1,856
Views
19
CrossRef citations to date
0
Altmetric
Review Articles

Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review

, , , , , & show all

References

  • Azizishalbaf, S., A. Asadi, and A. Abdolmaleki. 2019. Analysis of molecular interactions using the thermophoresis method and its applications in neuroscience and biological processes. The Neuroscience Journal of Shefaye Khatam 7 (3):91–101.
  • Bacanlı, M., and N. Başaran. 2019. Importance of antibiotic residues in animal food. Food and Chemical Toxicology 125:462–6. doi:10.1016/j.fct.2019.01.033.
  • Baquero, F., J.-L. Martínez, and R. Cantón. 2008. Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology 19 (3):260–5. doi: 10.1016/j.copbio.2008.05.006.
  • Belal, A., A. Ismail, M. M. Elnaggar, and T. S. Belal. 2018. Click chemistry inspired copper sulphide nanoparticle-based fluorescence assay of kanamycin using DNA aptamer. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 205:48–54. doi: 10.1016/j.saa.2018.07.011.
  • Ben Aissa, S., M. Mastouri, G. Catanante, N. Raouafi, and J. L. Marty. 2020. Investigation of a truncated aptamer for ofloxacin detection using a rapid FRET-based apta-assay. Antibiotics (Basel) 9 (12):860. doi: 10.3390/antibiotics9120860.
  • Ben, Y., C. Fu, M. Hu, L. Liu, M. H. Wong, and C. Zheng. 2019. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research 169:483–93.
  • Blumenthal, K. G., J. G. Peter, J. A. Trubiano, and E. J. Phillips. 2019. Antibiotic allergy. Lancet (London, England) 393 (10167):183–98. doi: 10.1016/S0140-6736(18)32218-9.
  • Bush, K., and P. A. Bradford. 2016. beta-Lactams and beta-lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine 6 (8):a025247. doi: 10.1101/cshperspect.a025247.
  • Chen, A., M. Yan, and S. Yang. 2016a. Split aptamers and their applications in sandwich aptasensors. TrAC - Trends in Analytical Chemistry 80:581–93. doi: 10.1016/j.trac.2016.04.006.
  • Chen, D., D. Yao, C. Xie, and D. Liu. 2014. Development of an aptasensor for electrochemical detection of tetracycline. Food Control. 42:109–15. doi: 10.1016/j.foodcont.2014.01.018.
  • Chen, J. H., I. A. Shanin, S. W. Lv, Q. Wang, C. B. Mao, Z. L. Xu, Y. M. Sun, Q. Wu, S. A. Eremin, and H. T. Lei. 2016b. Heterologous strategy enhancing the sensitivity of the fluorescence polarization immunoassay of clinafloxacin in goat milk. Journal of the Science of Food and Agriculture 96 (4):1341–6. doi: 10.1002/jsfa.7228.
  • Chen, J., G.-G. Ying, and W.-J. Deng. 2019. Antibiotic residues in food: extraction, analysis, and human health concerns. Journal of Agricultural and Food Chemistry 67 (27):7569–86. doi: 10.1021/acs.jafc.9b01334.
  • Chen, K., and J. L. Zhou. 2014. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 95:604–12. doi: 10.1016/j.chemosphere.2013.09.119.
  • Chiavarino, B., M. E. Crestoni, A. Di Marzio, and S. Fornarini. 1998. Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. Journal of Chromatography. B, Biomedical Sciences and Applications 706 (2):269–77. doi:10.1016/S0378-4347(97)00568-9.
  • Daghrir, R., and P. Drogui. 2013. Tetracycline antibiotics in the environment: A review. Environmental Chemistry Letters 11 (3):209–27. doi: 10.1007/s10311-013-0404-8.
  • Debiais, M., A. Lelievre, M. Smietana, and S. Muller. 2020. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Research 48 (7):3400–22. doi: 10.1093/nar/gkaa132.
  • Dolati, S., M. Ramezani, M. S. Nabavinia, V. Soheili, K. Abnous, and S. M. Taghdisi. 2018. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay. Analytical Biochemistry 549:124–9. doi: 10.1016/j.ab.2018.03.021.
