1,174
Views
5
CrossRef citations to date
0
Altmetric
Reviews

The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies

, , , , , , ORCID Icon & show all

References

  • Abdull Razis, A. F., M. Bagatta, G. R. De Nicola, R. Iori, and C. Ioannides. 2011. Up-regulation of cytochrome P450 and phase II enzyme systems in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer (Amsterdam, Netherlands) 71 (3):298–305. doi: 10.1016/j.lungcan.2010.06.015.
  • Abdull Razis, A. F, and N. Noor. 2013. Sulforaphane is superior to glucoraphanin in modulating carcinogen-metabolising enzymes in Hep G2 cells. Asian Pacific Journal of Cancer Prevention : APJCP 14 (7):4235–8. doi: 10.7314/apjcp.2013.14.7.4235.
  • Agerbirk, N., M. De Vos, J. H. Kim, and G. Jander. 2009. Indole glucosinolate breakdown and its biological effects. Phytochemistry Reviews 8 (1):101–20. doi: 10.1007/s11101-008-9098-0.
  • Ahn, M., J. Kim, D. Yang, J. Y. Chun, G. O. Kim, and T. Shin. 2021. Indole-3-carbinol alleviates carbon tetrachloride-induced liver injury by inhibiting inflammatory response and regulating lipid metabolism. Advances in Traditional Medicine 21 (2):371–8. doi: 10.1007/s13596-020-00452-8.
  • Aires, A, and R. Carvalho. 2017. Rapid separation of indole glucosinolates in roots of Chinese cabbage (Brassica rapa Subsp. Pekinensis) by high-performance liquid chromatography with Diode Array Detection. International Journal of Analytical Chemistry 2017:5125329. doi: 10.1155/2017/5125329.
  • Albaser, A., E. Kazana, M. H. Bennett, F. Cebeci, V. Luang-In, P. D. Spanu, and J. T. Rossiter. 2016. Discovery of a bacterial glycoside hydrolase family 3 (GH3) β-Glucosidase with Myrosinase Activity from a Citrobacter Strain Isolated from Soil . Journal of Agricultural and Food Chemistry 64 (7):1520–7. doi: 10.1021/acs.jafc.5b05381.
  • Antonini, E., R. Iori, P. Ninfali, and E. Scarpa. 2018. A combination of moringin and avenanthramide 2f inhibits the proliferation of Hep3B liver cancer cells inducing intrinsic and extrinsic apoptosis. Nutrition and Cancer 70 (7):1159–7. doi: 10.1080/01635581.2018.1497672.
  • Armah, C., C. Derdemezis, M. Traka, J. Dainty, J. Doleman, S. Saha, W. Leung, J. Potter, J. Lovegrove, and R. Mithen. 2015. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Molecular Nutrition & Food Research 59 (5):918–26. doi: 10.1002/mnfr.201400863.
  • Arumugam, A., M. Ibrahim, S. Kntayya, N. Mohd Ain, R. Iori, S. Galletti, C. Ioannides, and A. F. Abdull Razis. 2020. Induction of apoptosis by gluconasturtiin-isothiocyanate (gnst-itc) in human hepatocarcinoma HepG2 cells and human breast adenocarcinoma MCF-7 Cells. Molecules 25 (5):1240. doi: 10.3390/molecules25051240.
  • Axelsson, A., E. Tubbs, B. Mecham, S. Chacko, H. Nenonen, Y. Tang, J. Fahey, J. Derry, C. Wollheim, N. Wierup, et al. 2017. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science Translational Medicine 9 (394) . doi: 10.1126/scitranslmed.aah4477.
  • Baenas, N., S. Piegholdt, A. Schloesser, D. Moreno, C. García-Viguera, G. Rimbach, and A. Wagner. 2016. Metabolic activity of radish sprouts derived isothiocyanates in Drosophila melanogaster. International Journal of Molecular Sciences 17 (2):251. doi: 10.3390/ijms17020251.
  • Bahadoran, Z., M. Tohidi, P. Nazeri, M. Mehran, F. Azizi, and P. Mirmiran. 2012. Effect of broccoli sprouts on insulin resistance in type 2 diabetic patients: A randomized double-blind clinical trial. International Journal of Food Sciences and Nutrition 63 (7):767–71. doi: 10.3109/09637486.2012.665043.
  • Barba, F. J., N. Nikmaram, S. Roohinejad, A. Khelfa, Z. Zhu, and M. Koubaa. 2016. Bioavailability of glucosinolates and their breakdown products: Impact of processing. Frontiers in Nutrition 3:24. doi: 10.3389/fnut.2016.00024.
  • Barillari, J., D. Canistro, M. Paolini, F. Ferroni, G. F. Pedulli, R. Iori, and L. Valgimigli. 2005. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. Journal of Agricultural and Food Chemistry 53 (7):2475–82. doi: 10.1021/jf047945a.
  • Basten, G. P., B. Yongping, and W. Gary. 2002. Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induce UDP-glucuronosyl transferase (UGT1A1) and glutathione transferase (GSTA1) in cultured cells. Carcinogenesis 23 (8):1399–404. doi: 10.1093/carcin/23.8.1399.
  • Bent, S., B. Lawton, T. Warren, F. Widjaja, K. Dang, J. W. Fahey, B. Cornblatt, J. M. Kinchen, K. Delucchi, and R. L. Hendren. 2018. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Molecular Autism 9:35. doi: 10.1186/s13229-018-0218-4.
  • Bhattacharya, A., Y. Li, F. Geng, R. Munday, and Y. Zhang. 2012. The principal urinary metabolite of allyl isothiocyanate, N-acetyl-S-(N-allylthiocarbamoyl)cysteine, inhibits the growth and muscle invasion of bladder cancer . Carcinogenesis 33 (2):394–8. doi: 10.1093/carcin/bgr283.
