., T. Córdova, G. Cabrera, and M. Rodríguez-Ortega. 2015. Effect of naringenin, hesperetin and their glycosides forms on the replication of the 17D strain of yellow fever virus. Avances en Biomedicina 4 (2):69–78.
  • Cataneo, A. H. D., D. Kuczera, A. C. Koishi, C. Zanluca, G. F. Silveira, T. B. d. Arruda, A. A. Suzukawa, L. O. Bortot, M. Dias-Baruffi, W. A. Verri, et al. 2019. The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus. Scientific Reports 9 (1):1–15. doi: 10.1038/s41598-019-52626-3.
  • Celiz, G., S. A. Suarez, A. Arias, J. Molina, C. D. Brondino, and F. Doctorovich. 2019. Synthesis, structural elucidation and antiradical activity of a copper (II) naringenin complex. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 32 (4):595–610. doi: 10.1007/s10534-019-00187-3.
  • Chabane, M. N., A. A. Ahmad, J. Peluso, C. D. Muller, and G. Ubeaud-Séquier. 2010. Quercetin and naringenin transport across human intestinal Caco-2 cells. Journal of Pharmacy and Pharmacology 61 (11):1473–83. doi: 10.1211/jpp.61.11.0006.
  • Chen, H., Y. Chen, Y. Lu, J. Zhang, and W. Ke. 2016. Aspergillus niger HC306 and application of aspergillus niger HC306 to prepare naringenin through naringin conversion. (CN Patent No. CN 105838622 A). https://lens.org/198-453-089-996-329.
  • Chen, Y. Y., Y. M. Chang, K. Y. Wang, P. N. Chen, Y. C. Hseu, K. M. Chen, K. T. Yeh, C. J. Chen, and L. S. Hsu. 2019. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environmental Toxicology 34 (3):233–9. doi: 10.1002/tox.22677.
  • Chen, H., K. Ouyang, Y. Jiang, Z. Yang, W. Hu, L. Xiong, N. Wang, X. Liu, and W. Wang. 2017. Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity. International Journal of Biological Macromolecules 98:829–36. doi: 10.1016/j.ijbiomac.2017.02.044.
  • Chen, T., W. Su, Z. Yan, H. Wu, X. Zeng, W. Peng, L. Gan, Y. Zhang, and H. Yao. 2018. Identification of naringin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 161:262–72. doi: 10.1016/j.jpba.2018.08.039.
  • Chin, L. H., C. M. Hon, D. K. Chellappan, J. Chellian, T. Madheswaran, F. Zeeshan, R. Awasthi, A. A. A. Aljabali, M. M. Tambuwala, H. Dureja, et al. 2020. Molecular mechanisms of action of naringenin in chronic airway diseases. European Journal of Pharmacology 879:173139. doi: 10.1016/j.ejphar.2020.173139.
  • Choi, J., D.-H. Lee, H. Jang, S.-Y. Park, and J.-W. Seol. 2020. Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma. International Journal of Medical Sciences 17 (18):3049–57. doi: 10.7150/ijms.44804.
  • Cui, W., Z. He, Y. Zhang, Q. Fan, and N. Feng. 2019. Naringenin cocrystals prepared by solution crystallization method for improving bioavailability and anti-hyperlipidemia effects. AAPS PharmSciTech 20 (3):1–12. doi: 10.1208/s12249-019-1324-0.
  • David, I. G., S. C. Litescu, D. E. Popa, M. Buleandra, L. Iordache, C. Albu, A. Alecu, and R. L. Penu. 2018. Voltammetric analysis of naringenin at a disposable pencil graphite electrode–application to polyphenol content determination in citrus juice. Analytical Methods 10 (48):5763–72. doi: 10.1039/C8AY02281J.
  • Delatr, M., I. N. Lou Long, K. H. Skiff Ronald, K. Krespo Montero Fransisko, and A. D’Oore Tom Neli. 2019. Flavored food products and beverages. (RU Patent No. RU 2697382 C2). https://lens.org/076-157-986-400-855.
  • Deng, C., R. Yi, M. Fei, T. Li, Y. Han, and H. Wang. 2021. Naringenin attenuates endoplasmic reticulum stress, reduces apoptosis, and improves functional recovery in experimental traumatic brain injury. Brain Research 1769:147591. doi: 10.1016/j.brainres.2021.147591.
  • Di Marzo, V., and C. Silvestri. 2019. Lifestyle and metabolic syndrome: Contribution of the endocannabinoidome. Nutrients 11 (8):1956. doi: 10.3390/nu11081956.
  • Di Petrillo, A., A. M. González-Paramás, B. Era, R. Medda, F. Pintus, C. Santos-Buelga, and A. Fais. 2016. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complementary and Alternative Medicine 16 (1):1–9. doi: 10.1186/s12906-016-1442-0.
  • Di Vita, G., M. Borrello, R. Vecchio, G. Gulisano, and M. D’Amico. 2020. Purchasing drivers of fresh citrus fruits in urban Italy: Is it all about taste? Nutrients 12 (4):979. doi: 10.3390/nu12040979.
  • Dias, J. L., M. Lanza, and S. R. Ferreira. 2021. Cocrystallization: A tool to modulate physicochemical and biological properties of food-relevant polyphenols. Trends in Food Science & Technology 110:13–27. doi: 10.1016/j.tifs.2021.01.035.
  • Dinh, C. V., X. Chen, and K. L. J. Prather. 2020. Development of a quorum-sensing based circuit for control of coculture population composition in a Naringenin production system. ACS Synthetic Biology 9 (3):590–7. doi: 10.1021/acssynbio.9b00451.
  • Duan, L., L.-L. Dou, L. Guo, P. Li, and E. H. Liu. 2016. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chemistry & Engineering 4 (4):2405–11. doi: 10.1021/acssuschemeng.6b00091.
  • Duda-Madej, A., J. Kozłowska, P. Krzyżek, M. Anioł, A. Seniuk, K. Jermakow, and E. Dworniczek. 2020. Antimicrobial O-alkyl derivatives of naringenin and their oximes against multidrug-resistant bacteria. Molecules 25 (16):3642. doi: 10.3390/molecules25163642.
  • Dudek, B., A.-C. Warskulat, and B. Schneider. 2016. The occurrence of flavonoids and related compounds in flower sections of Papaver nudicaule. Plants 5 (2):28. doi: 10.3390/plants5020028.
  • Đurović, S., M. Vujanović, M. Radojković, J. Filipović, V. Filipović, U. Gašić, Ž. Tešić, P. Mašković, and Z. Zeković. 2020. The functional food production: Application of stinging nettle leaves and its extracts in the baking of a bread. Food Chemistry 312:126091. doi: 10.1016/j.foodchem.2019.126091.
  • Escobar-Avello, D., A. Olmo-Cunillera, J. Lozano-Castellón, M. Marhuenda-Muñoz, and A. Vallverdú-Queralt. 2020. A targeted approach by high resolution mass spectrometry to reveal new compounds in raisins. Molecules 25 (6):1281. doi: 10.3390/molecules25061281.
  • Fang, Z., H. Bao, Y. Ni, N. Choijilsuren, and L. Liang. 2019. Partition and digestive stability of α-tocopherol and resveratrol/naringenin in whey protein isolate emulsions. International Dairy Journal 93:116–23.
  • Ferreira, L., C. Afonso, H. Vila-Real, A. Alfaia, and M. H. Ribeiro. 2008. Evaluation of the effect of high pressure on naringin hydrolysis in grapefruit juice with naringinase immobilised in calcium alginate beads. Food Technology and Biotechnology 46 (2):146.
  • Ferreira, R. J., M. Gajdács, A. Kincses, G. Spengler, D. Dos Santos, and M. U. Ferreira. 2020. Nitrogen-containing naringenin derivatives for reversing multidrug resistance in cancer. Bioorganic & Medicinal Chemistry 28 (23):115798. doi: 10.1016/j.bmc.2020.115798.
  • Fowler, Z. L., and M. A. G. Koffas. 2009. Biosynthesis and biotechnological production of flavanones: Current state and perspectives. Applied Microbiology and Biotechnology 83 (5):799–808. doi: 10.1007/s00253-009-2039-z.
