8,627
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends

, &

References

  • Abdelsattar, A. S., A. Dawooud, N. Rezk, S. Makky, A. Safwat, P. J. Richards, and A. El-Shibiny. 2021. How to train your phage: The recent efforts in phage training. Biologics 1 (2):70–88. doi: 10.3390/biologics1020005.
  • Abedon, S. T., K. M. Danis-Wlodarczyk, D. J. Wozniak, and M. B. Sullivan. 2021. Improving phage-biofilm in vitro experimentation. Viruses 13 (6):1175. doi: 10.3390/v13061175.
  • Abouhmad, A., T. Dishisha, M. A. Amin, and R. Hatti-Kaul. 2017. Immobilization to positively charged cellulose nanocrystals enhances the antibacterial activity and stability of hen egg white and T4 lysozyme. Biomacromolecules 18 (5):1600–8. doi: 10.1021/acs.biomac.7b00219.
  • Abuladze, T., M. Li, M. Y. Menetrez, T. Dean, A. Senecal, and A. Sulakvelidze. 2008. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157: H7. Applied and Environmental Microbiology 74 (20):6230–8. doi: 10.1128/AEM.01465-08.
  • Ahmadi, H. 2017. Thermal stability of encapsulated listeria bacteriophage and its efficacy against Listeria monocytogenes in ready-to-eat meats. PhD thesis., University of Guelph.
  • Altamirano, F. L. G, and J. J. Barr. 2019. Phage therapy in the postantibiotic era. Clinical Microbiology Reviews 32 (2):e00066–18. doi: 10.1128/CMR.00066-18.
  • Ando, H., S. Lemire, D. P. Pires, and T. K. Lu. 2015. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Systems 1 (3):187–96. doi: 10.1016/j.cels.2015.08.013.
  • Aslam, S., E. Lampley, D. Wooten, M. Karris, C. Benson, S. Strathdee, and R. T. Schooley. 2020. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infectious Diseases 7 (9) doi: 10.1093/ofid/ofaa389.
  • Au, A., H. Lee, T. Ye, U. Dave, and A. Rahman. 2021. Bacteriophages: Combating antimicrobial resistance in food-borne bacteria prevalent in agriculture. Microorganisms 10 (1):46. doi: 10.3390/microorganisms10010046.
  • Azeredo, J, and I. W. Sutherland. 2008. The use of phages for the removal of infectious biofilms. Current Pharmaceutical Biotechnology 9 (4):261–6. doi: 10.2174/138920108785161604.
  • Bai, J., E. Yang, P.-S. Chang, and S. Ryu. 2019. Preparation and characterization of endolysin-containing liposomes and evaluation of their antimicrobial activities against gram-negative bacteria. Enzyme and Microbial Technology 128:40–8. doi: 10.1016/j.enzmictec.2019.05.006.
  • Bantawa, K., K. Rai, D. S. Limbu, and H. Khanal. 2018. Food-borne bacterial pathogens in marketed raw meat of Dharan, eastern Nepal. BMC Research Notes 11 (1):1–5. doi: 10.1186/s13104-018-3722-x.
  • Bari, S. N., F. C. Walker, K. Cater, B. Aslan, and A. Hatoum-Aslan. 2017. Strategies for editing virulent staphylococcal phages using CRISPR-Cas10. ACS Synthetic Biology 6 (12):2316–25. doi: 10.1021/acssynbio.7b00240.
  • Becker, S. C., J. Foster-Frey, A. J. Stodola, D. Anacker, and D. M. Donovan. 2009. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene 443 (1–2):32–41. doi: 10.1016/j.gene.2009.04.023.
  • Becker, S. C., J. Foster-Frey, and D. M. Donovan. 2008. The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiology Letters 287 (2):185–91. doi: 10.1111/j.1574-6968.2008.01308.x.
  • Born, Y., L. Fieseler, V. Thöny, N. Leimer, B. Duffy, and M. J. Loessner. 2017. Engineering of bacteriophages Y2:: DpoL1-C and Y2:: luxAB for efficient control and rapid detection of the fire blight pathogen, Erwinia amylovora. Applied and Environmental Microbiology 83 (12):e00341–00317. doi: 10.1128/AEM.00341-17.
  • Borysowski, J., B. Weber-Dabrowska, and A. Górski. 2006. Bacteriophage endolysins as a novel class of antibacterial agents. Experimental Biology and Medicine (Maywood, N.J.) 231 (4):366–77. doi: 10.1177/153537020623100402.
  • Bren, L. 2007. Bacteria-eating virus approved as food additive. FDA Consumer 41 (1):20–2.
  • Briers, Y., M. Walmagh, V. Van Puyenbroeck, A. Cornelissen, W. Cenens, A. Aertsen, H. Oliveira, J. Azeredo, G. Verween, J.-P. Pirnay, et al. 2014. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. mBio 5 (4):e01379–01314. doi: 10.1128/mBio.01379-14.
  • Brüssow, H, and R. W. Hendrix. 2002. Phage genomics: Small is beautiful. Cell 108 (1):13–6. doi: 10.1016/S0092-8674(01)00637-7.
  • Bundy, B. C., M. J. Franciszkowicz, and J. R. Swartz. 2008. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnology and Bioengineering 100 (1):28–37. doi: 10.1002/bit.21716.
  • Carlton, R., W. Noordman, B. Biswas, E. De Meester, and M. J. Loessner. 2005. Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regulatory Toxicology and Pharmacology : RTP 43 (3):301–12. doi: 10.1016/j.yrtph.2005.08.005.
  • CDC. 2019. Antibiotic resistance threats in the United States, 2019. In: 2019 AR Threats Report. Center for Disease Control and Prevention.
  • CDC. 2020. About antibiotic resistance. In: Public Health Reports. Center for Disease Control and Prevention.
  • CDC. 2021. Listeria Outbreak Linked to Queso Fresco Made by El Abuelito Cheese Inc. Center for Disease Control and Prevention.
  • Cha, Y., J. Chun, B. Son, and S. Ryu. 2019. Characterization and genome analysis of Staphylococcus aureus podovirus CSA13 and its anti-biofilm capacity. Viruses 11 (1):54. doi: 10.3390/v11010054.