  • Biegańska-Marecik, R., E. Radziejewska-Kubzdela, and R. Marecik. 2017. Characterization of phenolics, glucosinolates and antioxidant activity of beverages based on apple juice with addition of frozen and freeze-dried curly kale leaves (Brassica oleracea L. var. acephala L.). Food Chemistry 230:271–80. doi: 10.1016/j.foodchem.2017.03.047.
  • Blažević, I., F. Burčul, M. Ruscic, and J. Mastelic. 2013. Glucosinolates, volatile constituents, and acetylcholinesterase inhibitory activity of Alyssoides utriculata. Chemistry of Natural Compounds 49 (2):374–8. doi: 10.1007/s10600-013-0613-1.
  • Blazevic, I., S. Montaut, F. Burcul, C. E. Olsen, M. Burow, P. Rollin, and N. Agerbirk. 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169:112100. doi: 10.1016/j.phytochem.2019.112100.
  • Blažević, I., A. Radonić, M. Skočibušić, G. R. De Nicola, S. Montaut, R. Iori, P. Rollin, J. Mastelić, Z. Marina, and A. Maravić. 2011. Glucosinolate profiling and antimicrobial screening of Aurinia leucadea (Brassicaceae). Chemistry & Biodiversity 8 (12):2310–21. doi: 10.1002/cbdv.201100169.
  • Bouranis, J. A., L. M. Beaver, J. Choi, C. P. Wong, D. Jiang, T. J. Sharpton, J. F. Stevens, and E. Ho. 2021. Composition of the Gut Microbiome Influences Production of Sulforaphane-Nitrile and Iberin-Nitrile from Glucosinolates in Broccoli Sprouts. Nutrients 13 (9):3013. doi: 10.3390/nu13093013.
  • Cai, C., H. Miao, H. Qian, L. Yao, B. Wang, and Q. Wang. 2016. Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets. Food Chemistry 210:451–6. doi: 10.1016/j.foodchem.2016.04.140.
  • Cai, Y. X., J. H. Wang, C. McAuley, M. A. Augustin, and N. S. Terefe. 2019. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. Journal of Functional Foods 61:103461. doi: 10.1016/j.jff.2019.103461.
  • Cartron, P.-F., L. Oliver, S. Martin, C. Moreau, M.-T. LeCabellec, P. Jezequel, K. Meflah, and F. Vallette. 2002. The expression of a new variant of the pro-apoptotic molecule Bax, Baxpsi, is correlated with an increased survival of glioblastoma multiforme patients. Human Molecular Genetics 11 (6):675–87. doi: 10.1093/hmg/11.6.675.
  • Casajús, V., P. Demkura, P. Civello, M. Gómez Lobato, and G. Martínez. 2020. Harvesting at different time-points of day affects glucosinolate metabolism during postharvest storage of broccoli. Food Research International (Ottawa, Ont.) 136:109529. doi: 10.1016/j.foodres.2020.109529.
  • Cassel, S., B. Casenave, G. Déléris, L. Latxague, and P. Rollin. 1998. Exploring an alternative approach to the synthesis of arylalkyl and indolylmethyl glucosinolates. Tetrahedron 54 (29):8515–24. doi: 10.1016/S0040-4020(98)00465-7.
  • Cieslik, E., T. Leszczynska, A. Filipiakflorkiewicz, E. Sikora, and P. Pisulewski. 2007. Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chemistry 105 (3):976–81. doi: 10.1016/j.foodchem.2007.04.047.
  • Cerniauskaite, D., J. Rousseau, A. Sackus, P. Rollin, and A. Tatibouët. 2011. Glucosinolate synthesis: A hydroxamic acid approach. European Journal of Organic Chemistry 2011 (12):2293–300. doi: 10.1002/ejoc.201001438.
  • Charron, C., C. Sams, and C. Canaday. 2002. Impact of glucosinolate content in broccoli (Brassica oleracea (Italica group)) on growth of pseudomonas marginalis, a causal agent of bacterial soft rot. Plant Disease 86 (6):629–32. doi: 10.1094/PDIS.2002.86.6.629.
  • Chen, T., J. Wang, Z. Zeng, S. Lei, Y. Xue, Y. Sun, Y. Yang, and J. Lan. 2020. Effects of sinapine thiocyanate on proliferation,migration and invasion of hepatocellular carcinoma cells SMMC-7721 and its related mechanism. Chinese Pharmacological Bulletin 36 (12):1731–7. https://caod.oriprobe.com/order.htm?id=60237861&ftext=base
  • Chen, Y., X. Yan, and S. Chen. 2011. Bioinformatic analysis of molecular network of glucosinolate biosynthesis. Computational Biology and Chemistry 35 (1):10–8. doi: 10.1016/j.compbiolchem.2010.12.002.
  • Cheng, D. L., K. Hashimoto, and Y. Uda. 2004. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 42 (3):351–7. doi: 10.1016/j.fct.2003.09.008.
  • Cho, C., S. Y. Choi, Z. W. Luo, and S. Y. Lee. 2015. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnology Advances 33 (7):1455–66. doi: 10.1016/j.biotechadv.2014.11.006.
  • Choi, Y., M. A. Abdelmegeed, and B.-J. Song. 2018. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. The Journal of Nutritional Biochemistry 55:12–25. doi: 10.1016/j.jnutbio.2017.11.011.
  • Choi, Y., Y. Kim, S. Park, K. W. Lee, and T. Park. 2012. Indole-3-carbinol prevents diet-induced obesity through modulation of multiple genes related to adipogenesis, thermogenesis or inflammation in the visceral adipose tissue of mice. The Journal of Nutritional Biochemistry 23 (12):1732–9. doi: 10.1016/j.jnutbio.2011.12.005.
  • Clarke, J. D., A. Hsu, Z. Yu, R. H. Dashwood, and E. Ho. 2011. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Molecular Nutrition & Food Research 55 (7):999–1009. doi: 10.1002/mnfr.201000547.