  • Frabasile, S., A. C. Koishi, D. Kuczera, G. F. Silveira, W. A. Verri, C. N. D. Dos Santos, and J. Bordignon. 2017. The citrus flavanone naringenin impairs dengue virus replication in human cells. Scientific Reports 7 (1):1–11.
  • Fuster, M. G., G. Carissimi, M. G. Montalbán, and G. Víllora. 2020. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials 10 (4):718. doi: 10.3390/nano10040718.
  • Ganesan, V., Z. Li, X. Wang, and H. Zhang. 2017. Heterologous biosynthesis of natural product naringenin by co-culture engineering. Synthetic and Systems Biotechnology 2 (3):236–42. doi: 10.1016/j.synbio.2017.08.003.
  • Gao, S., Y. Lyu, W. Zeng, G. Du, J. Zhou, and J. Chen. 2020. Efficient Biosynthesis of (2S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry 68 (4):1015–21. doi: 10.1021/acs.jafc.9b05218.
  • Geovanini, G. R., and P. Libby. 2018. Atherosclerosis and inflammation: Overview and updates. Clinical Science (London, England: 1979) 132 (12):1243–52. doi: 10.1042/CS20180306.
  • Gillbro Johanna, M., P. Mavon Alain Robert, L. Duracher, A. Klack, and K. Cattley. 2020. Compounds with Anti-aging activities. (EP Patent No. EP 2862600 B1). https://lens.org/045-550-224-178-625.
  • Gogna, N., N. Hamid, and K. Dorai. 2015. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis 115:74–85. doi: 10.1016/j.jpba.2015.06.035.
  • Gómez-Mejía, E., L. H. Mikkelsen, N. Rosales-Conrado, M. E. León-González, and Y. Madrid. 2021. A combined approach based on matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles and liquid chromatography to determine polyphenols from grape residues. Journal of Chromatography. A 1644:462128. doi: 10.1016/j.chroma.2021.462128.
  • Govindasamy, H., S. Magudeeswaran, S. Kandasamy, and K. Poomani. 2021. Binding mechanism of naringenin with monoamine oxidase - B enzyme: QM/MM and molecular dynamics perspective. Heliyon 7 (4):e06684. doi: 10.1016/j.heliyon.2021.e06684.
  • Gratieri, T., L. A. G. Pinho, M. A. Oliveira, L. L. Sa-Barreto, R. N. Marreto, I. C. Silva, G. M. Gelfuso, J. de Souza Siqueira Quintans, L. J. Quintans-Junior, and M. Cunha-Filho. 2020. Hydroxypropyl-β-cyclodextrin-complexed naringenin by solvent change precipitation for improving anti-inflammatory effect in vivo. Carbohydrate Polymers 231:115769. doi: 10.1016/j.carbpol.2019.115769.
  • Guo, C., S. Liu, Y. Guo, Y. Yin, J. Lin, X. Chen, and M.-Z. Sun. 2014. Comparative function-structural analysis of antiplatelet and antiradical activities of flavonoid phytochemicals. Journal of Animal and Plant Sciences 24:926–35.
  • Guohua, X., R. Pan, R. Bao, Y. Ge, C. Zhou, and Y. Shen. 2017. Rapid quantitative analysis of naringenin in the fruit bodies of Inonotus vaninii by two-phase acid hydrolysis followed by reversed phase-high performance liquid chromatography-ultra violet. Pharmacognosy Magazine 13 (52):659–62. doi: 10.4103/pm.pm_350_16.
  • Haider, S., L. Liaquat, S. Ahmad, Z. Batool, R. A. Siddiqui, S. Tabassum, S. Shahzad, S. Rafiq, and N. Naz. 2020. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PloS One 15 (1):e0227631. doi: 10.1371/journal.pone.0227631.
  • Hamed, A. R., S. S. El-Hawary, R. M. Ibrahim, U. R. Abdelmohsen, and A. M. El-Halawany. 2021. Identification of chemopreventive components from halophytes belonging to aizoaceae and cactaceae through LC/MS-bioassay guided approach. Journal of Chromatographic Science 59 (7):618–26. doi: 10.1093/chromsci/bmaa112.
  • Heng, Y., H. Kim, and L. House. 2017. An overview of the grapefruit market in South Korea. EDIS 2017 (1):5. doi: 10.32473/edis-fe1003-2017.
  • Hermawan, A., M. Ikawati, R. I. Jenie, A. Khumaira, H. Putri, I. P. Nurhayati, S. M. Angraini, and H. A. Muflikhasari. 2021. Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society 29 (1):12–26. doi: 10.1016/j.jsps.2020.12.002.
  • Hernández-Aquino, E., and P. Muriel. 2018. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World Journal of Gastroenterology 24 (16):1679–707. doi: 10.3748/wjg.v24.i16.1679.
  • Ho, K. V., K. L. Schreiber, J. Park, P. H. Vo, Z. Lei, L. W. Sumner, C. R. Brown, and C. H. Lin. 2020. Identification and quantification of bioactive molecules inhibiting pro-inflammatory cytokine production in spent coffee grounds using metabolomics analyses. Frontiers in Pharmacology 11:229. doi: 10.3389/fphar.2020.00229.
  • Hou, J., W. Xie, Y. Qian, Y. Shi, S. Lu, T. Sheng, and W. Chen. 2020. [Simultaneous determination of 16 flavonoids and ferulic acid in honey by solid phase extraction and high performance liquid chromatography-tandem mass spectrometry] . Se pu = Chinese Journal of Chromatography 38 (5):529–37. doi: 10.3724/sp.J.1123.2019.06030.
  • Huang, S., Q. Xue, J. Xu, S. Ruan, and T. Cai. 2019. Simultaneously improving the physicochemical properties, dissolution performance, and bioavailability of apigenin and daidzein by co-crystallization with theophylline. Journal of Pharmaceutical Sciences 108 (9):2982–93. doi: 10.1016/j.xphs.2019.04.017.
  • Ince, A. E., S. Sahin, and G. Sumnu. 2014. Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. Journal of Food Science and Technology 51 (10):2776–82. doi: 10.1007/s13197-012-0828-3.
  • Jang, S., S. Jang, Y. Xiu, T. J. Kang, S. H. Lee, M. A. G. Koffas, and G. Y. Jung. 2017. Development of artificial riboswitches for monitoring of naringenin in vivo. ACS Synthetic Biology 6 (11):2077–85. doi: 10.1021/acssynbio.7b00128.
  • Jang, Y., S.-W. Kim, J. Oh, G.-S. Hong, E.-K. Seo, U. Oh, and W.-S. Shim. 2013. Ghrelin receptor is activated by naringin and naringenin, constituents of a prokinetic agent Poncirus fructus. Journal of Ethnopharmacology 148 (2):459–65. doi: 10.1016/j.jep.2013.04.039.
  • Jeevanandam, J., Y. S. Chan, and M. K. Danquah. 2016. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 128–129:99–112. doi: 10.1016/j.biochi.2016.07.008.
  • Jepsen, S., J. Suvan, and J. Deschner. 2020. The association of periodontal diseases with metabolic syndrome and obesity. Periodontology 2000, 83 (1):125–53. doi: 10.1111/prd.12326.
  • Jha, D. K., D. S. Shah, and P. D. Amin. 2020. Thermodynamic aspects of the preparation of amorphous solid dispersions of Naringenin with enhanced dissolution rate. International Journal of Pharmaceutics 583:119363. doi: 10.1016/j.ijpharm.2020.119363.
  • Jia, H., M. Heymann, F. Bernhard, P. Schwille, and L. Kai. 2017. Cell-free protein synthesis in micro compartments: Building a minimal cell from biobricks. New Biotechnology 39 (Pt B):199–205. doi: 10.1016/j.nbt.2017.06.014.
  • Jiang, J., A. Wang, X. Zhang, Y. Wang, Q. Wang, M. Zhai, Y. Huang, and R. Qi. 2020. The isonicotinamide cocrystal promotes inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. Journal of Drug Delivery Science and Technology 59:101874. doi: 10.1016/j.jddst.2020.101874.
  • Jiang, J., R. P. Wang, M. H. Hou, H. Y. Liu, H. Zhang, and C. S. Jiang. 2018. Hydromethanolic extract of Rehum emodi exhibits significant antimicrobial activity against acute gastroenteriti bacterial strains. Microbial Pathogenesis 115:179–82. doi: 10.1016/j.micpath.2017.12.043.