  • Du, Y., Y. Zhou, Y. Wen, X. Bian, Y. Xie, W. Zhang, G. Liu, and J. Yan. 2019. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: Application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin. Mikrochimica Acta 186 (12):840. doi: 10.1007/s00604-019-3935-2.
  • Duan, Y., Z. Gao, L. Wang, H. Wang, H. Zhang, and H. Li. 2016. Selection and identification of chloramphenicol-specific DNA aptamers by Mag-SELEX. Applied Biochemistry and Biotechnology 180 (8):1644–56. doi: 10.1007/s12010-016-2193-6.
  • Fedorova, G., V. Nebesky, T. Randak, and R. Grabic. 2014. Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS. Chemical Papers 68 (1):29–36. doi: 10.2478/s11696-013-0428-3.
  • Francino, M. P. 2015. Antibiotics and the human gut microbiome: Dysbiosesand accumulation of resistances. Frontiers in Microbiology 6:1543. doi: 10.3389/fmicb.2015.01543.
  • González-Fernández, E., N. de-los-Santos-Álvarez, M. J. Lobo-Castañón, A. J. Miranda-Ordieres, and P. Tuñón-Blanco. 2011. Aptamer-based inhibition assay for the electrochemical detection of tobramycin using magnetic microparticles. Electroanalysis 23 (1):43–9. doi: 10.1002/elan.201000567.
  • Gothwal, R., and T. Shashidhar. 2015. Antibiotic pollution in the environment: A review. CLEAN - Soil, Air, Water 43 (4):479–89. doi: 10.1002/clen.201300989.
  • Grenni, P., V. Ancona, and A. Barra Caracciolo. 2018. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal 136:25–39. doi:10.1016/j.microc.2017.02.006
  • Groher, F., and B. Suess. 2016. In vitro selection of antibiotic-binding aptamers. Methods (San Diego, Calif.) 106:42–50. doi: 10.1016/j.ymeth.2016.05.008.
  • Hasegawa, H., K-i. Taira, K. Sode, and K. Ikebukuro. 2008. Improvement of aptamer affinity by dimerization. Sensors (Basel, Switzerland) 8 (2):1090–8.
  • Hetzke, T., M. Vogel, D. B. Gophane, J. E. Weigand, B. Suess, S. T. Sigurdsson, and T. F. Prisner. 2019. Influence of Mg2+ on the conformational flexibility of a tetracycline aptamer. RNA (New York, N.Y.) 25 (1):158–67. doi: 10.1261/rna.068684.118.
  • Hoofnagle, J. H., and E. S. Bjornsson. 2019. Drug-induced liver injury—Types and phenotypes. New England Journal of Medicine 381 (3):264–73. doi: 10.1056/NEJMra1816149.
  • Hu, Y. F., G. F. Gao, and B. L. Zhu. 2017. The antibiotic resistome: Gene flow in environments, animals and human beings. Frontiers of Medicine 11 (2):161–8. doi: 10.1007/s11684-017-0531-x.
  • Huizenga, D. E., and J. W. Szostak. 1995. A DNA aptamer that binds adenosine and ATP. Biochemistry 34 (2):656–65. doi: 10.1021/bi00002a033.
  • Ilgu, M., D. B. Fulton, R. M. Yennamalli, M. H. Lamm, T. Z. Sen, and M. Nilsen-Hamilton. 2014. An adaptable pentaloop defines a robust neomycin-B RNA aptamer with conditional ligand-bound structures. RNA (New York, N.Y.) 20 (6):815–24. doi: 10.1261/rna.041145.113.
  • Jaeger, J., F. Groher, J. Stamm, D. Spiehl, J. Braun, E. Dorsam, and B. Suess. 2019. Characterization and inkjet printing of an RNA aptamer for paper-based biosensing of ciprofloxacin. Biosensors (Basel) 9 (1):7. doi: 10.3390/bios9010007.