  • Chang, Y., H. Yoon, D.-H. Kang, P.-S. Chang, and S. Ryu. 2017b. Endolysin LysSA97 is synergistic with carvacrol in controlling Staphylococcus aureus in foods. International Journal of Food Microbiology 244:19–26. doi: 10.1016/j.ijfoodmicro.2016.12.007.
  • Chang, Y., M. Kim, and S. Ryu. 2017a. Characterization of a novel endolysin LysSA11 and its utility as a potent biocontrol agent against Staphylococcus aureus on food and utensils. Food Microbiology 68:112–20. doi: 10.1016/j.fm.2017.07.004.
  • Channabasappa, S., R. Chikkamadaiah, M. Durgaiah, S. Kumar, K. Ramesh, A. Sreekanthan, and B. Sriram. 2018. Efficacy of chimeric ectolysin P128 in drug-resistant Staphylococcus aureus bacteraemia in mice. The Journal of Antimicrobial Chemotherapy 73 (12):3398–404. doi: 10.1093/jac/dky365.
  • Chen, Y., H. Batra, J. Dong, C. Chen, V. B. Rao, and P. Tao. 2019. Genetic engineering of bacteriophages against infectious diseases. Frontiers in Microbiology 10:954. doi: 10.3389/fmicb.2019.00954.
  • Cheng, Q, and V. A. Fischetti. 2007. Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci. Applied Microbiology and Biotechnology 74 (6):1284–91. doi: 10.1007/s00253-006-0771-1.
  • Chibeu, A., L. Agius, A. Gao, P. M. Sabour, A. M. Kropinski, and S. Balamurugan. 2013. Efficacy of bacteriophage LISTEX™ P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. International Journal of Food Microbiology 167 (2):208–14. doi: 10.1016/j.ijfoodmicro.2013.08.018.
  • Chun, J., J. Bai, and S. Ryu. 2020. Yeast surface display system for facilitated production and application of phage endolysin. ACS Synthetic Biology 9 (3):508–16. doi: 10.1021/acssynbio.9b00360.
  • Cieplak, T., N. Soffer, A. Sulakvelidze, and D. S. Nielsen. 2018. A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes 9 (5):391–9.
  • Crozier-Dodson, B. A., M. Carter, and Z. Zheng. 2004. Formulating food safety: An overview of antimicrobial ingredients. Food Safety Magazine.
  • Dedrick, R., C. Guerrero-Bustamante, R. Garlena, D. Russell, K. Ford, K. Harris, K. Gilmour, J. Soothill, D. Jacobs-Sera, R. Schooley, et al. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine 25 (5):730–3. doi: 10.1038/s41591-019-0437-z.
  • DeVita, M. D., R. K. Wadhera, M. L. Theis, and S. C. Ingham. 2007. Assessing the potential of Streptococcus pyogenes and Staphylococcus aureus transfer to foods and customers via a survey of hands, hand‐contact surfaces and food‐contact surfaces at foodservice facilities. Journal of Foodservice 18 (2):76–9. doi: 10.1111/j.1745-4506.2007.00049.x.
  • Díez-Martínez, R., H. D. De Paz, E. García-Fernández, N. Bustamante, C. W. Euler, V. A. Fischetti, M. Menendez, and P. García. 2015. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. The Journal of Antimicrobial Chemotherapy 70 (6):1763–73. doi: 10.1093/jac/dkv038.
  • Díez-Martínez, R., H. de Paz, H. de Paz, N. Bustamante, E. García, M. Menéndez, and P. García. 2013. Improving the lethal effect of Cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrobial Agents and Chemotherapy 57 (11):5355–65.
  • Dion, M. B., F. Oechslin, and S. Moineau. 2020. Phage diversity, genomics and phylogeny. Nature Reviews Microbiology 18 (3):125–38.
  • Djurkovic, S., J. M. Loeffler, and V. A. Fischetti. 2005. Synergistic killing of Streptococcus pneumoniae with the bacteriophage lytic enzyme Cpl-1 and penicillin or gentamicin depends on the level of penicillin resistance. Antimicrobial Agents and Chemotherapy 49 (3):1225–8. doi: 10.1128/AAC.49.3.1225-1228.2005.
  • Dong, J., C. Chen, Y. Liu, J. Zhu, M. Li, V. B. Rao, and P. Tao. 2021. Engineering T4 bacteriophage for in vivo display by type V CRISPR-cas genome editing. ACS Synthetic Biology 10 (10):2639–48. doi: 10.1021/acssynbio.1c00251.
  • Dublanchet, A, and S. Bourne. 2007. The epic of phage therapy. The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien Des Maladies Infectieuses et de la Microbiologie Medicale 18 (1):15–8. doi: 10.1155/2007/365761.
  • Duong, M. M., C. M. Carmody, Q. Ma, J. E. Peters, and S. R. Nugen. 2020. Optimization of T4 phage engineering via CRISPR/Cas9. Scientific Reports 10 (1):1–9. doi: 10.1038/s41598-020-75426-6.
  • Endersen, L., C. Guinane, C. Johnston, H. Neve, A. Coffey, P. Ross, O. McAuliffe, and J. O’Mahony. 2015. Genome analysis of Cronobacter phage vB_CsaP_Ss1 reveals an endolysin with potential for biocontrol of Gram-negative bacterial pathogens. The Journal of General Virology 96 (Pt 2):463–77. doi: 10.1099/vir.0.068494-0.
  • English, B. K, and A. H. Gaur. 2010. The use and abuse of antibiotics and the development of antibiotic resistance. In Hot topics in infection and immunity in children VI, eds. A. Finn, N. Curtis, and A. J. Pollard, 73–82. New York: Springer.
  • Fan, J., Z. Zeng, K. Mai, Y. Yang, J. Feng, Y. Bai, B. Sun, Q. Xie, Y. Tong, and J. Ma. 2016. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Veterinary Microbiology 191:65–71.
  • Favor, A. H., C. D. Llanos, M. D. Youngblut, and J. A. Bardales. 2020. Optimizing bacteriophage engineering through an accelerated evolution platform. Scientific Reports 10 (1):1–10. doi: 10.1038/s41598-020-70841-1.
  • FDA. 2006. Department of health and Human services Food and Drug Administration, 21 CFR Part 172 [Docket No. 2002F–0316 (formerly 02F-0316)]. Food Additives Permitted for Direct Addition to Food for Human Consumption: 47729-47732.