  • Conde-Rioll, M., C. Gajate, J. J. Fernandez, J. A. Villa-Pulgarin, J. G. Napolitano, M. Norte, and F. Mollinedo. 2018. Antitumor activity of Lepidium latifolium and identification of the epithionitrile 1-cyano-2,3-epithiopropane as its major active component. Molecular Carcinogenesis 57 (3):347–60. doi: 10.1002/mc.22759.
  • Cramer, J. M., M. Teran-Garcia, and E. H. Jeffery. 2012. Enhancing sulforaphane absorption and excretion in healthy men through the combined consumption of fresh broccoli sprouts and a glucoraphanin-rich powder. The British Journal of Nutrition 107 (9):1333–8. doi: 10.1017/S0007114511004429.
  • Das, N., M. A. Berhow, D. Angelino, and E. H. Jeffery. 2014. Camelina sativa defatted seed meal contains both alkyl sulfinyl glucosinolates and quercetin that synergize bioactivity. Journal of Agricultural and Food Chemistry 62 (33):8385–91. doi: 10.1021/jf501742h.
  • De Nicola, G. R., S. Montaut, P. Rollin, M. Nyegue, C. Menut, R. Iori, and A. Tatibouet. 2013. Stability of benzylic-type isothiocyanates in hydrodistillation-mimicking conditions. Journal of Agricultural and Food Chemistry 61 (1):137–42. doi: 10.1021/jf3041534.
  • Dey, M., D. Ribnicky, A. Kurmukov, and I. Raskin. 2006. In vitro and in vivo anti-inflammatory activity of a seed preparation containing phenethylisothiocyanate. The Journal of Pharmacology and Experimental Therapeutics 317 (1):326–33. doi: 10.1124/jpet.105.096511.
  • Dickinson, S. E., J. J. Rusche, S. L. Bec, D. J. Horn, J. Janda, S. H. Rim, C. L. Smith, and G. T. Bowden. 2015. The effect of sulforaphane on histone deacetylase activity in keratinocytes: Differences between in vitro and in vivo analyses. Molecular Carcinogenesis 54 (11):1513–20. doi: 10.1002/mc.22224.
  • Dinkova-Kostova, A. T, and R. V. Kostov. 2012. Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine 18 (6):337–47. doi: 10.1016/j.molmed.2012.04.003.
  • Elfoul, L., S. Rabot, N. Khelifa, A. Quinsac, A. Duguay, and A. Rimbault. 2001. Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiology Letters 197 (1):99–103. doi: 10.1016/S0378-1097(01)00093-3.
  • Fahey, J. W., W. D. Holtzclaw, S. L. Wehage, K. L. Wade, K. K. Stephenson, and P. Talalay. 2015. Sulforaphane bioavailability from glucoraphanin-rich broccoli: Control by active endogenous myrosinase. PloS One 10 (11):e0140963. doi: 10.1371/journal.pone.0140963.
  • Fahey, J. W., S. L. Wehage, W. D. Holtzclaw, T. W. Kensler, P. A. Egner, T. A. Shapiro, and P. Talalay. 2012. Protection of humans by plant glucosinolates: Efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Prevention Research (Philadelphia, Pa.) 5 (4):603–11. doi: 10.1158/1940-6207.CAPR-11-0538.
  • Fahey, J. W., A. T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. 5-51. Phytochemistry 56 (1):5–51. doi: 10.1016/S0031-9422(01)00419-8.
  • Fimognari, C., M. Nüsse, F. Berti, R. Iori, G. Cantelli-Forti, and P. Hrelia. 2004. Isothiocyanates as novel cytotoxic and cytostatic agents: Molecular pathway on human transformed and non-transformed cells. Biochemical Pharmacology 68 (6):1133–8. doi: 10.1016/j.bcp.2004.03.044.
  • Folkard, D. L., A. Melchini, M. H. Traka, A. Al-Bakheit, S. Saha, F. Mulholland, A. Watson, and R. F. Mithen. 2014. Suppression of LPS-induced transcription and cytokine secretion by the dietary isothiocyanate sulforaphane. Molecular Nutrition & Food Research 58 (12):2286–96. doi: 10.1002/mnfr.201400550.
  • Galuppo, M., G. R. De Nicola, R. Iori, P. Dell’utri, P. Bramanti, and E. Mazzon. 2013. Antibacterial activity of glucomoringin bioactivated with myrosinase against two important pathogens affecting the health of long-term patients in hospitals. Molecules (Basel, Switzerland) 18 (11):14340–8. doi: 10.3390/molecules181114340.
  • Galuppo, M., S. Giacoppo, R. Iori, G. R. De Nicola, D. Milardi, P. Bramanti, and E. Mazzon. 2015. 4-(α-L-Rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that defends cerebral tissue and prevents severe damage induced by focal ischemia/reperfusion. Journal of Biological Regulators and Homeostatic Agents 29 (2):343–56. doi: 10.1016/0306-3623(91)90494-Q.
  • Ganguly, R, and D. Guha. 2008. Alteration of brain monoamines and EEG wave pattern in rat model of Alzheimer’s disease and protection by Moringa oleifera. The Indian Journal of Medical Research 128 (6):744–51. doi: 10.1104/pp.77.4.922.
  • Giacoppo, S., M. Galuppo, R. Iori, G. R. De Nicola, P. Bramanti, and E. Mazzon. 2014. The protective effects of bioactive (RS)-glucoraphanin on the permeability of the mice blood-brain barrier following experimental autoimmune encephalomyelitis. European Review for Medical and Pharmacological Sciences 18 (2):194–204. doi: 10.1159/000358366.
  • Giacoppo, S., M. Galuppo, R. Iori, G. R. De Nicola, G. Cassata, P. Bramanti, and E. Mazzon. 2013. Protective role of (RS )-glucoraphanin bioactivated with myrosinase in an experimental model of multiple sclerosis . CNS Neuroscience & Therapeutics 19 (8):577–84. doi: 10.1111/cns.12106.