  • Joshi, R., Y. A. Kulkarni, and S. Wairkar. 2018. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sciences 215:43–56. doi: 10.1016/j.lfs.2018.10.066.
  • Jung Gyoo, Y., H. O. Jang Sung, and Y. Jang Sung. 2018. Method for screening microorganism with high naringenin productivity using riboswitch. (KR Patent No. KR 20180038403 A). https://lens.org/194-107-763-837-817.
  • Jung, H. A., P. Paudel, S. H. Seong, B. S. Min, and J. S. Choi. 2017. Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives. Bioorganic & Medicinal Chemistry Letters 27 (11):2274–80. doi: 10.1016/j.bmcl.2017.04.054.
  • Kahramanoglu, I., and S. Usanmaz. 2021. Roles of citrus secondary metabolites in tree and fruit defence against pests and pathogens [journal article]. Natural Resources for Human Health 1 (2):51–62. doi: 10.53365/nrfhh/141637.
  • Kang, Q., J. Gong, M. Wang, Q. Wang, F. Chen, and K. W. Cheng. 2019. 6-C-(E-Phenylethenyl)naringenin attenuates the stemness of hepatocellular carcinoma cells by suppressing Wnt/β-catenin signaling. Journal of Agricultural and Food Chemistry 67 (50):13939–47. doi: 10.1021/acs.jafc.9b05733.
  • Kashyap, D., H. S. Tuli, M. B. Yerer, A. Sharma, K. Sak, S. Srivastava, A. Pandey, V. K. Garg, G. Sethi, and A. Bishayee. 2021. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in Cancer Biology 69:5–23. doi: 10.1016/j.semcancer.2019.08.014.
  • Kesh, S., R. R. Kannan, and A. Balakrishnan. 2021. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 239:108893. doi: 10.1016/j.cbpc.2020.108893.
  • Khan, A. W., S. Kotta, S. H. Ansari, R. K. Sharma, and J. Ali. 2015a. Enhanced dissolution and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. Drug Development and Industrial Pharmacy 41 (5):772–9. doi: 10.3109/03639045.2014.902466.
  • Khan, A. W., S. Kotta, S. H. Ansari, R. K. Sharma, and J. Ali. 2015b. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation. Drug Delivery 22 (4):552–61. doi: 10.3109/10717544.2013.878003.
  • Khandavilli, U. B. R., E. Skořepová, A. S. Sinha, B. R. Bhogala, N. M. Maguire, A. R. Maguire, and S. E. Lawrence. 2018. Cocrystals and a salt of the bioactive flavonoid: Naringenin. Crystal Growth & Design 18 (8):4571–7. doi: 10.1021/acs.cgd.8b00557.
  • Kicinska, A., R. P. Kampa, J. Daniluk, A. Sek, W. Jarmuszkiewicz, A. Szewczyk, and P. Bednarczyk. 2020. Regulation of the mitochondrial BKCa channel by the citrus flavonoid naringenin as a potential means of preventing cell damage. Molecules 25 (13):3010. doi: 10.3390/molecules25133010.
  • Kiefl, J., S. Paetz, J. Ley, G. Krammer, T. Riess, K. Langer, G. Kindel, M. Verwohlt, T. Geissler, and E. Gross. 2019. Compositions. (EP Patent No. EP 3383200 B1). https://lens.org/085-570-913-095-090.
  • Kim Hyung, W. O. O., and R. E. E. Oh Yu. 2020. Naringenin Based Thermosets and manufacturing method of it. (KR Patent No. KR 102188113 B1). https://lens.org/055-289-346-463-228.
  • Kiseleva, N., O. Komarova, G. Juodeikiene, J. Siupiniene, J. Garipov, V. Tashchi, V. Maslovas, R. Peleckis, A. Juciunas, and V. Misiovic. 2019. Biologically active synergistic composition. (EP Patent No. EP 3145311 B1). https://lens.org/109-565-328-784-402.
  • Kolot, C., A. Rodriguez-Mateos, R. Feliciano, K. Bottermann, and W. Stahl. 2020. Bioavailability of naringenin chalcone in humans after ingestion of cherry tomatoes. International Journal for Vitamin and Nutrition Research 90 (5–6):411–6. doi: 10.1024/0300-9831/a000574.
  • Kong, F., Z. Ding, K. Zhang, W. Duan, Y. Qin, Z. Su, and Y. Bi. 2020. Optimization of extraction flavonoids from Exocarpium Citri Grandis and evaluation its hypoglycemic and hypolipidemic activities. Journal of Ethnopharmacology 262:113178. doi: 10.1016/j.jep.2020.113178.
  • Kong, R. E. N., H. Zhao, and T. C. Wong Stephen. 2017. Compositions and methods for selectively inhibiting intestinal carboxylesterase 2 enzyme activity. (CA Patent No. CA 2995575 A1). https://lens.org/156-847-118-138-680.
  • Kong, W., C. Qinghua, J. Zheng, Z. Liu, and F. Yu. 2017. Use of naringenin in preparing drugs for preventing and/or treatment abdominal aortic aneurysm. US Patent No. US9669005. Google Patents.
  • Kopustinskiene, D. M., V. Jakstas, A. Savickas, and J. Bernatoniene. 2020. Flavonoids as anticancer agents. Nutrients 12 (2):457. doi: 10.3390/nu12020457.
  • Kozłowska, J., B. Potaniec, B. Żarowska, and M. Anioł. 2017. Synthesis and biological activity of novel O-alkyl derivatives of naringenin and their oximes. Molecules 22 (9):1485. doi: 10.3390/molecules22091485.
  • Kozłowska, J., E. Grela, D. Baczyńska, A. Grabowiecka, and M. Anioł. 2019. Novel O-alkyl derivatives of naringenin and their oximes with antimicrobial and anticancer activity. Molecules 24 (4):679. doi: 10.3390/molecules24040679.
  • Kuchi Bhotla, H., B. Balasubramanian, V. A. Arumugam, K. Pushparaj, M. Easwaran, R. Baskaran, M. Saravanan, M. Pappusamy, and A. Meyyazhagan. 2021. Insinuating cocktailed components in biocompatible-nanoparticles could act as an impressive neo-adjuvant strategy to combat COVID-19 [journal article]. Natural Resources for Human Health 1 (1):3–7. doi: 10.53365/nrfhh/140607.
  • Lan Hui, Y. A. O. 2014. Naringenin and asiatic acid combination treatment of fibrosis. (WO Patent No. WO 2014/063660 A1). https://lens.org/052-560-710-561-542.
  • Lather, A., S. Sharma, and A. Khatkar. 2020. Naringenin derivatives as glucosamine-6-phosphate synthase inhibitors: Synthesis, antioxidants, antimicrobial, preservative efficacy, molecular docking and in silico ADMET analysis. BMC Chemistry 14 (1):41. doi: 10.1186/s13065-020-00693-3.
  • Latos-Brozio, M., A. Masek, and M. Piotrowska. 2021. Novel polymeric biomaterial based on naringenin. Materials 14 (9):2142. doi: 10.3390/ma14092142.
  • Lavola, A., M. Maukonen, and R. Julkunen-Tiitto. 2018. Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age. Phytochemistry 153:102–10. doi: 10.1016/j.phytochem.2018.05.021.
  • Lee, C., A. Y. Cho, W. Yoon, H. Yun, J. W. Kang, and J. Lee. 2019. Cocrystal formation via resorcinol–urea interactions: Naringenin and carbamazepine. Crystal Growth & Design 19 (7):3807–14. doi: 10.1021/acs.cgd.9b00269.
  • Li, F. S., P. Phyo, J. Jacobowitz, M. Hong, and J. K. Weng. 2019. The molecular structure of plant sporopollenin. Nature Plants 5 (1):41–6. doi: 10.1038/s41477-018-0330-7.
  • Li, H., M. Liu, W. Yang, L. Wan, H. Yan, J. Li, S. Tang, and Y. Wang. 2020. Naringenin induces neuroprotection against homocysteine-induced PC12 cells via the upregulation of superoxide dismutase 1 expression by decreasing miR-224-3p expression. Journal of Biological Regulators and Homeostatic Agents 34 (2):421–33. doi: 10.23812/20-27-A-39.