  • FDA. 2008. Guidance for industry: Guide to minimize microbial food safety hazards of fresh-cut fruits and vegetables. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-minimizemicrobial-food-safety-hazards-fresh-fruits-and-vegetables
  • Fernández, L., D. Gutiérrez, P. García, and A. Rodríguez. 2019. The perfect bacteriophage for therapeutic applications—A quick guide. Antibiotics 8 (3):126. doi: 10.3390/antibiotics8030126.
  • Fischetti, V. A. 2003. Novel method to control pathogenic bacteria on human mucous membranes. Annals of the New York Academy of Sciences 987:207–14. doi: 10.1111/j.1749-6632.2003.tb06050.x.
  • Fischetti, V. A. 2005. Bacteriophage lytic enzymes: Novel anti-infectives. Trends in Microbiology 13 (10):491–6. doi: 10.1016/j.tim.2005.08.007.
  • Francino, M. 2016. Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Frontiers in Microbiology 6:1543. doi: 10.3389/fmicb.2015.01543.
  • Fruciano, D. E, and S. Bourne. 2007. Phage as an antimicrobial agent: d’Herelle’s heretical theories and their role in the decline of phage prophylaxis in the West. The Canadian Journal of Infectious Diseases & Medical Microbiology = Journal Canadien Des Maladies Infectieuses et de la Microbiologie Medicale 18 (1):19–26. doi: 10.1155/2007/976850.
  • Gaeng, S., S. Scherer, H. Neve, and M. J. Loessner. 2000. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Applied and Environmental Microbiology 66 (7):2951–8. doi: 10.1128/AEM.66.7.2951-2958.2000.
  • Garamella, J., R. Marshall, M. Rustad, and V. Noireaux. 2016. The all E. coli TX-TL toolbox 2.0: A platform for cell-free synthetic biology. ACS Synthetic Biology 5 (4):344–55. doi: 10.1021/acssynbio.5b00296.
  • García, P., B. Martínez, L. Rodríguez, and A. Rodríguez. 2010a. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. International Journal of Food Microbiology 141 (3):151–5. doi: 10.1016/j.ijfoodmicro.2010.04.029.
  • García, P., L. Rodríguez, A. Rodríguez, and B. Martínez. 2010b. Food biopreservation: Promising strategies using bacteriocins, bacteriophages and endolysins. Trends in Food Science & Technology 21 (8):373–82. doi: 10.1016/j.tifs.2010.04.010.
  • García, R., S. Latz, J. Romero, G. Higuera, K. García, and R. Bastías. 2019. Bacteriophage production models: An overview. Frontiers in Microbiology 10:1187. doi: 10.3389/fmicb.2019.01187.
  • Garenne, D., S. Thompson, A. Brisson, A. Khakimzhan, and V. Noireaux. 2021. The all-E. coliTXTL toolbox 3.0: New capabilities of a cell-free synthetic biology platform. Synthetic Biology (Oxford, England) 6 (1):ysab017. 2021doi: 10.1093/synbio/ysab017.
  • Gerstmans, H., B. Criel, and Y. Briers. 2018. Synthetic biology of modular endolysins. Biotechnology Advances 36 (3):624–40. doi: 10.1016/j.biotechadv.2017.12.009.
  • Gervasi, T., N. Horn, U. Wegmann, G. Dugo, A. Narbad, and M. J. Mayer. 2014a. Expression and delivery of an endolysin to combat Clostridium perfringens. Applied Microbiology and Biotechnology 98 (6):2495–505. doi: 10.1007/s00253-013-5128-y.
  • Gervasi, T., R. Lo Curto, E. Minniti, A. Narbad, and M. J. Mayer. 2014b. Application of Lactobacillus johnsonii expressing phage endolysin for control of Clostridium perfringens. Letters in Applied Microbiology 59 (4):355–61. doi: 10.1111/lam.12298.
  • Gharieb, R. M. A., M. F. Saad, A. S. Mohamed, and Y. H. Tartor. 2020. Characterization of two novel lytic bacteriophages for reducing biofilms of zoonotic multidrug-resistant Staphylococcus aureus and controlling their growth in milk. LWT 124:109145. doi: 10.1016/j.lwt.2020.109145.
  • Gibson, D. G., L. Young, R.-Y. Chuang, J. C. Venter, C. A. Hutchison, and H. O. Smith. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods 6 (5):343–5. doi: 10.1038/nmeth.1318.
  • Gill, J., P. Sabour, K. Leslie, and M. Griffiths. 2006. Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. Journal of Applied Microbiology 101 (2):377–86. doi: 10.1111/j.1365-2672.2006.02918.x.
  • Gondil, V. S., T. Dube, J. J. Panda, R. M. Yennamalli, K. Harjai, and S. Chhibber. 2020. Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. International Journal of Pharmaceutics 573:118850. doi: 10.1016/j.ijpharm.2019.118850.
  • Goodridge, L. D, and B. Bisha. 2011. Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 1 (3):130–7. doi: 10.4161/bact.1.3.17629.
  • Guenther, S, and M. J. Loessner. 2011. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 1 (2):94–100. doi: 10.4161/bact.1.2.15662.
  • Guo, M., C. Feng, J. Ren, X. Zhuang, Y. Zhang, Y. Zhu, K. Dong, P. He, X. Guo, and J. Qin. 2017. A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Frontiers in Microbiology 8 (293):293.
  • Gutiérrez, D., L. Fernández, B. Martínez, P. Ruas-Madiedo, P. García, and A. Rodríguez. 2017. Real-time assessment of Staphylococcus aureus biofilm disruption by phage-derived proteins. Frontiers in Microbiology 8:1632. doi: 10.3389/fmicb.2017.01632.
  • Gutiérrez, D., P. Ruas-Madiedo, B. Martínez, A. Rodríguez, and P. García. 2014. Effective removal of staphylococcal biofilms by the endolysin LysH5. PloS One 9 (9):e107307. doi: 10.1371/journal.pone.0107307.
  • Gutiérrez, D., V. Garrido, L. Fernández, S. Portilla, A. Rodríguez, M. J. Grilló, and P. García. 2020. Phage lytic protein LysRODI prevents staphylococcal mastitis in mice. Frontiers in Microbiology 11:7. doi: 10.3389/fmicb.2020.00007.