  • Gil, V, and A. J. Macleod. 1980. Synthesis of glucosinolates. Tetrahedron 36 (6):779–83. doi: 10.1016/S0040-4020(01)93694-4.
  • Grubb, C. D, and S. Abel. 2006. Glucosinolate metabolism and its control. Trends in Plant Science 11 (2):89–100. doi: 10.1016/j.tplants.2005.12.006.
  • Halkier, B. A, and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57 (1):303–33. doi: 10.1146/annurev.arplant.57.032905.105228.
  • Hanlon, N., N. Konsue, N. Coldham, M. Sauer, and C. Ioannides. 2011. Exposure to isothiocyanates suppresses urinary mutagenicity in rats treated with heterocyclic amine IQ: Lack of association with cyp1 activity. Nutrition and Cancer 63 (2):300–5. doi: 10.1080/01635581.2011.530735.
  • Hashem, F., H. Motawea, A. Elshabrawy, K. Shaker, and S. Elsherbini. 2011. Myrosinase hydrolysates of Brassica oleraceae L. var. italica Plenck. Planta Medica 77 (12):743–7. doi: 10.1055/s-0031-1282485.
  • Heiss, E., C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhauser. 2001. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. Journal of Biological Chemistry 276 (34):32008–15. doi: 10.1074/jbc.M104794200.
  • Hou, Y., P. Xue, Y. Bai, D. Liu, C. Woods, K. Yarborough, J. Fu, Q. Zhang, G. Sun, S. Collins, et al. 2012. Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein b during adipogenesis. Free Radical Biology and Medicine 52 (2):462–72. doi: 10.1016/j.freeradbiomed.2011.10.453.
  • Hwang, E. S, and E. H. Jeffery. 2003. Evaluation of urinary N-acetyl cysteinyl allyl isothiocyanate as a biomarker for intake and bioactivity of Brussels sprouts. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 41 (12):1817–25. doi: 10.1016/S0278-6915(03)00235-7.
  • Intanon, S., R. Reed, J. Stevens, A. Hulting, and C. Mallory-Smith. 2014. Identification and phytotoxicity of a new glucosinolate breakdown product from meadowfoam (Limnanthes alba) seed meal. Journal of Agricultural and Food Chemistry 62 (30):7423–9. doi: 10.1021/jf5018687.
  • Jaafaru, M. S., N. A. Abd Karim, M. E. Enas, P. Rollin, E. Mazzon, and A. F. Abdull Razis. 2018. Protective effect of glucosinolates hydrolytic products in neurodegenerative diseases (NDDs). Nutrients 10 (5):580. doi: 10.3390/nu10050580.
  • Jahangir, M., H. K. Kim, Y. H. Choi, and R. Verpoorte. 2009. Health-affecting compounds in Brassicaceae. Comprehensive Reviews in Food Science and Food Safety 8 (2):31–43. doi: 10.1111/j.1541-4337.2008.00065.x.
  • Jazwa, A., A. I. Rojo, N. G. Innamorato, M. Hesse, J. Fernández-Ruiz, and A. Cuadrado. 2011. Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxidants & Redox Signaling 14 (12):2347–60. doi: 10.1089/ars.2010.3731.
  • Jeong, J., H. Park, H. Hyun, J. Kim, H. Kim, H. Oh, H. S. Hwang, D. K. Kim, and H. Kim. 2015. Effects of glucosinolates from turnip (Brassica rapa L.) root on bone formation by human osteoblast-like MG-63 Cells and in normal young rats. Phytotherapy Research 29 (6):902–99. doi: 10.1002/ptr.5331.
  • Kang, Y. H, and J. M. Pezzuto. 2004. Induction of quinone reductase as a primary screen for natural product anticarcinogens. Methods in Enzymology 382:380–414. doi: 10.1016/S0076-6879(04)82021-4.
  • Keck, A.-S., R. Staack, and E. H. Jeffery. 2002. The Cruciferous Nitrile Crambene Has Bioactivity Similar to Sulforaphane When Administered to Fischer 344 Rats but Is Far Less Potent in Cell Culture. Nutrition and Cancer 42 (2):233–40. doi: 10.1207/S15327914NC422_13.
  • Kellingray, L., G. Le Gall, J. F. Doleman, A. Narbad, and R. F. Mithen. 2021. Effects of in vitro metabolism of a broccoli leachate, ­glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome. European Journal of Nutrition 60 (4):2141–54. doi: 10.1007/s00394-020-02405-y.
  • Kim, S. J, and G. Ishii. 2006. Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Science and Plant Nutrition 52 (3):394–400. doi: 10.1111/j.1747-0765.2006.00049.x.
  • Kntayya, S. B., M. D. Ibrahim, N. Mohd Ain, R. Iori, C. Ioannides, and A. F. Abdull Razis. 2018. Induction of apoptosis and cytotoxicity by isothiocyanate sulforaphene in human hepatocarcinoma HepG2 Cells. Nutrients 10 (6):718. doi: 10.3390/nu10060718.
  • Ku, K. M., J. H. Choi, H. S. Kim, M. M. Kushad, E. H. Jeffery, and J. A. Juvik. 2013. Methyl jasmonate and 1-methylcyclopropene treatment effects on quinone reductase inducing activity and post-harvest quality of broccoli. PloS One 8 (10):e77127. doi: 10.1371/journal.pone.0077127.
  • Kulisic-Bilusic, T., I. Schmöller, K. Schnäbele, L. Siracusa, and G. Ruberto. 2012. The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chemistry 132 (1):261–7. doi: 10.1016/j.foodchem.2011.10.074.
  • Kurepina, N., B. N. Kreiswirth, and A. Mustaev. 2013. Growth-inhibitory activity of natural and synthetic isothiocyanates against representative human microbial pathogens. Journal of Applied Microbiology 115 (4):943–54. doi: 10.1111/jam.12288.