  • Li, W., W. Wang, W. Su, Y. Li, C. Yuan, J. Guo, and Y. Gao. 2016. Tamarindus indica linn. shell extract product and preparation method and application in reducing blood fat. (CN Patent No. CN 105902601 A). https://lens.org/182-211-338-397-640.
  • Li, Y. X., Y. G. Pan, F. P. He, M. Q. Yuan, and S. B. Li. 2016. Pathway analysis and metabolites identification by metabolomics of etiolation substrate from fresh-cut Chinese water chestnut (Eleocharis tuberosa). Molecules 21 (12):1648. doi: 10.3390/molecules21121648.
  • Li, Y., G. Bai, F. Liu, C. Yan, and H. Guan. 2018. Co-crystal of isoniazide and naringenin and preparation method of co-crystal. (CN Patent No. CN 108586332 A). https://lens.org/034-599-708-581-013.
  • Liang, W. E., I. C. Zhang, W. Zeng, C. Zhang, and L. Wang. 2015. Application of naringenin and naringin in tumor radiotherapy. (CN Patent No. CN 104940932 A). https://lens.org/012-232-808-618-558.
  • Lin, H., X. Wang, M. Liu, M. Huang, Z. Shen, J. Feng, H. Yang, Z. Li, J. Gao, and X. Ye. 2021. Exploring the treatment of COVID-19 with Yinqiao powder based on network pharmacology. Phytotherapy Research. doi: 10.1002/ptr.7012.
  • Liu, C.-W, and J. D. Murray. 2016. The role of flavonoids in nodulation host-range specificity: An update. Plants 5 (3):33. doi: 10.3390/plants5030033.
  • Liu, Y., J. Liu, R. Wang, H. Sun, M. Li, P. Strappe, and Z. Zhou. 2021. Analysis of secondary metabolites induced by yellowing process for understanding rice yellowing mechanism. Food Chemistry 342:128204. doi: 10.1016/j.foodchem.2020.128204.
  • Liu, Y., L. Wu, Z. Deng, and Y. Yu. 2021. Two putative parallel pathways for naringenin biosynthesis in Epimedium wushanense. RSC Advances 11 (23):13919–27. doi: 10.1039/D1RA00866H.
  • Long, X., S. Lu, H. Peng, Z. Chen, Y. Chen, and S. Pan. 2016. Extraction method and application of red peony synergy whitening extractive. (CN Patent No. CN 105496846 A). https://lens.org/110-530-496-332-750.
  • Lou, B., Y. Zhang, M. E. I. Zhang, Y. Huang, and L. Guo. 2019. Palmatine hydrochloride-naringenin pharmaceutical eutectic crystal with slow-release effect. (CN Patent No. CN 110016022 A). https://lens.org/068-805-509-792-06X.
  • Lu, W. L., C. T. R. Yu, H. M. Lien, G. T. Sheu, and S. H. Cherng. 2020. Cytotoxicity of naringenin induces Bax-mediated mitochondrial apoptosis in human lung adenocarcinoma A549 cells . Environmental Toxicology 35 (12):1386–94. doi: 10.1002/tox.23003.
  • Lund, J. A., P. N. Brown, and P. R. Shipley. 2020. Quantification of North American and European Crataegus flavonoids by nuclear magnetic resonance spectrometry. Fitoterapia 143:104537. doi: 10.1016/j.fitote.2020.104537.
  • Luo, C., W. Liang, X. Chen, J. Wang, Z. Deng, and H. Zhang. 2018. Pharmaceutical cocrystals of naringenin with improved dissolution performance. CrystEngComm 20 (22):3025–33. doi: 10.1039/C8CE00341F.
  • Mallek-Ayadi, S., N. Bahloul, and N. Kechaou. 2019. Phytochemical profile, nutraceutical potential and functional properties of Cucumis melo L. seeds. Journal of the Science of Food and Agriculture 99 (3):1294–301. doi: 10.1002/jsfa.9304.
  • Manchope, M. F., C. R. Ferraz, S. M. Borghi, F. S. Rasquel-Oliveira, A. Franciosi, J. Bagatim-Souza, A. M. Dionisio, R. Casagrande, and W. A. VerriJr. 2022. Therapeutic role of naringenin to alleviate inflammatory pain. In Treatments, mechanisms, and adverse reactions of anesthetics and analgesics, 443–55. Netherlands: Elsevier.
  • Manchope, M. F., R. Casagrande, and W. A. Verri. Jr, 2017. Naringenin: An analgesic and anti-inflammatory citrus flavanone. Oncotarget 8 (3):3766–7. doi: 10.18632/oncotarget.14084.
  • Mandalari, G., R. Bennett, G. Bisignano, D. Trombetta, A. Saija, C. Faulds, M. Gasson, and A. Narbad. 2007. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology 103 (6):2056–64. doi: 10.1111/j.1365-2672.2007.03456.x.
  • Mani, M., S. Balasubramanian, K. R. Manikandan, and B. Kulandaivel. 2021. Neuroprotective potential of Naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinson’s disease model. Journal of Applied Pharmaceutical Science 11 (2):019–28.
  • Martí, R., M. Valcárcel, J. M. Herrero-Martínez, J. Cebolla-Cornejo, and S. Roselló. 2017. Simultaneous determination of main phenolic acids and flavonoids in tomato by micellar electrokinetic capillary electrophoresis. Food Chemistry 221:439–46. doi: 10.1016/j.foodchem.2016.10.105.
  • Martínez-Huélamo, M., S. Tulipani, R. Estruch, E. Escribano, M. Illán, D. Corella, and R. M. Lamuela-Raventós. 2015. The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: A pharmacokinetic study. Food Chemistry 173:864–72. doi: 10.1016/j.foodchem.2014.09.156.
  • Matheys, C., N. Tumanova, T. Leyssens, and A. S. Myerson. 2016. Magnetic Levitation as a Tool for separation: Separating cocrystals from crystalline phases of individual compounds. Crystal Growth & Design 16 (9):5549–53. doi: 10.1021/acs.cgd.6b01018.
  • Mayneris-Perxachs, J., J. M. Alcaide-Hidalgo, E. de la Hera, J. M. del Bas, L. Arola, and A. Caimari. 2019. Supplementation with biscuits enriched with hesperidin and naringenin is associated with an improvement of the Metabolic Syndrome induced by a cafeteria diet in rats. Journal of Functional Foods 61:103504. doi: 10.1016/j.jff.2019.103504.
  • Medina-Torres, N., H. Espinosa-Andrews, S. Trombotto, T. Ayora-Talavera, J. Patrón-Vázquez, T. González-Flores, Á. Sánchez-Contreras, J. C. Cuevas-Bernardino, and N. Pacheco. 2019. Ultrasound-assisted extraction optimization of phenolic compounds from citrus latifolia waste for chitosan bioactive nanoparticles development. Molecules 24 (19):3541. doi: 10.3390/molecules24193541.
  • Memon, A. F., A. R. Solangi, S. Q. Memon, A. Mallah, and N. Memon. 2015. A MEKC method for naringenin from natural and biological samples. Analytical Methods 7 (11):4521–7. doi: 10.1039/C5AY00632E.
  • Memon, A. F., A. R. Solangi, S. Q. Memon, A. Mallah, N. Memon, and A. A. Memon. 2017. Simultaneous determination of quercetin, rutin, naringin, and naringenin in different fruits by capillary zone electrophoresis. Food Analytical Methods 10 (1):83–91. doi: 10.1007/s12161-016-0552-0.
  • Meng, L.-M., H.-J. Ma, H. Guo, Q.-Q. Kong, and Y. Zhang. 2016. The cardioprotective effect of naringenin against ischemia-reperfusion injury through activation of ATP-sensitive potassium channel in rat. Canadian Journal of Physiology and Pharmacology 94 (9):973–8. doi: 10.1139/cjpp-2016-0008.
  • Meng, Z., J. Zhao, H. Duan, Y. Guan, and L. Zhao. 2018. Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. Journal of Pharmaceutical and Biomedical Analysis 161:246–53. doi: 10.1016/j.jpba.2018.08.048.