  • Hassan, A. Y., J. T. Lin, N. Ricker, and H. Anany. 2021. The age of phage: Friend or foe in the new dawn of therapeutic and biocontrol applications? Pharmaceuticals 14 (3):199. doi: 10.3390/ph14030199.
  • Hatoum-Aslan, A. 2018. Phage genetic engineering using CRISPR–Cas systems. Viruses 10 (6):335. doi: 10.3390/v10060335.
  • Heselpoth, R. D., C. W. Euler, R. Schuch, and V. A. Fischetti. 2019. Lysocins: Bioengineered antimicrobials that deliver lysins across the outer membrane of gram-negative bacteria. Antimicrobial Agents and Chemotherapy 63 (6):e00342–00319. doi: 10.1128/AAC.00342-19.
  • Horgan, M., G. O’Flynn, J. Garry, J. Cooney, A. Coffey, G. Fitzgerald, P. Ross, and O. McAuliffe. 2009. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Applied and Environmental Microbiology 75 (3):872–4. doi: 10.1128/AEM.01831-08.
  • Huss, P, and S. Raman. 2020. Engineered bacteriophages as programmable biocontrol agents. Current Opinion in Biotechnology 61:116–21. doi: 10.1016/j.copbio.2019.11.013.
  • Ibarra-Sánchez, L. A., M. L. Van Tassell, and M. J. Miller. 2018. Antimicrobial behavior of phage endolysin PlyP100 and its synergy with nisin to control Listeria monocytogenes in Queso Fresco. Food Microbiology 72:128–34. doi: 10.1016/j.fm.2017.11.013.
  • Jaschke, P. R., E. K. Lieberman, J. Rodriguez, A. Sierra, and D. Endy. 2012. A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast. Virology 434 (2):278–84. doi: 10.1016/j.virol.2012.09.020.
  • Jensen, J., A. Parks, S. Adhya, A. Rattray, and D. Court. 2020. λ Recombineering used to engineer the genome of phage T7. Antibiotics 9 (11):805. doi: 10.3390/antibiotics9110805.
  • Jewett, M. C, and J. R. Swartz. 2004. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnology and Bioengineering 86 (1):19–26. doi: 10.1002/bit.20026.
  • Jończyk, E., M. Kłak, R. Międzybrodzki, and A. Górski. 2011. The influence of external factors on bacteriophages-review. Folia Microbiologica 56 (3):191–200. doi: 10.1007/s12223-011-0039-8.
  • Juneja, V. K., H. P. Dwivedi, and X. Yan. 2012. Novel natural food antimicrobials. Annual Review of Food Science and Technology 3:381–403. doi: 10.1146/annurev-food-022811-101241.
  • Junttila, J. R., S. Niemelä, and J. Hirn. 1988. Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria. The Journal of Applied Bacteriology 65 (4):321–7. doi: 10.1111/j.1365-2672.1988.tb01898.x.
  • Jurczak-Kurek, A., T. Gąsior, B. Nejman-Faleńczyk, S. Bloch, A. Dydecka, G. Topka, A. Necel, M. Jakubowska-Deredas, M. Narajczyk, M. Richert, et al. 2016. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports 6:34338–17. doi: 10.1038/srep34338.
  • Kasman, L. M, and L. D. Porter. 2020. Bacteriophages. StatPearls [Internet]
  • Kilcher, S., P. Studer, C. Muessner, J. Klumpp, and M. J. Loessner. 2018. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proceedings of the National Academy of Sciences 115 (3):567–72. doi: 10.1073/pnas.1714658115.
  • Kim, J., H. Park, J. Kim, J. H. Kim, J. I. Jung, S. Cho, S. Ryu, and B. Jeon. 2019. Comparative analysis of aerotolerance, antibiotic resistance, and virulence gene prevalence in Campylobacter jejuni isolates from retail raw chicken and duck meat in South Korea. Microorganisms 7 (10):433. doi: 10.3390/microorganisms7100433.
  • Kim, M, and S. Ryu. 2012. Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium. Molecular Microbiology 86 (2):411–25. doi: 10.1111/j.1365-2958.2012.08202.x.
  • Kiro, R., D. Shitrit, and U. Qimron. 2014. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biology 11 (1):42–4. doi: 10.4161/rna.27766.
  • Kong, M., H. Na, N.-C. Ha, and S. Ryu. 2019. LysPBC2, a novel endolysin harboring a Bacillus cereus spore binding domain. Applied and Environmental Microbiology 85 (5):e02462–02418. doi: 10.1128/AEM.02462-18.
  • Krysiak-Baltyn, K., G. J. Martin, and S. L. Gras. 2018. Computational modelling of large scale phage production using a two-stage batch process. Pharmaceuticals 11 (2):31. doi: 10.3390/ph11020031.
  • Kumar, G. D. S. Ravishankar, and V. Juneja. 2017. Microbial Control and Food Preservation. New York: Springer.
  • Kutter, E, and A. Sulakvelidze. 2004. Bacteriophages: Biology and applications. Boca Raton, Florida: CRC press.
  • Kwok, R. 2010. Five hard truths for synthetic biology. Nature 463 (7279):288–90. doi: 10.1038/463288a.
  • Lai, M.-J., K.-C. Chang, S.-W. Huang, C.-H. Luo, P.-Y. Chiou, C.-C. Wu, and N.-T. Lin. 2016. The tail associated protein of Acinetobacter baumannii phage ΦAB6 is the host specificity determinant possessing exopolysaccharide depolymerase activity. PloS One 11 (4):e0153361. doi: 10.1371/journal.pone.0153361.
  • Lai, M.-J., N.-T. Lin, A. Hu, P.-C. Soo, L.-K. Chen, L.-H. Chen, and K.-C. Chang. 2011. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Applied Microbiology and Biotechnology 90 (2):529–39. doi: 10.1007/s00253-011-3104-y.
  • Latka, A., S. Lemire, D. Grimon, D. Dams, B. Maciejewska, T. Lu, Z. Drulis-Kawa, and Y. Briers. 2021. Engineering the modular receptor-binding proteins of Klebsiella phages switches their capsule serotype specificity. mBio 12 (3):e00455–00421. doi: 10.1128/mBio.00455-21.
  • Le, S., X. He, Y. Tan, G. Huang, L. Zhang, R. Lux, W. Shi, and F. Hu. 2013. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PloS One 8 (7):e68562. doi: 10.1371/journal.pone.0068562.