  • Kurt, S., U. Güneş, and E. Soylu. 2011. In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Management Science 67 (7):869–75. doi: 10.1002/ps.2126.
  • Lafarga, T., G. Bobo, I. Vinas, C. Collazo, and I. Aguilo-Aguayo. 2018. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms. Journal of Food Science and Technology 55 (6):1973–81. doi: 10.1007/s13197-018-3153-7.
  • Lai, R. H., M. J. Miller, and E. Jeffery. 2010. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food & Function 1 (2):161–6. doi: 10.1039/c0fo00110d.
  • Lee, H. W., C. G. Lee, D. K. Rhee, S. H. Um, and S. Pyo. 2017. Sinigrin inhibits production of inflammatory mediators by suppressing NF-κB/MAPK pathways or NLRP3 inflammasome activation in macrophages . International Immunopharmacology 45:163–73. doi: 10.1016/j.intimp.2017.01.032.
  • Lee, J, and H. Kwon. 2015. In vitro metabolic conversion of the organic breakdown products of glucosinolate to goitrogenic thiocyanate anion. Journal of the Science of Food and Agriculture 95 (11):2244–51. doi: 10.1002/jsfa.6943.
  • Lee, J. S, and Y. J. Surh. 2005. Nrf2 as a novel molecular target for chemoprevention. Cancer Letters 224 (2):171–84. doi: 10.1016/j.canlet.2004.09.042.
  • Lee, M. K., J. H. Chun, D. H. Byeon, S. O. Chung, S. U. Park, S. Park, M. V. Arasu, N. A. Al-Dhabi, Y. P. Lim, and S. J. Kim. 2014. Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT - Food Science and Technology 58 (1):93–101. doi: 10.1016/j.lwt.2014.03.001.
  • Lee, Y. S., K. M. Ku, T. Becker, and J. Juvik. 2017. Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization. PloS One 12 (9):e0185112. doi: 10.1371/journal.pone.0185112.
  • Li, F., M. A. Hullar, S. A. Beresford, and J. W. Lampe. 2011. Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. The British Journal of Nutrition 106 (3):408–16. doi: 10.1017/S0007114511000274.
  • Li, Z. Y., Y. Wang, W. T. Shen, and P. Zhou. 2012. Content determination of benzyl glucosinolate and anti–cancer activity of its hydrolysis product in Carica papaya L. Asian Pacific Journal of Tropical Medicine 5 (3):231–3. doi: 10.1016/S1995-7645(12)60030-3.
  • Liou, C. S., S. J. Sirk, C. A. C. Diaz, A. P. Klein, C. R. Fischer, S. K. Higginbottom, A. Erez, M. S. Donia, J. L. Sonnenburg, and E. S. Sattely. 2020. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. Cell 180 (4):717–728 e719. doi: 10.1016/j.cell.2020.01.023.
  • Liu, G. H., J. Qu, and X. Shen. 2008. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochimica et Biophysica Acta 1783 (5):713–27. doi: 10.1016/j.bbamcr.2008.01.002.
  • Lopez-Chillon, M. T., C. Carazo-Diaz, D. Prieto-Merino, P. Zafrilla, D. A. Moreno, and D. Villano. 2019. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clinical Nutrition 38 (2):745–52. doi: 10.1016/j.clnu.2018.03.006.
  • Luang-In, V., S. Deeseenthum, P. Udomwong, W. Saengha, and M. Gregori. 2018. Formation of sulforaphane and iberin products from thai cabbage fermented by myrosinase-positive bacteria. Molecules 23 (4):955. doi: 10.3390/molecules23040955.
  • Luang-In, V., A. Narbad, F. Cebeci, M. Bennett, and J. T. Rossiter. 2015. Identification of proteins possibly involved in glucosinolate metabolism in L. agilis R16 and E. coli VL8. The Protein Journal 34 (2):135–46. doi: 10.1007/s10930-015-9607-0.
  • Luang-In, V., A. Narbad, C. Nueno-Palop, R. Mithen, M. Bennett, and J. T. Rossiter. 2014. The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Molecular Nutrition & Food Research 58 (4):875–83. doi: 10.1002/mnfr.201300377.
  • Matusheski, N. V, and E. H. Jeffery. 2001. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. Journal of Agricultural and Food Chemistry 49 (12):5743–9. doi: 10.1021/jf010809a.
  • Mi, L., Z. Xiao, B. L. Hood, S. Dakshanamurthy, X. Wang, S. Govind, T. P. Conrads, T. D. Veenstra, and F. L. Chung. 2008. Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. The Journal of Biological Chemistry 283 (32):22136–46. doi: 10.1074/jbc.M802330200.
  • Mikkelsen, M. D., L. D. Buron, B. Salomonsen, C. E. Olsen, B. G. Hansen, U. H. Mortensen, and B. A. Halkier. 2012. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metabolic Engineering 14 (2):104–11. doi: 10.1016/j.ymben.2012.01.006.
  • Mirzaee, F., H. Mohammadi, S. Azarpeik, F. T. Amiri, and S. Shahani. 2021. Attenuation of liver mitochondrial oxidative damage by the extract and desulfo glucosinolate fraction of Lepidium perfoliatum L. seeds. South African Journal of Botany 138:377–85. doi: 10.1016/j.sajb.2021.01.011.
  • Mithen, R. F., B. G. Lewis, and G. R. Fenwick. 1986. In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Transactions of the British Mycological Society 87 (3):433–40. doi: 10.1016/S0007-1536(86)80219-4.
  • Morimitsu, Y., Y. Nakagawa, K. Hayashi, H. Fujii, T. Kumagai, Y. Nakamura, T. Osawa, F. Horio, K. Itoh, K. Iida, et al. 2002. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. The Journal of Biological Chemistry 277 (5):3456–63. doi: 10.1074/jbc.M110244200.