  • Mildner-Szkudlarz, S., M. Różańska, P. Piechowska, A. Waśkiewicz, and R. Zawirska-Wojtasiak. 2019. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chemistry 297:125008. doi: 10.1016/j.foodchem.2019.125008.
  • Moghaddam, R. H., Z. Samimi, S. Z. Moradi, P. J. Little, S. Xu, and M. H. Farzaei. 2020. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. European Journal of Pharmacology 887:173535. doi: 10.1016/j.ejphar.2020.173535.
  • Morakul, B. 2020. Self-nanoemulsifying drug delivery systems (SNEDDS): An advancement technology for oral drug delivery. Pharmaceutical Sciences Asia 47 (3):205–20. doi: 10.29090/psa.2020.03.019.0121.
  • Moran, B., R. Silva, A. S. Perry, and W. M. Gallagher. 2018. Epigenetics of malignant melanoma. Seminars in Cancer Biology 51:80–8. doi: 10.1016/j.semcancer.2017.10.006.
  • Mothlalamme, T., R. Daniels, J. Klaasen, and B. C. Fielding. 2015. Additive antibacterial activity of naringenin and antibiotic combinations against multidrug resistant Staphylococcus aureus. African Journal of Microbiology Research 9 (23):1513–8.
  • Muriel, P. 2017. The liver: General aspects and epidemiology. In Liver pathophysiology, 3–22. Netherlands: Elsevier.
  • Murugesan, N., K. Woodard, R. Ramaraju, F. L. Greenway, A. A. Coulter, and C. J. Rebello. 2020. Naringenin increases insulin sensitivity and metabolic rate: A case study. Journal of Medicinal Food 23 (3):343–8. doi: 10.1089/jmf.2019.0216.
  • Nakajima, V. M., A. R. Ruviaro, P. d. P. M. Barbosa, I. F. da Silva, and A. R. A. de Ávila. 2019. Hesperetin and naringenin: Protective effects against metabolic syndrome–associated inflammation. In Discovery and development of anti-inflammatory agents from natural products, 207–39. Netherlands: Elsevier.
  • Nalewajko-Sieliwoniuk, E., M. Hryniewicka, D. Jankowska, A. Kojło, M. Kamianowska, and M. Szczepański. 2020. Dispersive liquid-liquid microextraction coupled to liquid chromatography tandem mass spectrometry for the determination of phenolic compounds in human milk. Food Chemistry 327:126996. doi: 10.1016/j.foodchem.2020.126996.
  • Nguyen, V. T., and Y. Kamio. 2004. Cooperative assembly of beta-barrel pore-forming toxins . Journal of Biochemistry 136 (5):563–7. doi: 10.1093/jb/mvh160.
  • Nguyen‐Ngo, C., J. C. Willcox, and M. Lappas. 2019. Anti‐diabetic, anti‐inflammatory, and anti‐oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Molecular Nutrition & Food Research 63 (19):1900224. doi: 10.1002/mnfr.201900224.
  • Ni, B., S. Cao, L. Feng, X. Yin, W. Wang, X. Zhang, and J. Ni. 2016. Simultaneous analysis of quercetin and naringenin in rat plasma by liquid chromatography-tandem mass spectrometry: Application to a pharmacokinetic study after oral administration. Journal of Chromatographic Science 54 (8):1359–64. doi: 10.1093/chromsci/bmw079.
  • Ni, H., L. Li, A. Xiao, Y. Cao, Y. Chen, and H. Cai. 2011. Identification and characterization of a new naringinase-producing strain, Williopsis californica Jmudeb007. World Journal of Microbiology and Biotechnology 27 (12):2857–62. doi: 10.1007/s11274-011-0766-7.
  • Ni, H., S. F. Zhang, Q. F. Gao, Y. Hu, Z. D. Jiang, and F. Chen. 2015. Development and evaluation of simultaneous quantification of naringin, prunin, naringenin, and limonin in citrus juice. Food Science and Biotechnology 24 (4):1239–47. doi: 10.1007/s10068-015-0159-z.
  • Noori, S., M. R. Tavirani, N. Deravi, M. I. M. Rabbani, and A. Zarghi. 2020. Naringenin enhances the anti-cancer effect of cyclophosphamide against MDA-MB-231 breast cancer cells via targeting the STAT3 signaling pathway. Iranian Journal of Pharmaceutical Research: IJPR 19 (3):122.
  • Oguz, M., A. A. Bhatti, B. Dogan, S. Karakurt, S. Durdagi, and M. Yilmaz. 2020. Formation of the inclusion complex of water soluble fluorescent calix [4] arene and naringenin: Solubility, cytotoxic effect and molecular modeling studies. Journal of Biomolecular Structure and Dynamics 38 (13):3801–13. doi: 10.1080/07391102.2019.1668301.
  • Oliveira, M. A., L. Heimfarth, F. R. S. Passos, R. Miguel-Dos-Santos, M. R. Mingori, J. C. F. Moreira, S. S. Lauton, R. S. S. Barreto, A. A. S. Araújo, A. P. Oliveira, et al. 2020. Naringenin complexed with hydroxypropyl-β-cyclodextrin improves the sciatic nerve regeneration through inhibition of p75NTR and JNK pathway. Life Sciences 241:117102. doi: 10.1016/j.lfs.2019.117102.
  • Orhan, I. E., D. Jedrejek, F. S. Senol, R. E. Salmas, S. Durdagi, I. Kowalska, L. Pecio, and W. Oleszek. 2018. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 42:25–33. doi: 10.1016/j.phymed.2018.03.009.
  • Orrego-Lagarón, N., M. Martínez-Huélamo, A. Vallverdú-Queralt, R. M. Lamuela-Raventos, and E. Escribano-Ferrer. 2015. High gastrointestinal permeability and local metabolism of naringenin: Influence of antibiotic treatment on absorption and metabolism. The British Journal of Nutrition 114 (2):169–80. doi: 10.1017/s0007114515001671.
  • Owis, A. I., M. S. El-Hawary, D. El Amir, O. M. Aly, U. R. Abdelmohsen, and M. S. Kamel. 2020. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances 10 (33):19570–5. doi: 10.1039/D0RA03582C.
  • Panchamoorthy, R., and N. Vel. 2021. Herbal spices-based therapeutics for diabetic patients with COVID-19 infection: A review [journal article]. Natural Resources for Human Health 2 (1):32–51. doi: 10.53365/nrfhh/143758.
  • Patel, K., G. K. Singh, and D. K. Patel. 2018. A review on pharmacological and analytical aspects of Naringenin. Chinese Journal of Integrative Medicine 24 (7):551–60. doi: 10.1007/s11655-014-1960-x.
  • Pateliya, B., V. Burade, and S. Goswami. 2021. Combining naringenin and metformin with doxorubicin enhances anticancer activity against triple-negative breast cancer in vitro and in vivo. European Journal of Pharmacology 891:173725. doi: 10.1016/j.ejphar.2020.173725.
  • Pérez-Pérez, M.-J., L. Delang, L. F. Ng, and E.-M. Priego. 2019. Chikungunya virus drug discovery: Still a long way to go? Expert Opinion on Drug Discovery 14 (9):855–66. doi: 10.1080/17460441.2019.1629413.
  • Pervaiz, I., H. Saleem, M. Sarfraz, M. Imran Tousif, U. Khurshid, S. Ahmad, G. Zengin, K. Ibrahime Sinan, M. Locatelli, F. M. Mahomoodally, et al. 2020. Multidirectional insights into the phytochemical, biological, and multivariate analysis of the famine food plant (Calligonum polygonoides L).: A novel source of bioactive phytocompounds. Food Research International (Ottawa, ON) 137:109606. doi: 10.1016/j.foodres.2020.109606.
  • Pinho-Ribeiro, F. A., A. C. Zarpelon, V. Fattori, M. F. Manchope, S. S. Mizokami, R. Casagrande, and W. A. Verri. Jr. 2016. Naringenin reduces inflammatory pain in mice. Neuropharmacology 105:508–19. doi: 10.1016/j.neuropharm.2016.02.019.
  • Pinho-Ribeiro, F., A. Zarpelon, S. Mizokami, S. Borghi, J. Bordignon, R. Silva, T. Cunha, J. Alves-Filho, F. Cunha, R. Casagrande, et al. 2016. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. The Journal of Nutritional Biochemistry 33:8–14. doi: 10.1016/j.jnutbio.2016.03.013.