  • Lee, C., J. Kim, B. Son, and S. Ryu. 2021. Development of Advanced Chimeric Endolysin to Control Multidrug-Resistant Staphylococcus aureus through Domain Shuffling. ACS Infectious Diseases 7 (8):2081–92. 2021. doi: 10.1021/acsinfecdis.0c00812.
  • Lee, Y., B. Son, Y. Cha, and S. Ryu. 2021. Characterization and Genomic Analysis of PALS2, a Novel Staphylococcus Jumbo Bacteriophage. Frontiers in Microbiology 12 (395) doi: 10.3389/fmicb.2021.622755.
  • Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology 55 (1-3):181–6. doi: 10.1016/s0168-1605(00)00161-6.
  • Lenneman, B. R., J. Fernbach, M. J. Loessner, T. K. Lu, and S. Kilcher. 2021. Enhancing phage therapy through synthetic biology and genome engineering. Current Opinion in Biotechnology 68:151–9. doi: 10.1016/j.copbio.2020.11.003.
  • León, M, and R. Bastías. 2015. Virulence reduction in bacteriophage resistant bacteria. Frontiers in Microbiology 6:343. doi: 10.3389/fmicb.2015.00343.
  • Leverentz, B., W. S. Conway, M. J. Camp, W. J. Janisiewicz, T. Abuladze, M. Yang, R. Saftner, and A. Sulakvelidze. 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology 69 (8):4519–26. doi: 10.1128/AEM.69.8.4519-4526.2003.
  • Leverentz, B., W. S. Conway, W. Janisiewicz, and M. J. Camp. 2004. Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. Journal of Food Protection 67 (8):1682–6. doi: 10.4315/0362-028x-67.8.1682.
  • Li, Y.-K., H. Chen, M. Shu, C. Zhong, Y. Bi, H.-H. Yang, and G.-P. Wu. 2021. Isolation, characterization and application of an alkaline resistant virulent bacteriophage JN01 against Escherichia coli O157: H7 in milk and beef. LWT 144:111266. doi: 10.1016/j.lwt.2021.111266.
  • Lim, J.-A., H. Shin, S. Heu, and S. Ryu. 2014. Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria. Journal of Microbiology and Biotechnology 24 (6):803–11. doi: 10.4014/jmb.1403.03035.
  • Lin, D. M., B. Koskella, and H. C. Lin. 2017. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics 8 (3):162–73. doi: 10.4292/wjgpt.v8.i3.162.
  • Lineback, D. R., A. Pirlet, J. W. Van Der Kamp, and R. Wood. 2009. Globalization, food safety issues & role of international standards. Quality Assurance and Safety of Crops & Foods 1 (1):23–7. doi: 10.1111/j.1757-837X.2009.00005.x.
  • Liu, A., Y. Wang, X. Cai, S. Jiang, X. Cai, L. Shen, Y. Liu, G. Han, S. Chen, J. Wang, et al. 2019. Characterization of endolysins from bacteriophage LPST10 and evaluation of their potential for controlling Salmonella Typhimurium on lettuce. LWT 114:108372. doi: 10.1016/j.lwt.2019.108372.
  • Loc-Carrillo, C, and S. T. Abedon. 2011. Pros and cons of phage therapy. Bacteriophage 1 (2):111–4. doi: 10.4161/bact.1.2.14590.
  • Loeffler, J. M., D. Nelson, and V. A. Fischetti. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science (New York, N.Y.) 294 (5549):2170–2. doi: 10.1126/science.1066869.
  • Loessner, M. J. 2005. Bacteriophage endolysins-current state of research and applications. Current Opinion in Microbiology 8 (4):480–7. doi: 10.1016/j.mib.2005.06.002.
  • Loessner, M. J., C. Rees, G. Stewart, and S. Scherer. 1996. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Applied and Environmental Microbiology 62 (4):1133–40. doi: 10.1128/aem.62.4.1133-1140.1996.
  • López-Cuevas, O., J. Medrano-Félix, N. Castro-Del Campo, and C. Chaidez. 2019. Bacteriophage applications for fresh produce food safety. International Journal of Environmental Health Research 31 (6):687–702. doi: 10.1080/09603123.2019.1680819.
  • Love, M. J., D. Coombes, S. H. Manners, G. S. Abeysekera, C. Billington, and R. C. Dobson. 2021. The molecular basis for Escherichia coli O157: H7 phage FAHEc1 endolysin function and protein engineering to increase thermal stability. Viruses 13 (6):1101. doi: 10.3390/v13061101.
  • Low, L. Y., C. Yang, M. Perego, A. Osterman, and R. Liddington. 2011. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. Journal of Biological Chemistry 286 (39):34391–403. doi: 10.1074/jbc.M111.244160.
  • Lu, T. K, and J. J. Collins. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences of the United States of America 104 (27):11197–202. doi: 10.1073/pnas.0704624104.
  • Lukacik, P., T. Barnard, P. Keller, K. Chaturvedi, N. Seddiki, J. Fairman, N. Noinaj, T. Kirby, J. Henderson, A. Steven, et al. 2012. Structural engineering of a phage lysin that targets Gram-negative pathogens. Proceedings of the National Academy of Sciences of the United States of America 109 (25):9857–62. doi: 10.1073/pnas.1203472109.
  • Magnusdottir, A., H. Vidarsson, J. M. Björnsson, and B. L. Örvar. 2013. Barley grains for the production of endotoxin-free growth factors. Trends in Biotechnology 31 (10):572–80. doi: 10.1016/j.tibtech.2013.06.002.
  • Mahichi, F., A. J. Synnott, K. Yamamichi, T. Osada, and Y. Tanji. 2009. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiology Letters 295 (2):211–7. doi: 10.1111/j.1574-6968.2009.01588.x.
  • Manyi-Loh, C., S. Mamphweli, E. Meyer, and A. Okoh. 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 23 (4):795. doi: 10.3390/molecules23040795.
  • Mao, J., M. Schmelcher, W. J. Harty, J. Foster-Frey, and D. M. Donovan. 2013. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme. FEMS Microbiology Letters 342 (1):30–6. doi: 10.1111/1574-6968.12104.
  • Marinelli, L., M. Piuri, Z. Swigonová, A. Balachandran, L. Oldfield, J. van Kessel, and G. Hatfull. 2008. BRED: A simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PloS One 3 (12):e3957. doi: 10.1371/journal.pone.0003957.