  • Jia, M., J. Sha, Z. Li, W. Wang, and H. Zhang. 2020. High affinity truncated aptamers for ultra-sensitive colorimetric detection of bisphenol A with label-free aptasensor. Food Chemistry 317:126459. doi: 10.1016/j.foodchem.2020.126459.
  • Jiang, L., A. Majumdar, W. Hu, T. J. Jaishree, W. Xu, and D. J. Patel. 1999. Saccharide–RNA recognition in a complex formed between neomycin B and an RNA aptamer. Structure 7 (7):817–S817. doi: 10.1016/S0969-2126(99)80105-1.
  • Jiang, L., and D. J. Patel. 1998. Solution structure of the tobramycin-RNA aptamer complex. Nature Structural Biology 5 (9):769–74. doi: 10.1038/1804.
  • Kent, A. D., N. G. Spiropulos, and J. M. Heemstra. 2013. General approach for engineering small-molecule-binding DNA split aptamers. Analytical Chemistry 85 (20):9916–23. doi: 10.1021/ac402500n.
  • Kolpashchikov, D. M., and A. A. Spelkov. 2021. Binary (split) light-up aptameric sensors. Angewandte Chemie (International ed. in English) 60 (10):4988–99. doi: 10.1002/anie.201914919.
  • Krause, K. M., A. W. Serio, T. R. Kane, and L. E. Connolly. 2016. Aminoglycosides: An Overview. Cold Spring Harbor Perspectives in Medicine 6 (6):a027029. doi: 10.1101/cshperspect.a027029.
  • Kwon, Y. S., N. H. Ahmad Raston, and M. B. Gu. 2014. An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity. Chemical Communications (Cambridge, England) 50 (1):40–2. doi: 10.1039/c3cc47108j.
  • Li, S., Y. Zheng, Q. Zou, G. Liao, X. Liu, L. Zou, X. Yang, Q. Wang, and K. Wang. 2020. Engineering and application of a myoglobin binding split aptamer. Analytical Chemistry 92 (21):14576–81. doi: 10.1021/acs.analchem.0c02869.
  • Li, Y., B. Ji, W. Chen, L. Liu, C. Xu, C. Peng, and L. Wang. 2008. Production of new class-specific polyclonal antibody for determination of fluoroquinolones antibiotics by indirect competitive ELISA. Food and Agricultural Immunology 19 (4):251–64. doi: 10.1080/09540100802471538.
  • Li, Y. W., X. L. Wu, C. H. Mo, Y. P. Tai, X. P. Huang, and L. Xiang. 2011. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta Area, Southern China. Journal of Agricultural and Food Chemistry 59 (13):7268–76. doi: 10.1021/jf1047578.
  • Liu, J., W. Bai, S. Niu, C. Zhu, S. Yang, and A. Chen. 2014. Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Scientific Reports 4 (1):7571. doi: 10.1038/srep07571.
  • Liu, X., F. Dahdouh, M. Salgado, and F. A. Gomez. 2009. Recent advances in affinity capillary electrophoresis (2007). Journal of Pharmaceutical Sciences 98 (2):394–410. doi:10.1002/jps.21452.
  • Ma, Y., F. Geng, Y. Wang, M. Xu, C. Shao, P. Qu, Y. Zhang, and B. Ye. 2019. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition. Biosensors & Bioelectronics 134:36–41. doi: 10.1016/j.bios.2019.03.047.
  • Macedo, B., and Y. Cordeiro. 2017. Unraveling prion protein interactions with aptamers and other PrP-binding nucleic acids. International Journal of Molecular Sciences 18 (5):1023. doi: 10.3390/ijms18051023.
  • Morris, F. D., E. M. Peterson, J. M. Heemstra, and J. M. Harris. 2018. Single-molecule kinetic investigation of cocaine-dependent split-aptamer assembly. Analytical Chemistry 90 (21):12964–70. doi: 10.1021/acs.analchem.8b03637.
  • Nan, Q., J. Tang, Y. Hu, and T. Wu. 2017. Advances in detection of antibiotics in different environmental matrix. Chemical Research and Application 29 (11):1609–21.