  • Prakash, O., A. Kumar, and P. Kumar. 2013. Anticancer potential of plants and natural products. American Journal of Pharmacological Science 1 (6):104–15.
  • Qi, R., and C. Chen. 2017. Purpose of naringenin, naringenin nanoliposome and preparation method and application thereof. (CN Patent No. CN 107432874 A). https://lens.org/040-087-093-022-933.
  • Rashmi, R., S. B. Magesh, K. M. Ramkumar, S. Suryanarayanan, and M. V. SubbaRao. 2018. Antioxidant potential of naringenin helps to protect liver tissue from streptozotocin-induced damage. Reports of Biochemistry & Molecular Biology 7 (1):76–84.
  • Ravindran, S., J. K. Suthar, R. Rokade, P. Deshpande, P. Singh, A. Pratinidhi, R. Khambadkhar, and S. Utekar. 2018. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Current Drug Metabolism 19 (4):327–34. doi: 10.2174/1389200219666180305154119.
  • Rebello, C. J., R. A. Beyl, J. J. L. Lertora, F. L. Greenway, E. Ravussin, D. M. Ribnicky, A. Poulev, B. J. Kennedy, H. F. Castro, S. R. Campagna, et al. 2020. Safety and pharmacokinetics of naringenin: A randomized, controlled, single-ascending-dose clinical trial. Diabetes, Obesity & Metabolism 22 (1):91–8. doi: 10.1111/dom.13868.
  • Rehman, F. U., K. U. Shah, S. U. Shah, I. U. Khan, G. M. Khan, and A. Khan. 2017. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opinion on Drug Delivery 14 (11):1325–40. doi: 10.1080/17425247.2016.1218462.
  • Rempe, C. S., K. P. Burris, S. C. Lenaghan, and C. N. Stewart. Jr. 2017. The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Frontiers in Microbiology 8:422. doi: 10.3389/fmicb.2017.00422.
  • Ribeiro, I. A., and M. H. Ribeiro. 2008. Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control 19 (4):432–8. doi: 10.1016/j.foodcont.2007.05.007.
  • Rocha, A. J., d. Barsottini, R. R. Rocha, M. V. Laurindo, d. Moraes, and d. Rocha. 2019. Pseudomonas aeruginosa: Virulence factors and antibiotic resistance genes. Brazilian Archives of Biology and Technology 62:e19180503. doi: 10.1590/1678-4324-2019180503.
  • Salehi, B., P. V. T. Fokou, M. Sharifi-Rad, P. Zucca, R. Pezzani, N. Martins, and J. Sharifi-Rad. 2019. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 12 (1):11. doi: 10.3390/ph12010011.
  • Samanta, A., G. Das, and S. K. Das. 2011. Roles of flavonoids in plants. Carbon 100 (6):12–35.
  • Sanchez-Rabaneda, F., O. Jauregui, I. Casals, C. Andres-Lacueva, M. Izquierdo-Pulido, and R. M. Lamuela-Raventos. 2003. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). Journal of Mass Spectrometry 38 (1):35–42. doi: 10.1002/jms.395.
  • Sandhu, P. S., R. Kumar, S. Beg, S. Jain, V. Kushwah, O. P. Katare, and B. Singh. 2017. Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: Systematic approach for improved breast cancer therapeutics. Nanomedicine 13 (5):1703–13. doi: 10.1016/j.nano.2017.03.003.
  • Sang, Z., K. Wang, J. Shi, W. Liu, X. Cheng, G. Zhu, Y. Wang, Y. Zhao, Z. Qiao, A. Wu, et al. 2020. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry. 192:112180. doi: 10.1016/j.ejmech.2020.112180.
  • Sangpheak, W., J. Kicuntod, R. Schuster, T. Rungrotmongkol, P. Wolschann, N. Kungwan, H. Viernstein, M. Mueller, and P. Pongsawasdi. 2015. Physical properties and biological activities of hesperetin and naringenin in complex with methylated β-cyclodextrin. Beilstein Journal of Organic Chemistry 11 (1):2763–73. doi: 10.3762/bjoc.11.297.
  • Şanlı, S, and C. Lunte. 2014. Determination of eleven flavonoids in chamomile and linden extracts by capillary electrophoresis. Analytical Methods 6 (11):3858–64. doi: 10.1039/C3AY41878B.
  • Santana-Gálvez, J., L. Cisneros-Zevallos, and D. A. Jacobo-Velázquez. 2019. A practical guide for designing effective nutraceutical combinations in the form of foods, beverages, and dietary supplements against chronic degenerative diseases. Trends in Food Science & Technology 88:179–93. doi: 10.1016/j.tifs.2019.03.026.
  • Saokham, P., C. Muankaew, P. Jansook, and T. Loftsson. 2018. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 23 (5):1161. doi: 10.3390/molecules23051161.
  • Shehata, M. G., T. S. Awad, D. Asker, S. A. El Sohaimy, N. M. Abd El-Aziz, and M. M. Youssef. 2021. Antioxidant and antimicrobial activities and UPLC-ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Current Research in Food Science 4:326–35. doi: 10.1016/j.crfs.2021.05.001.
  • Shi, X., X. Luo, T. Chen, W. Guo, C. Liang, S. Tang, and J. Mo. 2021. Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro. Journal of Cellular and Molecular Medicine 25 (5):2563–71. doi: 10.1111/jcmm.16226.
  • Shpigelman, A., Y. Shoham, G. Israeli-Lev, and Y. D. Livney. 2014. β-Lactoglobulin–naringenin complexes: Nano-vehicles for the delivery of a hydrophobic nutraceutical. Food Hydrocolloids. 40:214–24. doi: 10.1016/j.foodhyd.2014.02.023.
  • Siegel, R. L., K. D. Miller, H. E. Fuchs, and A. Jemal. 2021. Cancer statistics, 2021. CA: A Cancer Journal for Clinicians 71 (1):7–33. doi: 10.3322/caac.21654.
  • Simola, N., M. Morelli, and A. R. Carta. 2007. The 6-hydroxydopamine model of Parkinson’s disease. Neurotoxicity Research 11 (3–4):151–67. doi: 10.1007/BF03033565.
  • Sinha, A. S., A. R. Maguire, and S. E. Lawrence. 2015. Cocrystallization of nutraceuticals. Crystal Growth & Design 15 (2):984–1009. doi: 10.1021/cg501009c.
  • Slimestad, R., and M. J. Verheul. 2005. Seasonal variations in the level of plant constituents in greenhouse production of cherry tomatoes. Journal of Agricultural and Food Chemistry 53 (8):3114–9. doi: 10.1021/jf047864e.
  • Song Yang, H., and S. Tarek. 2019. / NOVEL Lipoic Acid/Naringenin Compounds And Use Thereof. (KR Patent No. KR 20190143551 A). https://lens.org/039-545-592-419-505.
  • Steiger, D., T. Yokota, J. Li, S. Ren, S. Minamisawa, and Y. Wang. 2018. The serine/threonine-protein kinase/endoribonuclease IRE1α protects the heart against pressure overload–induced heart failure. Journal of Biological Chemistry 293 (25):9652–61. doi: 10.1074/jbc.RA118.003448.
  • Strużycka, I. 2014. The oral microbiome in dental caries. Polish Journal of Microbiology 63 (2):127–35. doi: 10.33073/pjm-2014-018.
  • Stylos, E., M. V. Chatziathanasiadou, A. Tsiailanis, T. F. Kellici, M. Tsoumani, A. D. Kostagianni, M. Deligianni, A. D. Tselepis, and A. G. Tzakos. 2017. Tailoring naringenin conjugates with amplified and triple antiplatelet activity profile: Rational design, synthesis, human plasma stability and in vitro evaluation. Biochimica et Biophysica Acta. General Subjects 1861 (11 Pt A):2609–18. doi: 10.1016/j.bbagen.2017.08.018.
  • Sung, H., J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71 (3):209–49. doi: 10.3322/caac.21660.
  • Tan, Z., Y. Sun, M. Liu, L. Xia, F. Cao, Y. Qi, and Y. Song. 2020. Naringenin inhibits cell migration, invasion, and tumor growth by regulating circFOXM1/miR-3619-5p/SPAG5 axis in lung cancer. Cancer Biotherapy & Radiopharmaceuticals.