  • Martel, B, and S. Moineau. 2014. CRISPR-Cas: An efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Research 42 (14):9504–13. doi: 10.1093/nar/gku628.
  • Matsuzaki, S., M. Rashel, J. Uchiyama, S. Sakurai, T. Ujihara, M. Kuroda, M. Ikeuchi, T. Tani, M. Fujieda, H. Wakiguchi, et al. 2005. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. Journal of Infection and Chemotherapy : Official Journal of the Japan Society of Chemotherapy 11 (5):211–9. doi: 10.1007/s10156-005-0408-9.
  • Mayer, M. J., J. Payne, M. J. Gasson, and A. Narbad. 2010. Genomic sequence and characterization of the virulent bacteriophage phiCTP1 from Clostridium tyrobutyricum and heterologous expression of its endolysin. Applied and Environmental Microbiology 76 (16):5415–22. doi: 10.1128/AEM.00989-10.
  • Mayer, M. J., V. Garefalaki, R. Spoerl, A. Narbad, and R. Meijers. 2011. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. Journal of Bacteriology 193 (19):5477–86. doi: 10.1128/JB.00439-11.
  • Meaden, S, and B. Koskella. 2013. Exploring the risks of phage application in the environment. Frontiers in Microbiology 4:358. doi: 10.3389/fmicb.2013.00358.
  • Montgomery, H., S. A. Haughey, and C. T. Elliott. 2020. Recent food safety and fraud issues within the dairy supply chain (2015–2019). Global Food Security 26:100447.
  • Moye, Z. D., J. Woolston, and A. Sulakvelidze. 2018. Bacteriophage applications for food production and processing. Viruses 10 (4):205. doi: 10.3390/v10040205.
  • Nakimbugwe, D., B. Masschalck, M. Atanassova, A. Zewdie-Bosüner, and C. W. Michiels. 2006. Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. International Journal of Food Microbiology 108 (3):355–63. doi: 10.1016/j.ijfoodmicro.2005.11.021.
  • Nelson, D. C., M. Schmelcher, L. Rodríguez-Rubio, J. Klumpp, D. G. Pritchard, S. Dong, and D. M. Donovan. 2012. Endolysins as antimicrobials. Advances in Virus Research 83:299–365.
  • Obeso, J. M., B. Martínez, A. Rodríguez, and P. García. 2008. Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. International Journal of Food Microbiology 128 (2):212–8. doi: 10.1016/j.ijfoodmicro.2008.08.010.
  • OECD. 2018. Stemming the superbug tide.
  • Oliveira, H., J. Azeredo, R. Lavigne, and L. D. Kluskens. 2012. Bacteriophage endolysins as a response to emerging foodborne pathogens. Trends in Food Science & Technology 28 (2):103–15. doi: 10.1016/j.tifs.2012.06.016.
  • Oliveira, H., L. D. Melo, S. B. Santos, F. L. Nóbrega, E. C. Ferreira, N. Cerca, J. Azeredo, and L. D. Kluskens. 2013. Molecular aspects and comparative genomics of bacteriophage endolysins. Journal of Virology 87 (8):4558–70. doi: 10.1128/JVI.03277-12.
  • Oliveira, H., V. Thiagarajan, M. Walmagh, S. Sillankorva, R. Lavigne, M. T. Neves-Petersen, L. D. Kluskens, and J. Azeredo. 2014a. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PloS One 9 (10):e108376. doi: 10.1371/journal.pone.0108376.
  • Oliveira, M., I. Viñas, P. Colàs, M. Anguera, J. Usall, and M. Abadias. 2014b. Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiology 38:137–42. doi: 10.1016/j.fm.2013.08.018.
  • Oliver, S. P., B. M. Jayarao, and R. A. Almeida. 2005. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease 2 (2):115–29. doi: 10.1089/fpd.2005.2.115.
  • Pagan, F. 1981. Antibiotics for gram-positive organisms. British Journal of Hospital Medicine 25 (1):24–7.
  • Park, H., J. Kim, M. Kim, Y. Park, and S. Ryu. 2021. Development of new strategy combining heat treatment and phage cocktail for post-contamination prevention. Food Research International (Ottawa, Ont.) 145:110415. doi: 10.1016/j.foodres.2021.110415.
  • Pastagia, M., C. Euler, P. Chahales, J. Fuentes-Duculan, J. G. Krueger, and V. A. Fischetti. 2011. A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains . Antimicrobial Agents and Chemotherapy 55 (2):738–44. doi: 10.1128/AAC.00890-10.
  • Pastagia, M., R. Schuch, V. A. Fischetti, and D. B. Huang. 2013. Lysins: The arrival of pathogen-directed anti-infectives. Journal of Medical Microbiology 62 (Pt 10):1506–16. doi: 10.1099/jmm.0.061028-0.
  • Pawlowska, A. M., E. Zannini, A. Coffey, and E. K. Arendt. 2012. “ Green preservatives”: Combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Advances in Food and Nutrition Research 66:217–38.
  • Perera, M. N., T. Abuladze, M. Li, J. Woolston, and A. Sulakvelidze. 2015. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiology 52:42–8. doi: 10.1016/j.fm.2015.06.006.
  • Pires, D. P., S. Cleto, S. Sillankorva, J. Azeredo, and T. K. Lu. 2016. Genetically engineered phages: A review of advances over the last decade. Microbiology and Molecular Biology Reviews : MMBR 80 (3):523–43. doi: 10.1128/MMBR.00069-15.
  • Połaska, M, and B. Sokołowska. 2019. Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiology 5 (4):324–46. doi: 10.3934/microbiol.2019.4.324.
  • Popescu, M., J. D. Van Belleghem, A. Khosravi, and P. L. Bollyky. 2021. Bacteriophages and the immune system. Annual Review of Virology 8 (1):415–35. doi: 10.1146/annurev-virology-091919-074551.
  • Radford, D., B. Guild, P. Strange, R. Ahmed, L.-T. Lim, and S. Balamurugan. 2017. Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on Poly (lactic acid) films. Food Microbiology 66:117–28. doi: 10.1016/j.fm.2017.04.015.