  • Navien, T. N., R. Thevendran, H. Y. Hamdani, T. H. Tang, and M. Citartan. 2021. In silico molecular docking in DNA aptamer development. Biochimie 180:54–67. doi: 10.1016/j.biochi.2020.10.005.
  • Neves, M. A., O. Reinstein, M. Saad, and P. E. Johnson. 2010a. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study. Biophysical Chemistry 153 (1):9–16. doi: 10.1016/j.bpc.2010.09.009.
  • Neves, M., O. Reinstein, and P. E. Johnson. 2010b. Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study. Biochemistry 49 (39):8478–87. doi: 10.1021/bi100952k.
  • Nick, T. A., T. E. de Oliveira, D. W. Pilat, F. Spenkuch, H. J. Butt, M. Helm, P. A. Netz, and R. Berger. 2016. Stability of a split streptomycin binding aptamer. The Journal of Physical Chemistry. B 120 (27):6479–89. doi: 10.1021/acs.jpcb.6b02440.
  • Nur Topkaya, S., and A. E. Cetin. 2021. Electrochemical aptasensors for biological and chemical analyte detection. Electroanalysis 33 (2):277–91. doi: 10.1002/elan.202060388.
  • Pagano, B., C. A. Mattia, and C. Giancola. 2009. Applications of isothermal titration calorimetry in biophysical studies of G-quadruplexes. International Journal of Molecular Sciences 10 (7):2935–57.
  • Paniel, N., G. Istamboulie, A. Triki, C. Lozano, L. Barthelmebs, and T. Noguer. 2017. Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor. Talanta 162:232–40. doi: 10.1016/j.talanta.2016.09.058.
  • Patel, D. J. 1997. Structural analysis of nucleic acid aptamers. Current Opinion in Chemical Biology 1 (1):32–46. doi:10.1016/S1367-5931(97)80106-8
  • Pham, T., Z. M. Ziora, and M. Blaskovich. 2019. Quinolone antibiotics. MedChemComm 10 (10):1719–39. doi: 10.1039/c9md00120d.
  • Piganeau, N., and R. Schroeder. 2003. Aptamer structures: A preview into regulatory pathways? Chemistry & Biology 10 (2):103–4. doi:10.1016/S1074-5521(03)00028-0
  • Qi, X., X. Yan, Y. Zhao, L. Li, and S. Wang. 2020. Highly sensitive and specific detection of small molecules using advanced aptasensors based on split aptamers: A review. TrAC Trends in Analytical Chemistry 133 doi: 10.1016/j.trac.2020.:116069.
  • Qi, X., Y. Zhao, H. Su, L. Wang, L. Li, R. Ma, X. Yan, J. Sun, S. Wang, and X. Mao. 2022. A label-free colorimetric aptasensor based on split aptamers-chitosan oligosaccharide-AuNPs nanocomposites for sensitive and selective detection of kanamycin. Talanta 238 (Pt 1):123032. doi: 10.1016/j.talanta.2021.123032.
  • Ribeiro Da Cunha., Fonseca, and Calado. 2019. Antibiotic Discovery: Where Have We Come from, Where Do We Go?.. Antibiotics 8 (2):45. doi:10.3390/antibiotics8020045.
  • Sabaeifard, P., A. Abdi-Ali, M. R. Soudi, and R. Dinarvand. 2014. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. Journal of Microbiological Methods 105:134–40. doi:10.1016/j.mimet.2014.07.024.
  • Sabri, N. A., H. Schmitt, B. Van der Zaan, H. W. Gerritsen, T. Zuidema, H. Rijnaarts, and A. Langenhoff. 2020. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. Journal of Environmental Chemical Engineering 8 (1):102245. doi: 10.1016/j.jece.2018.03.004.
  • Sakamoto, T. 2017. NMR study of aptamers. Aptamers 1:13–8.
  • Schmitz, F., A. Valerio, D. de Oliveira, and D. Hotza. 2020. An overview and future prospects on aptamers for food safety. Applied Microbiology and Biotechnology 104 (16):6929–39. doi: 10.1007/s00253-020-10747-0.