  • Mullaney, J. A., W. J. Kelly, T. K. McGhie, J. Ansell, and J. A. Heyes. 2013. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae. Journal of Agricultural and Food Chemistry 61 (12):3039–46. doi: 10.1021/jf305442j.
  • Muller, C., M. Schulz, E. Pagnotta, L. Ugolini, T. Yang, A. Matthes, L. Lazzeri, and N. Agerbirk. 2018. The role of the glucosinolate-myrosinase system in mediating greater resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae. Journal of Chemical Ecology 44 (12):1190–205. doi: 10.1007/s10886-018-1016-3.
  • Müller, C., J. van Loon, S. Ruschioni, G. R. De Nicola, C. E. Olsen, R. Iori, and N. Agerbirk. 2015. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry 118:139–48. doi: 10.1016/j.phytochem.2015.08.007.
  • Nastruzzi, C., R. Cortesi, E. Esposito, E. Menegatti, O. Leoni, R. Iori, and S. Palmieri. 2000. In vitro antiproliferative activity of isothiocyanates and nitriles generated by myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables. Journal of Agricultural and Food Chemistry 48 (8):3572–5. doi: 10.1021/jf000191p.
  • Nugrahedi, P. Y., R. Verkerk, B. Widianarko, and M. Dekker. 2015. A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: A review. Critical Reviews in Food Science and Nutrition 55 (6):823–38. doi: 10.1080/10408398.2012.688076.
  • Ohba, R., M. Iio, and Y. Sasaki. 2002. Storage of a Broccoli Lactic Acid Bacteria Drink. Food Science and Technology Research 8 (2):162–5. doi: 10.3136/fstr.8.162.
  • Oginsky, E., A. Stein, and M. Greer. 1965. Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 119:360–4. doi: 10.3181/00379727-119-30181.
  • Palop, M. L., J. P. Smiths, and B. Brink. 1995. Degradation of sinigrin by Lactobacillus agilis strain R16. International Journal of Food Microbiology 26 (2):219–29. doi: 10.1016/0168-1605(95)00123-2.
  • Park, H. W., K. D. Choi, and I. S. Shin. 2013. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms. Biocontrol Science 18 (3):163–8. doi: 10.4265/bio.18.163.
  • Peñas, E., C. Martinez-Villaluenga, J. Frias, M. J. Sánchez-Martínez, M. T. Pérez-Corona, Y. Madrid, C. Cámara, and C. Vidal-Valverde. 2012. Se improves indole glucosinolate hydrolysis products content, Se-methylselenocysteine content, antioxidant capacity and potential anti-inflammatory properties of sauerkraut. Food Chemistry 132 (2):907–14. doi: 10.1016/j.foodchem.2011.11.064.
  • Peñas, E., J. M. Pihlava, C. Vidal-Valverde, and J. Frias. 2012. Influence of fermentation conditions of Brassica oleracea L. var. capitata on the volatile glucosinolate hydrolysis compounds of sauerkrauts. LWT - Food Science and Technology 48 (1):16–23. doi: 10.1016/j.lwt.2012.03.005.
  • Petersen, A., C. Crocoll, and B. A. Halkier. 2019. De novo production of benzyl glucosinolate in Escherichia coli. Metabolic Engineering 54:24–34. doi: 10.1016/j.ymben.2019.02.004.
  • Rabot, S. C. Guerin, L. Nugon-Baudon, and O. Szylit. 1995. Glucosinolate degradation by bacterial strains isolated from a human intestinal microflora 9. International rapeseed congress, Cambridge, United Kingdom. https://hal.inrae.fr/hal-02776484.
  • Radha, M. B. 2007. The metabolic fate of purified glucoraphanin in F344 rats. Journal of Agricultural and Food Chemistry 8 (55) doi: 10.1021/jf0633544.
  • Radonić, A., I. Blažević, J. Mastelić, Z. Marina, M. Skočibušić, and A. Maravić. 2011. Phytochemical analysis and antimicrobial activity of Cardaria draba (L.) DESV. Volatiles. Chemistry & Biodiversity 8 (6):1170–81. doi: 10.1002/cbdv.201000370.
  • Rollin, P, and A. Tatibouët. 2011. Glucosinolates: The synthetic approach. Comptes Rendus Chimie 14 (2-3):194–210. doi: 10.1016/j.crci.2010.05.002.
  • Rungapamestry, V., A. J. Duncan, Z. Fuller, and B. Ratcliffe. 2008. Influence of blanching and freezing broccoli (Brassica oleracea var. italica) prior to storage and cooking on glucosinolate concentrations and myrosinase activity. European Food Research and Technology 227 (1):37–44. doi: 10.1007/s00217-007-0690-0.
  • Seo, H. A, and I. K. Lee. 2013. The role of Nrf2: Adipocyte differentiation, obesity, and insulin resistance. Oxidative Medicine and Cellular Longevity 2013:184598. doi: 10.1155/2013/184598.
  • Seo, M. S, and J. S. Kim. 2017. Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae. Molecules 22 (9):1549. doi: 10.3390/molecules22091549.
  • Shiina, A., N. Kanahara, T. Sasaki, Y. Oda, T. Hashimoto, T. Hasegawa, T. Yoshida, M. Iyo, and K. Hashimoto. 2015. An open study of sulforaphane-rich broccoli sprout extract in patients with Schizophrenia. Clinical Psychopharmacology and Neuroscience : The Official Scientific Journal of the Korean College of Neuropsychopharmacology 13 (1):62–7. doi: 10.9758/cpn.2015.13.1.62.
  • Shin, S., J. Wakabayashi, M. S. Yates, N. Wakabayashi, P. M. Dolan, S. Aja, K. T. Liby, M. B. Sporn, M. Yamamoto, and T. W. Kensler. 2009. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. European Journal of Pharmacology 620 (1-3):138–44. doi: 10.1016/j.ejphar.2009.08.022.