  • Ramirez-Chamorro, L., P. Boulanger, and O. Rossier. 2021. Strategies for bacteriophage T5 mutagenesis: Expanding the toolbox for phage genome engineering. Frontiers in Microbiology 12:667332. doi: 10.3389/fmicb.2021.667332.
  • Riggio, G. M., Q. Wang, K. E. Kniel, and K. E. Gibson. 2019. Microgreens-A review of food safety considerations along the farm to fork continuum. International Journal of Food Microbiology 290:76–85. doi: 10.1016/j.ijfoodmicro.2018.09.027.
  • Rodríguez-Rubio, L., B. Martínez, A. Rodríguez, D. M. Donovan, and P. García. 2012. Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion-associated peptidoglycan hydrolase: Fusions, deletions, and synergy with LysH5. Applied and Environmental Microbiology 78 (7):2241–8. doi: 10.1128/AEM.07621-11.
  • Romero-Calle, D., R. Guimarães Benevides, A. Góes-Neto, and C. Billington. 2019. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics 8 (3):138. doi: 10.3390/antibiotics8030138.
  • Ross, A., S. Ward, and P. Hyman. 2016. More is better: Selecting for broad host range bacteriophages. Frontiers in Microbiology 7:1352. doi: 10.3389/fmicb.2016.01352.
  • Rustad, M., A. Eastlund, P. Jardine, and V. Noireaux. 2018. Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synthetic Biology (Oxford, England) 3 (1):ysy002. doi: 10.1093/synbio/ysy002.
  • Ryu, S. 2021. Grand challenges in phage biology. Frontiers in Microbiology 12:715039. doi: 10.3389/fmicb.2021.715039.
  • Santos, S., E. Fernandes, C. M. Carvalho, S. Sillankorva, V. Krylov, E. Pleteneva, O. Shaburova, A. Nicolau, E. Ferreira, and J. Azeredo. 2010. Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain. Applied and Environmental Microbiology 76 (21):7338–42. doi: 10.1128/AEM.00922-10.
  • Schmelcher, M., D. M. Donovan, and M. J. Loessner. 2012a. Bacteriophage endolysins as novel antimicrobials. Future Microbiology 7 (10):1147–71. doi: 10.2217/fmb.12.97.
  • Schmelcher, M., F. Waldherr, and M. J. Loessner. 2012b. Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution. Applied Microbiology and Biotechnology 93 (2):633–43. doi: 10.1007/s00253-011-3372-6.
  • Schuch, R., D. Nelson, and V. A. Fischetti. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418 (6900):884–9. doi: 10.1038/nature01026.
  • Shannon, R., D. R. Radford, and S. Balamurugan. 2020. Impacts of food matrix on bacteriophage and endolysin antimicrobial efficacy and performance. Critical Reviews in Food Science and Nutrition 60 (10):1631–40. doi: 10.1080/10408398.2019.1584874.
  • Sharma, M., J. R. Patel, W. S. Conway, S. Ferguson, and A. Sulakvelidze. 2009. Effectiveness of bacteriophages in reducing Escherichia coli O157: H7 on fresh-cut cantaloupes and lettuce. Journal of Food Protection 72 (7):1481–5. doi: 10.4315/0362-028X-72.7.1481.
  • Shen, Y., T. Köller, B. Kreikemeyer, and D. C. Nelson. 2013. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. Journal of Antimicrobial Chemotherapy 68 (8):1818–24. doi: 10.1093/jac/dkt104.
  • Shin, H., J.-H. Lee, H. Kim, Y. Choi, S. Heu, and S. Ryu. 2012. Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PloS One 7 (8):e43392. doi: 10.1371/journal.pone.0043392.
  • Shin, H., J.-H. Lee, H. Yoon, D.-H. Kang, and S. Ryu. 2014. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Applied and Environmental Microbiology 80 (1):374–84. doi: 10.1128/AEM.02279-13.
  • Shin, J., P. Jardine, and V. Noireaux. 2012. Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction. ACS Synthetic Biology 1 (9):408–13. doi: 10.1021/sb300049p.
  • Simmons, M., C. A. Morales, B. B. Oakley, and B. S. Seal. 2012. Recombinant expression of a putative amidase cloned from the genome of Listeria monocytogenes that lyses the bacterium and its monolayer in conjunction with a protease. Probiotics and Antimicrobial Proteins 4 (1):1–10. doi: 10.1007/s12602-011-9084-5.
  • Soffer, N., J. Woolston, M. Li, C. Das, and A. Sulakvelidze. 2017. Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PloS One 12 (3):e0175256. doi: 10.1371/journal.pone.0175256.
  • Son, B., M. Kong, Y. Lee, and S. Ryu. 2021. Development of a novel chimeric endolysin, Lys109 with enhanced lytic activity against Staphylococcus aureus. Frontiers in Microbiology 11:3490. doi: 10.3389/fmicb.2020.615887.
  • Son, J.-S., S.-J. Lee, S. Y. Jun, S. J. Yoon, S. H. Kang, H. R. Paik, J. O. Kang, and Y.-J. Choi. 2010. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Applied Microbiology and Biotechnology 86 (5):1439–49. doi: 10.1007/s00253-009-2386-9.
  • Soni, K. A., and R. Nannapaneni. 2010. Removal of Listeria monocytogenes biofilms with bacteriophage P100. Journal of Food Protection 73 (8):1519–24. doi: 10.4315/0362-028x-73.8.1519.
  • Sukumaran, A. T., R. Nannapaneni, A. Kiess, and C. S. Sharma. 2016. Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation SalmoFreshTM. Poultry Science 95 (3):668–75. doi: 10.3382/ps/pev332.
  • Swift, S. M., B. S. Seal, J. K. Garrish, B. B. Oakley, K. Hiett, H.-Y. Yeh, R. Woolsey, K. M. Schegg, J. E. Line, and D. M. Donovan. 2015. A thermophilic phage endolysin fusion to a Clostridium perfringens-specific cell wall binding domain creates an anti-Clostridium antimicrobial with improved thermostability. Viruses 7 (6):3019–34. doi: 10.3390/v7062758.
  • Tao, P., X. Wu, W.-C. Tang, J. Zhu, and V. Rao. 2017. Engineering of bacteriophage T4 genome using CRISPR-Cas9. ACS Synthetic Biology 6 (10):1952–61.
  • Timothy Kuan Ta Lu, M. S. K. B. S. Chevalier, J. W. Holder, G. J. McKenzie, and D. R. Brownell. 2011. Recombinant Phage and Methods. Inc., I. F. E. H. (Ed.).