  • Schoukroun-Barnes, L. R., S. Wagan, S. Wagan, and R. J. White. 2014. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Analytical Chemistry 86 (2):1131–7.
  • Sha, J., H. Lin, V. Timira, and J. Sui. 2021. The construction and application of aptamer to simultaneous identification of enrofloxacin and ciprofloxacin residues in fish. Food Analytical Methods 14 (5):957–67. doi: 10.1007/s12161-020-01937-7.
  • Sharma, A. K., and J. M. Heemstra. 2011. Small-molecule-dependent split aptamer ligation. Journal of the American Chemical Society 133 (32):12426–9. doi: 10.1021/ja205518e.
  • Song, E. Q., M. Q. Yu, Y. Y. Wang, W. H. Hu, D. Cheng, M. T. Swihart, and Y. Song. 2015. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosensors & Bioelectronics 72:320–5. doi: 10.1016/j.bios.2015.05.018.
  • Song, K. M., E. Jeong, W. Jeon, M. Cho, and C. Ban. 2012. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Analytical and Bioanalytical Chemistry 402 (6):2153–61. doi: 10.1007/s00216-011-5662-3.
  • Song, K. M., M. Cho, H. Jo, K. Min, S. H. Jeon, T. Kim, M. S. Han, J. K. Ku, and C. Ban. 2011. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Analytical Biochemistry 415 (2):175–81. doi: 10.1016/j.ab.2011.04.007.
  • Stojanovic, M. N., P. de Prada, and D. W. Landry. 2000. Fluorescent sensors based on aptamer self-assembly. Journal of the American Chemical Society 122 (46):11547–8. doi: 10.1021/ja0022223.
  • Sun, Y., J. Zhao, and L. Liang. 2021. Recent development of antibiotic detection in food and environment: The combination of sensors and nanomaterials. Mikrochimica Acta 188 (1):21. doi: 10.1007/s00604-020-04671-3.
  • Sun, Y., N. Duan, P. Ma, Y. Liang, X. Zhu, and Z. Wang. 2019. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination. Journal of Agricultural and Food Chemistry 67 (8):2313–20. doi: 10.1021/acs.jafc.8b06893.
  • Tao, X. Q., J. H. Zhu, L. L. Niu, X. P. Wu, W. M. Shi, Z. H. Wang, H. Y. Jiang, and J. Z. Shen. 2012. Detection of ultratrace ­chloramphenicol residues in milk and chicken muscle samples using a chemiluminescent ELISA. Analytical Letters 45 (10):1254–63. doi: 10.1080/00032719.2012.673335.
  • Tereshko, V., E. Skripkin, and D. J. Patel. 2003. Encapsulating streptomycin within a small 40-mer RNA. Chemistry & Biology 10 (2):175–87. doi: 10.1016/S1074-5521(03)00024-3.
  • Tian, R., J. Ji, Y. Zhou, Y. Du, X. Bian, F. Zhu, G. Liu, S. Deng, Y. Wan, and J. Yan. 2020. Terminal-conjugated non-aggregated constraints of gold nanoparticles on lateral flow strips for mobile phone readouts of enrofloxacin. Biosensors & Bioelectronics 160:112218. doi: 10.1016/j.bios.2020.112218.
  • Tuerk, C., and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, N.Y.) 249 (4968):505–10. doi: 10.1126/science.2200121.
  • Velicu, M., and R. Suri. 2009. Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas. Environmental Monitoring and Assessment 154 (1–4):349–59. doi: 10.1007/s10661-008-0402-7.
  • Volz, E. M., R. Kerkman, R. A. Bovenberg, M. Heinemann, and G. Mayer. 2020. Aptamers for biosensing of penicillin in fungal cultures: a feasibility study. Sensing Penicillin 35.
  • Wallace, S. T., and R. Schroeder. 1998. In vitro selection and characterization of streptomycin-binding RNAs: Recognition discrimination between antibiotics. RNA (New York, N.Y.) 4 (1):112–23.