  • Shirai, Y., Y. Fujita, R. Hashimoto, K. Ohi, H. Yamamori, Y. Yasuda, T. Ishima, H. Suganuma, Y. Ushida, M. Takeda, et al. 2015. Dietary intake of sulforaphane-rich broccoli sprout extracts during juvenile and adolescence can prevent phencyclidine-induced cognitive deficits at adulthood. PloS One 10 (6):e0127244. doi: 10.1371/journal.pone.0127244.
  • Sikorska-Zimny, K, and L. Beneduce. 2020. The glucosinolates and their bioactive derivatives in Brassica: A review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Critical Reviews in Food Scicience and Nutrition :1–28. doi: 10.1080/10408398.2020.1780193.
  • Sotelo, T., M. Lema, P. Soengas, M. E. Cartea, and P. Velasco. 2015. In vitro activity of glucosinolates and their degradation products against brassica-pathogenic bacteria and fungi. Applied and Environmental Microbiology 81 (1):432–40. doi: 10.1128/AEM.03142-14.
  • Sturm, C, and A. E. Wagner. 2017. Brassica-derived plant bioactives as modulators of chemopreventive and inflammatory signaling pathways. International Journal of Molecular Sciences 18 (9):1890. doi: 10.3390/ijms18091890.
  • Surh, Y. J., J. K. Kundu, H. K. Na, and J. S. Lee. 2005. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. The Journal of Nutrition 135 (12):2993S–3001S. doi: 10.1093/jn/135.12.2993S.
  • Tahamtan, A., M. Teymoori-Rad, B. Nakstad, and V. Salimi. 2018. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment [Review. ]Frontiers in Immunology 9:1377. doi: 10.3389/fimmu.2018.01377.
  • Tani, N., M. Ohtsuru, and T. Hata. 1974. Purification and general characteristics of bacterial myrosinase produced by Enterobacter cloacae. Agricultural and Biological Chemistry 38 (9):1623–30. doi: 10.1080/00021369.1974.10861388.
  • Tanii, H. 2017. Allyl nitrile: Toxicity and health effects. Journal of Occupational Health 59 (2):104–11. doi: 10.1539/joh.16-0147-RA.
  • Tanii, H., T. Higashi, F. Nishimura, Y. Higuchi, and K. Saijoh. 2008. Effects of cruciferous allyl nitrile on phase 2 antioxidant and detoxication enzymes. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 14:BR189–192.
  • Tanii, H., T. Higashi, F. Nishimura, Y. Higuchi, and K. Saijoh. 2005. Induction of detoxication enzymes in mice by naturally occurring allyl nitrile. Journal of Agricultural and Food Chemistry 53 (23):8993–6. doi: 10.1021/jf0516282.
  • Tanii, H., Y. Kurosaka, M. Hayashi, and K. Hashimoto. 1989. Allylnitrile: A compound which induces long-term dyskinesia in mice following a single administration. Experimental Neurology 103 (1):64–7. doi: 10.1016/0014-4886(89)90186-6.
  • Tian, H., Y. Zhou, G. Yang, Y. Geng, S. Wu, Y. Hu, K. Lin, and W. Wu. 2016. Sulforaphane-cysteine suppresses invasion via downregulation of galectin-1 in human prostate cancer DU145 and PC3 cells. Oncology Reports 36 (3):1361–8. doi: 10.3892/or.2016.4942.
  • Tian, S., X. Liu, P. Lei, X. Zhang, and Y. Shan. 2018. Microbiota: A mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. Journal of the Science of Food and Agriculture 98 (4):1255–60. doi: 10.1002/jsfa.8654.
  • Tookey, H. L, and I. A. Wolff. 1970. Effect of organic reducing agents and ferrous ion on thioglucosidase activity of Crambe abyssinica seed. Canadian Journal of Biochemistry 48 (9):1024–8. doi: 10.1139/o70-161.
  • Traka, M. H., A. Melchini, J. Coode-Bate, O. Al Kadhi, S. Saha, M. Defernez, P. Troncoso-Rey, H. Kibblewhite, C. M. O’Neill, F. Bernuzzi, et al. 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. The American Journal of Clinical Nutrition 109 (4):1133–44. doi: 10.1093/ajcn/nqz012.
  • Traka, M. H., C. A. Spinks, J. F. Doleman, A. Melchini, R. Y. Ball, R. D. Mills, and R. F. Mithen. 2010. The dietary isothiocyanate ­sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer. Molecular Cancer 9 (1):189. doi: 10.1186/1476-4598-9-189.
  • Tumer, T., P. Rojas-Silva, A. Poulev, I. Raskin, and C. Waterman. 2015. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera. Journal of Agricultural and Food Chemistry 63 (5):1505–13. doi: 10.1021/jf505014n.
  • Wittstock, U., N. Agerbirk, E. Stauber, C. E. Olsen, M. Hippler, T. Mitchell-Olds, J. Gershenzon, and H. Vogel. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proceedings of the National Academy of Sciences 101 (14):4859–64. doi: 10.1073/pnas.0308007101.
  • Ushida, Y, and H. Sugiyama. 2020. Glucosinolate-containing food and drink, method for producing glucosinolate-containing food and drink, and method of preventing decrease of glucosinolate content due to temporal change of glucosinolate-containing food and drink (Japan Patent No. JP 2020074685 A). <Go to ISI>://FSTA:2021-03-Hv3445
  • Vo, Q. V, and A. Mechler. 2020. In Silico Study of the Radical Scavenging Activities of Natural Indole-3-Carbinols. Journal of Chemical Information and Modeling 60 (1):316–21. doi: 10.1021/acs.jcim.9b00917.
  • Vo, Q. V., C. Trenerry, S. Rochfort, J. Wadeson, C. Leyton, and A. B. Hughes. 2014. Synthesis and anti-inflammatory activity of indole glucosinolates. Bioorganic & Medicinal Chemistry 22 (2):856–64. doi: 10.1016/j.bmc.2013.12.003.