  • Torres‐Acosta, M. A., Clavijo, V.Vaglio, C. González, Barrios, A. F.Vives, Flórez, M. J. Rito, and Palomares, M. 2019. Economic evaluation of the development of a phage therapy product for the control of Salmonella in poultry. Biotechnology Progress 35 (5):e2852. ‐ ‐ ‐ doi: 10.1002/btpr.2852.
  • Torres‐Acosta, M., A. González‐Mora, F. Ruiz‐Ruiz, M. Rito‐Palomares, and J. Benavides. 2020. Economic evaluation of M13 bacteriophage production at large‐Scale for therapeutic applications using aqueous Two‐Phase systems. Journal of Chemical Technology & Biotechnology 95 (11):2822–33. doi: 10.1002/jctb.6526.
  • Vikram, A., J. Woolston, and A. Sulakvelidze. 2020. Phage biocontrol applications in food production and processing. Current Issues in Molecular Biology 40:267–302. doi: 10.21775/cimb.040.267.
  • Vos, M. 2009. Why do bacteria engage in homologous recombination? Trends in Microbiology 17 (6):226–32. doi: 10.1016/j.tim.2009.03.001.
  • WHO. 2016. Global Antimicrobial Resistance Surveillance System (GLASS): Guide to completing the GLASS implementation questionnaire. World Health Organization, https://apps.who.int/iris/handle/10665/251555
  • WHO. 2017. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organization, https://apps.who.int/iris/handle/10665/311820
  • WHO. 2020. Food safety. World Health Organization, https://www.who.int/news-room/fact-sheets/detail/foodsafety
  • Wienhold, S.-M., J. Lienau, and M. Witzenrath. 2019. Towards inhaled phage therapy in Western Europe. Viruses 11 (3):295. doi: 10.3390/v11030295.
  • Wittmann, J., C. Brancato, K. Berendzen, and B. Dreiseikelmann. 2016. Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. Plant Pathology 65 (3):496–502. doi: 10.1111/ppa.12417.
  • Woolston, J., A. R. Parks, T. Abuladze, B. Anderson, M. Li, C. Carter, L. F. Hanna, S. Heyse, D. Charbonneau, and A. Sulakvelidze. 2013. Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage 3 (3):e25697. doi: 10.4161/bact.25697.
  • Xu, Y. 2021. Phage and phage lysins: New era of bio-preservatives and food safety agents . Journal of Food Science 86 (8):3349–73. doi: 10.1111/1750-3841.15843.
  • Yan, G., J. Liu, Q. Ma, R. Zhu, Z. Guo, C. Gao, S. Wang, L. Yu, J. Gu, D. Hu, et al. 2017. The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly. Antonie Van Leeuwenhoek 110 (12):1627–35. doi: 10.1007/s10482-017-0912-9.
  • Yang, H., S. B. Linden, J. Wang, J. Yu, D. C. Nelson, and H. Wei. 2015. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Scientific Reports 5 (1):17257. doi: 10.1038/srep17257.
  • Yang, H., Y. Zhang, J. Yu, Y. Huang, X.-E. Zhang, and H. Wei. 2014. Novel chimeric lysin with high-level antimicrobial activity against methicillin-resistant Staphylococcus aureus in vitro and in vivo. Antimicrobial Agents and Chemotherapy 58 (1):536–42. doi: 10.1128/AAC.01793-13.
  • Yeh, Y., F. De Moura, K. Van Den Broek, and A. De Mello. 2018. Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Science 139:44–8. doi: 10.1016/j.meatsci.2018.01.007.
  • Yehl, K., S. Lemire, A. C. Yang, H. Ando, M. Mimee, M. D. T. Torres, C. de la Fuente-Nunez, and T. K. Lu. 2019. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 179 (2):459–469. e459. doi: 10.1016/j.cell.2019.09.015.
  • Yeom, H., T. Ryu, A. C. Lee, J. Noh, H. Lee, Y. Choi, N. Kim, and S. Kwon. 2020. Cell-free bacteriophage genome synthesis using low-cost sequence-verified array-synthesized oligonucleotides. ACS Synthetic Biology 9 (6):1376–84. doi: 10.1021/acssynbio.0c00051.
  • Yin, H., J. Li, H. Huang, Y. Wang, X. Qian, J. Ren, F. Xue, J. Dai, and F. Tang. 2021. Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157: H7 infection. Veterinary Research 52 (1):118. doi: 10.1186/s13567-021-00991-1.
  • Yoichi, M., M. Abe, K. Miyanaga, H. Unno, and Y. Tanji. 2005. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. Journal of Biotechnology 115 (1):101–7. doi: 10.1016/j.jbiotec.2004.08.003.
  • Yoong, P., R. Schuch, D. Nelson, and V. A. Fischetti. 2004. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. Journal of Bacteriology 186 (14):4808–12. doi: 10.1128/JB.186.14.4808-4812.2004.
  • Żaczek, M., B. Weber‐Dąbrowska, and A. Górski. 2015. Phages in the global fruit and vegetable industry. Journal of Applied Microbiology 118 (3):537–56. doi: 10.1111/jam.12700.
  • Zampara, A., M. C. H. Sørensen, D. Grimon, F. Antenucci, A. R. Vitt, V. Bortolaia, Y. Briers, and L. Brøndsted. 2020. Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Scientific Reports 10 (1):12. doi: 10.1038/s41598-020-68983-3.
  • Zhang, H., H. Bao, C. Billington, J. A. Hudson, and R. Wang. 2012. Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food Microbiology 31 (1):133–6. doi: 10.1016/j.fm.2012.01.005.
  • Zhang, X., Y. D. Niu, Y. Nan, K. Stanford, R. Holley, T. McAllister, and C. Narváez-Bravo. 2019. SalmoFresh™ effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds. International Journal of Food Microbiology 305:108250. doi: 10.1016/j.ijfoodmicro.2019.108250.
  • Zhou, Y., H. Zhang, H. Bao, X. Wang, and R. Wang. 2017. The lytic activity of recombinant phage lysin LysKΔamidase against staphylococcal strains associated with bovine and human infections in the Jiangsu province of China. Research in Veterinary Science 111:113–9. doi: 10.1016/j.rvsc.2017.02.011.