  • Walsh, C. T., and M. A. Fischbach. 2009. Repurposing libraries of eukaryotic protein kinase inhibitors for antibiotic discovery. Proceedings of the National Academy of Sciences 106 (6):1689–90. doi: 10.1073/pnas.0813405106.
  • Wang, C., X. M. Li, T. Peng, Z. H. Wang, K. Wen, and H. Y. Jiang. 2017. Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control. 77:1–7. c
  • Wang, L. H., X. F. Liu, X. F. Hu, S. P. Song, and C. H. Fan. 2006. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical Communications 36:3780–2. doi: 10.1039/b607448k.
  • Wang, R., Q. Zhang, Y. Zhang, H. Shi, K. T. Nguyen, and X. Zhou. 2019. Unconventional split aptamers cleaved at functionally essential sites preserve biorecognition capability. Analytical Chemistry 91 (24):15811–7. doi: 10.1021/acs.analchem.9b04115.
  • Wei, H., R. Cai, H. Yue, Y. Tian, and N. Zhou. 2020. Screening and application of a truncated aptamer for high-sensitive fluorescent detection of metronidazole. Analytica Chimica Acta 1128:203–10. doi: 10.1016/j.aca.2020.07.003.
  • Wei, R., F. Ge, S. Huang, M. Chen, and R. Wang. 2011. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere 82 (10):1408–14. doi:10.1016/j.chemosphere.2010.11.067.
  • Windbichler, N., and R. Schroeder. 2006. Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer. Nature Protocols 1 (2):637–40. doi: 10.1038/nprot.2006.95.
  • Wu, C., S. Yang, Z. Wu, G. Shen, and R. Yu. 2013. Split aptamer-based liquid crystal biosensor for ATP assay. Acta Chimica Sinica 71 (3):367. doi: 10.6023/A12110962.
  • Wu, S., H. Zhang, Z. Shi, N. Duan, C. Fang, S. Dai, and Z. Wang. 2015. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control. 50:597–604. doi: 10.1016/j.foodcont.2014.10.003.
  • Xie, W. Y., Q. Shen, and F. J. Zhao. 2018. Antibiotics and antibiotic resistance from animal manures to soil: A review. European Journal of Soil Science 69 (1):181–95. doi: 10.1111/ejss.12494.
  • Yang, Y. Y., W. J. Song, H. Lin, W. B. Wang, L. N. Du, and W. Xing. 2018. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environment International 116:60–73. doi: 10.1016/j.envint.2018.04.011.
  • Ye, H., N. Duan, H. Gu, H. Wang, and Z. Wang. 2019. Fluorometric determination of lipopolysaccharides via changes of the graphene oxide-enhanced fluorescence polarization caused by truncated aptamers. Mikrochimica Acta 186 (3):173. doi: 10.1007/s00604-019-3261-8.
  • Yue, F., F. Li, Q. Kong, Y. Guo, and X. Sun. 2021. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. The Science of the Total Environment 762:143129. doi: 10.1016/j.scitotenv.2020.143129.
  • Zhang, H., H. Ye, S. Wu, and Z. Wang. 2016. Progress on application of aptamers on food safety detection. Food & Machinery 32 (10):194–9.
  • Zhang, H., Y. Liu, K. Zhang, J. Ji, J. Liu, and B. Liu. 2018. Single molecule fluorescent colocalization of split aptamers for ultrasensitive detection of biomolecules. Analytical Chemistry 90 (15):9315–21. doi: 10.1021/acs.analchem.8b01916.
  • Zhu, C., Y. Zhao, M. Yan, Y. Huang, J. Yan, W. Bai, and A. Chen. 2016. A sandwich dipstick assay for ATP detection based on split aptamer fragments. Analytical and Bioanalytical Chemistry 408 (15):4151–8. doi: 10.1007/s00216-016-9506-z.
  • Zhu, Q., L. Liu, R. Wang, and X. Zhou. 2021. A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. Journal of Hazardous Materials 403:123941. doi: 10.1016/j.jhazmat.2020.123941.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.