  • Wagner, A. E., C. Sturm, S. Piegholdt, I. M. Wolf, T. Esatbeyoglu, G. R. De Nicola, R. Iori, and G. Rimbach. 2015. Myrosinase-treated glucoerucin is a potent inducer of the Nrf2 target gene heme oxygenase 1-studies in cultured HT-29 cells and mice. The Journal of Nutritional Biochemistry 26 (6):661–6. doi: 10.1016/j.jnutbio.2015.01.004.
  • Wagner, A. E., O. Will, C. Sturm, S. Lipinski, P. Rosenstiel, and G. Rimbach. 2013. DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment. The Journal of Nutritional Biochemistry 24 (12):2085–91. doi: 10.1016/j.jnutbio.2013.07.009.
  • Wang, J., Y. Qiu, X. Wang, Z. Yue, X. Yang, X. Chen, X. Zhang, D. Shen, H. Wang, J. Song, et al. 2017. Insights into the species-specific metabolic engineering of glucosinolates in radish (Raphanus sativus L.) based on comparative genomic analysis. Scientific Reports 7 (1):16040– . doi: 10.1038/s41598-017-16306-4.
  • Wang, X., M. K. D. Julio, K. D. Economides, D. Walker, H. Yu, M. V. Halili, Y. P. Hu, S. M. Price, C. Abate-Shen, and M. M. Shen. 2009. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461 (7263):495–500. doi: 10.1038/nature08361.
  • Wathelet, J. P., R. Iori, O. Leoni, P. Rollin, N. Mabon, M. Marlier, and S. Palmieri. 2001. A recombinant β-O-glucosidase from Caldocellum saccharolyticum to hydrolyse desulfo-glucosinolates. Biotechnology Letters 23 (6):443–6. doi: 10.1023/A:1010322322867.
  • Willemin, M. E, and A. Lumen. 2017. Thiocyanate: A review and evaluation of the kinetics and the modes of action for thyroid hormone perturbations. Critical Reviews in Toxicology 47 (7):537–63. doi: 10.1080/10408444.2017.1281590.
  • Williams, D. J., C. Critchley, S. Pun, M. Chaliha, and T. J. O’Hare. 2009. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Phytochemistry 70 (11-12):1401–9. doi: 10.1016/j.phytochem.2009.07.035.
  • Wittstock, U., K. Meier, F. Dorr, and B. M. Ravindran. 2016. NSP-dependent simple nitrile formation dominates upon breakdown of major aliphatic glucosinolates in roots, seeds, and seedlings of Arabidopsis thaliana Columbia-0. Frontiers in Plant Science 7:1821. doi: 10.3389/fpls.2016.01821.
  • Wu, S., Y. Zhou, G. Yang, H. Tian, Y. Geng, Y. Hu, K. Lin, and W. Wu. 2017. Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncology Reports 37 (5):2829–38. doi: 10.3892/or.2017.5562.
  • Wu, Y., L. Zou, J. Mao, J. Huang, and S. Liu. 2014. Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying. Carbohydrate Polymers 102:497–503. doi: 10.1016/j.carbpol.2013.11.057.
  • Xu, L., N. Nagata, and T. Ota. 2018. Glucoraphanin: A broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte 7 (3):218–25. doi: 10.1080/21623945.2018.1474669.
  • Xu, X., S. Bi, F. Lao, F. Chen, X. Liao, and J. Wu. 2021. Induced changes in bioactive compounds of broccoli juices after fermented by animal- and plant-derived Pediococcus pentosaceus. Food Chemistry 357:129767. doi: 10.1016/j.foodchem.2021.129767.
  • Xu, X., M. Dai, F. Lao, F. Chen, X. Hu, Y. Liu, and J. Wu. 2020. Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice. Journal of Functional Foods 68:103858. doi: 10.1016/j.jff.2020.103858.
  • Yagishita, Y., J. W. Fahey, A. T. Dinkova-Kostova, and T. W. Kensler. 2019. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules 24 (19):3593. doi: 10.3390/molecules24193593.
  • Yang, H., F. Liu, Y. Li, and B. Yu. 2018. Reconstructing biosynthetic pathway of the plant-derived cancer chemopreventive-precursor glucoraphanin in Escherichia coli. ACS Synthetic Biology 7 (1):121–31. doi: 10.1021/acssynbio.7b00256.
  • Ye, J. H., L. Y. Huang, N. S. Terefe, and M. A. Augustin. 2019. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chemistry 286:616–23. doi: 10.1016/j.foodchem.2019.02.030.
  • Zhang, F., J. Zhang, H. Di, P. Xia, C. Zhang, Z. Wang, Z. Li, S. Huang, M. Li, Y. Tang, et al. 2021. Effect of Long-Term Frozen Storage on Health-Promoting Compounds and Antioxidant Capacity in Baby Mustard. Frontiers in Nutrition 8:665482. doi: 10.3389/fnut.2021.665482.
  • Zhao, Y., J. Wang, Y. Liu, H. Miao, C. Cai, Z. Shao, R. Guo, B. Sun, C. Jia, L. Zhang, et al. 2015. Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. The Plant Journal : For Cell and Molecular Biology 81 (6):920–33. doi: 10.1111/tpj.12778.
  • Zhou, Y., G. Yang, H. Tian, Y. Hu, S. Wu, Y. Geng, K. Lin, and W. Wu. 2018. Sulforaphane metabolites cause apoptosis via microtubule disruption in cancer. Endocrine-Related Cancer 25 (3):255–68. doi: 10.1530/ERC-17-0.
  • Zinoviadou, K. G, and C. M. Galanakis. 2017. Glucosinolates and Respective Derivatives (Isothiocyanates) from Plants. Food Bioactives: Extraction and Biotechnology Applications (:3–22. April 08. doi: 10.1007/978-3-319-51639-4_1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.