  • Testai, L., E. Piragine, I. Piano, L. Flori, E. Da Pozzo, V. Miragliotta, A. Pirone, V. Citi, L. Di Cesare Mannelli, S. Brogi, et al. 2020. The citrus flavonoid naringenin protects the myocardium from ageing-dependent dysfunction: Potential role of SIRT1. Oxidative Medicine and Cellular Longevity 2020:1–15. doi: 10.1155/2020/4650207.
  • Tsai, M.-J., Y.-B. Huang, J.-W. Fang, Y.-S. Fu, and P.-C. Wu. 2015. Preparation and characterization of naringenin-loaded elastic liposomes for topical application. PloS One 10 (7):e0131026. doi: 10.1371/journal.pone.0131026.
  • Tsuhako, R., H. Yoshida, C. Sugita, and M. Kurokawa. 2020. Naringenin suppresses neutrophil infiltration into adipose tissue in high-fat diet-induced obese mice. Journal of Natural Medicines 74 (1):229–37. doi: 10.1007/s11418-019-01332-5.
  • Tutunchi, H., F. Naeini, A. Ostadrahimi, and M. J. Hosseinzadeh‐Attar. 2020. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytotherapy Research: PTR 34 (12):3137–47. doi: 10.1002/ptr.6781.
  • Vandeputte, O. M., M. Kiendrebeogo, T. Rasamiravaka, C. Stevigny, P. Duez, S. Rajaonson, B. Diallo, A. Mol, M. Baucher, and M. El Jaziri. 2011. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (Reading, England) 157 (Pt 7):2120–32. doi: 10.1099/mic.0.049338-0.
  • VanderMolen, K. M., N. B. Cech, M. F. Paine, and N. H. Oberlies. 2013. Rapid quantitation of furanocoumarins and flavonoids in grapefruit juice using ultra‐performance liquid chromatography. Phytochemical Analysis 24 (6):654–60. doi: 10.1002/pca.2449.
  • Venkateswara Rao, P., S. Kiran, P. Rohini, and P. Bhagyasree. 2017. Flavonoid: A review on Naringenin. Journal of Pharmacognosy and Phytochemistry 6:2778–83.
  • Wadhwa, R., K. R. Paudel, L. H. Chin, C. M. Hon, T. Madheswaran, G. Gupta, J. Panneerselvam, T. Lakshmi, S. K. Singh, M. Gulati, et al. 2021. Anti-inflammatory and anticancer activities of Naringenin-loaded liquid crystalline nanoparticles in vitro. Journal of Food Biochemistry 45 (1):e13572. doi: 10.1111/jfbc.13572.
  • Walton Stacey, K., and E. Olcese Gino. 2019. Sweet taste improving compositions including naringenin. (US Patent No. US 10231474 B2). https://lens.org/047-956-257-028-263.
  • Wang, H. H., D. K. Lee, M. Liu, P. Portincasa, and D. Q.-H. Wang. 2020. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatric Gastroenterology, Hepatology & Nutrition 23 (3):189–230. doi: 10.5223/pghn.2020.23.3.189.
  • Wang, H., B. Niu, R. Guo, X. Gao, B. I. N. Wang, and F. E. I. Wang. 2018. Preparation method of polylactic acid-coated naringenin and starch silver-loaded composite nano particle. (CN Patent No. CN 107661316 A). https://lens.org/051-829-641-955-347.
  • Wang, L.-H., X.-A. Zeng, M.-S. Wang, C. S. Brennan, and D. Gong. 2018. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. Biochimica et Biophysica Acta. Biomembranes 1860 (2):481–90. doi: 10.1016/j.bbamem.2017.11.007.
  • Wang, Q., J. Yang, X-m. Zhang, L. Zhou, X.-L. Liao, and B. Yang. 2015. Practical synthesis of naringenin. Journal of Chemical Research 39 (8):455–7. doi: 10.3184/174751915X14379994045537.
  • Wang, Y., S. Wang, C. K. Firempong, H. Zhang, M. Wang, Y. Zhang, Y. Zhu, J. Yu, and X. Xu. 2017. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: Preparation and in vitro and in vivo evaluations. AAPS PharmSciTech 18 (3):586–94. doi: 10.1208/s12249-016-0537-8.
  • Wanwimolruk, S., and P. V. Marquez. 2006. Variations in content of active ingredients causing drug interactions in grapefruit juice products sold in California. Drug Metabol Drug Interact 21 (3–4):233–43. doi: 10.1515/dmdi.2006.21.3-4.233.
  • Wei, W., P. Zhang, Y. Shang, Y. Zhou, and B.-C. Ye. 2020. Metabolically engineering of Yarrowia lipolytica for the biosynthesis of naringenin from a mixture of glucose and xylose. Bioresource Technology 314:123726. doi: 10.1016/j.biortech.2020.123726.
  • Wen, C., D. Wang, X. Li, T. Huang, C. Huang, and K. Hu. 2018. Targeted isolation and identification of bioactive compounds lowering cholesterol in the crude extracts of crabapples using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA. Journal of Pharmaceutical and Biomedical Analysis 150:144–51. doi: 10.1016/j.jpba.2017.11.061.
  • Wen, Z. T., D. Yates, S.-J. Ahn, and R. A. Burne. 2010. Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. BMC Microbiology 10 (1):111–9. doi: 10.1186/1471-2180-10-111.
  • World Health Organization. 2020. The top 10 causes of death. Accessed August 26. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  • World Health Organization. 2021. Obesity. Accessed September 2. https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity
  • Wu, D. T., W. Liu, M. L. Xian, G. Du, X. Liu, J. J. He, P. Wang, W. Qin, and L. Zhao. 2020. Polyphenolic-protein-polysaccharide complexes from hovenia dulcis: insights into extraction methods on their physicochemical properties and in vitro bioactivities. Foods 9 (4):456. doi: 10.3390/foods9040456.
  • Wu, J., X. Kou, H. Ju, H. Zhang, A. Yang, and R. Shen. 2021. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters 49:128316. doi: 10.1016/j.bmcl.2021.128316.
  • Wu, Z., and H. A. O. Zhang. 2016. Naringin controlled release capsule and preparation method thereof (CN Patent No. CN 105560207 A). https://lens.org/114-175-071-321-169
  • Xiao, Y., and I. S. Lee. 2017. Microbial transformation of naringenin derivatives. Archives of Pharmacal Research 40 (6):720–6. doi: 10.1007/s12272-017-0916-z.
  • Xiong, H., Z. Chen, B. Lin, C. Chen, Z. Li, Y. Jia, L. Wang, and J. Zhou. 2021. Naringenin Regulates FKBP4/NR3C1/TMEM173 signaling pathway in autophagy and proliferation of breast cancer and tumor-infiltrating dendritic cell maturation. doi: 10.21203/rs.3.rs-659646/v1.
  • Xu, J., P. Xu, Y. Lyu, W. Xiong, and L. A. 2020. Naringenin product addiction device and application thereof. (CN Patent No. CN 110878262 A). https://lens.org/106-023-856-896-277.
  • Xue, N., X. Wu, L. Wu, L. Li, and F. Wang. 2019. Antinociceptive and anti-inflammatory effect of Naringenin in different nociceptive and inflammatory mice models. Life Sciences 217:148–54. doi: 10.1016/j.lfs.2018.11.013.
  • Yáñez, J. A., C. M. Remsberg, N. D. Miranda, K. R. Vega‐Villa, P. K. Andrews, and N. M. Davies. 2008. Pharmacokinetics of selected chiral flavonoids: Hesperetin, naringenin and eriodictyol in rats and their content in fruit juices. Biopharmaceutics & Drug Disposition 29 (2):63–82. doi: 10.1002/bdd.588.
  • Yang, F., S. Hu, X. Sheng, and Y. Liu. 2020. Naringenin loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in hepatic fibrosis. Biomedical Microdevices 22 (4):1–9. doi: 10.1007/s10544-020-00524-1.
  • Yang, Q., M. Wu, Y.-L. Zhu, Y.-Q. Yang, Y.-Z. Mei, and C.-C. Dai. 2021. The disruption of the MAPKK gene triggering the synthesis of flavonoids in endophytic fungus Phomopsis liquidambaris. Biotechnology Letters 43 (1):119–32. doi: 10.1007/s10529-020-03042-5.
  • Yang, Y., Y. Lin, L. Li, R. J. Linhardt, and Y. Yan. 2015. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metabolic Engineering 29:217–26. doi: 10.1016/j.ymben.2015.03.018.
  • Yu, L.-M., X. Dong, J. Zhang, Z. Li, X.-D. Xue, H.-J. Wu, Z.-L. Yang, Y. Yang, and H.-S. Wang. 2019. Naringenin attenuates myocardial ischemia-reperfusion injury via cGMP-PKGIα signaling and in vivo and in vitro studies. Oxidative Medicine and Cellular Longevity 2019:1–15. doi: 10.1155/2019/7670854.
  • Yu, L.-M., X. Dong, X.-D. Xue, J. Zhang, Z. Li, H.-J. Wu, Z.-L. Yang, Y. Yang, and H.-S. Wang. 2019. Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: The role of the AMPK-SIRT3 signaling pathway. Food & Function 10 (5):2752–65. doi: 10.1039/c9fo00001a.
  • Yue, J., H. Yang, S. Liu, F. Song, J. Guo, and C. Huang. 2018. Influence of naringenin on the biofilm formation of Streptococcus mutans. Journal of Dentistry 76:24–31. doi: 10.1016/j.jdent.2018.04.013.
  • Zaidun, N. H., Z. C. Thent, and A. A. Latiff. 2018. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sciences 208:111–22. doi: 10.1016/j.lfs.2018.07.017.
  • Zaim, Ö., O. Doğanlar, M. M. Zreigh, Z. B. Doğanlar, and H. Özcan. 2018. Synthesis, cancer-selective antiproliferative and apoptotic effects of some (±)-naringenin cycloaminoethyl derivatives. Chemistry & Biodiversity 15 (7):e1800016. doi: 10.1002/cbdv.201800016.
  • Zang, Y., J. Zha, X. Wu, Z. Zheng, J. Ouyang, and M. A. G. Koffas. 2019. In vitro naringenin biosynthesis from p-coumaric acid using recombinant enzymes. Journal of Agricultural and Food Chemistry 67 (49):13430–6. doi: 10.1021/acs.jafc.9b00413.
  • Zaworotko Michael, J. H. Clark, A. Kapildev, P. Kavuru, D. Shytle Roland, T. Pujari, L. Marshall, and T. Ong Tien. 2015. Nutraceutical co-crystal compositions (US Patent No. US 2015/0250797 A1). https://lens.org/027-942-539-225-588
  • Zeng, W. 2019. Topical preparation for skin tissue protection and reparation. (US Patent No. US 2019/0160044 A1). https://lens.org/034-453-493-374-807.
  • Zeng, W., L. Jin, F. Zhang, C. Zhang, and W. Liang. 2018. Naringenin as a potential immunomodulator in therapeutics. Pharmacological Research 135:122–6. doi: 10.1016/j.phrs.2018.08.002.
  • Zeng, X. A. L. Wang, Q. Wen, and D. Niu. 2017. Method for synergistically killing staphylococcus aureus through citruse naringenin and high-strength pulsed electric field. (CN Patent No. CN 107348305 A). https://lens.org/169-991-100-937-597.
  • Zeng, X., Y. Bai, W. Peng, and W. Su. 2017. Identification of Naringin Metabolites in Human Urine and Feces. European Journal of Drug Metabolism and Pharmacokinetics 42 (4):647–56. doi: 10.1007/s13318-016-0380-z.
  • Zhang, L., L. Song, P. Zhang, T. Liu, L. Zhou, G. Yang, R. Lin, and J. Zhang. 2015. Solubilities of Naringin and Naringenin in different solvents and dissociation constants of naringenin. Journal of Chemical & Engineering Data 60 (3):932–40. doi: 10.1021/je501004g.
  • Zhang, Q., Z. Jiao, J. Liu, C. Zhang, H. Liu, Z. Lyu, W. Yang, and D. Chen. 2020. Blood sugar reducing composition and application thereof. (CN Patent No. CN 111388461 A). https://lens.org/019-310-859-361-305.
  • Zhang, S., D. D. Li, F. Zeng, Z. H. Zhu, P. Song, M. Zhao, and J. A. Duan. 2019. Efficient biosynthesis, analysis, solubility and anti-bacterial activities of succinylglycosylated naringenin. Natural Product Research 33 (12):1756–60. doi: 10.1080/14786419.2018.1431633.
  • Zhang, Y., J.-F. Wang, J. Dong, J.-Y. Wei, Y.-N. Wang, X.-H. Dai, X. Wang, M.-J. Luo, W. Tan, X.-M. Deng, et al. 2013. Inhibition of α-toxin production by subinhibitory concentrations of naringenin controls Staphylococcus aureus pneumonia. Fitoterapia 86:92–9. doi: 10.1016/j.fitote.2013.02.001.
  • Zhao, C., F. Wang, Y. Lian, H. Xiao, and J. Zheng. 2020. Biosynthesis of citrus flavonoids and their health effects. Critical Reviews in Food Science and Nutrition 60 (4):566–83. doi: 10.1080/10408398.2018.1544885.
  • Zhao, H., M. Liu, H. Liu, R. Suo, and C. Lu. 2020. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP Pathway. Bioscience Reports 40 (3):BSR20193431. doi: 10.1042/BSR20193431.
  • Zhao, J., Y. Zhang, Q. Zhao, Y. He, Z. Li, A. Chen, C. Wang, B. Wang, B. Jiao, and Y. Cui. 2021. A sensitive and practical ELISA for analyzing naringenin in pummelo and herb samples. Food Chemistry 362:130223. doi: 10.1016/j.foodchem.2021.130223.
  • Zhao, R., H. Xiao, T. Jin, F. Xu, Y. Li, H. Li, Z. Zhang, and Y. Zhang. 2021. Naringenin promotes cell autophagy to improve high-fat-diet-induced atherosclerosis in ApoE-/-mice. Brazilian Journal of Medical and Biological Research 54 (4): e9764. doi: 10.1590/1414-431x20209764.
  • Zhao, Z., P. Liu, S. Wang, and S. Ma. 2017. Optimization of ultrasound, microwave and Soxhlet extraction of flavonoids from Millettia speciosa Champ. and evaluation of antioxidant activities in vitro. Journal of Food Measurement and Characterization 11 (4):1947–58. doi: 10.1007/s11694-017-9577-3.
  • Zheng, Y. Z., G. Deng, R. Guo, D. F. Chen, and Z. M. Fu. 2019. DFT Studies on the Antioxidant Activity of Naringenin and Its Derivatives: Effects of the Substituents at C3. International Journal of Molecular Sciences 20 (6):1450. doi: 10.3390/ijms20061450.
  • Zhou, S., S. F. Yuan, P. H. Nair, H. S. Alper, Y. Deng, and J. Zhou. 2021. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metabolic Engineering 67:41–52. doi: 10.1016/j.ymben.2021.05.007.
  • Zhou, T., L. Liu, Q. Wang, and Y. Gao. 2020. Naringenin alleviates cognition deficits in high-fat diet-fed SAMP8 mice . Journal of Food Biochemistry 44 (9):e13375. doi: 10.1111/jfbc.13375.
  • Zilani, M. N. H., T. Sultana, S. A. Rahman, M. Anisuzzman, M. A. Islam, J. A. Shilpi, and M. G. Hossain. 2017. Chemical composition and pharmacological activities of Pisum sativum. BMC Complementary and Alternative Medicine 17 (1):1–9. doi: 10.1186/s12906-017-1699-y.
  • Zilani, M. N., T. Sultana, S. M. Asabur Rahman, M. Anisuzzman, M. A. Islam, J. A. Shilpi, and M. G. Hossain. 2017. Chemical composition and pharmacological activities of Pisum sativum. BMC Complementary and Alternative Medicine 17 (1):171. doi: 10.1186/s12906-017-1699-y.
  • Żyszka, B., M. Anioł, and J. Lipok. 2017. Modulation of the growth and metabolic response of cyanobacteria by the multifaceted activity of naringenin. PloS One 12 (5):e0177631. doi: 10.1371/journal.pone.0177631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.