691
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis

, , , & ORCID Icon

References

  • Adjé, F., Y. F. Lozano, P. Lozano, A. Adima, F. Chemat, and E. M. Gaydou. 2010. Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flowers using ultrasound-assisted water extraction. Industrial Crops and Products 32 (3):439–44. doi: 10.1016/j.indcrop.2010.06.011.
  • Agcam, E., A. Akyildiz, S. Kamat, and V. M. Balasubramaniam. 2021. Bioactive compounds extraction from the black carrot pomace with assistance of high pressure processing: An optimization study. Waste and Biomass Valorization 12 (11):5959–77. doi: 10.1007/s12649-021-01431-z.
  • Ahmadi, M. K., and B. A. Pfeifer. 2016. Recent progress in therapeutic natural product biosynthesis using Escherichia coli. Current Opinion in Biotechnology 42:7–12. doi: 10.1016/j.copbio.2016.02.010.
  • Akdemir, H., A. Silva, J. Zha, D. V. Zagorevski, and M. A. G. Koffas. 2019. Production of pyranoanthocyanins using Escherichia coli co-cultures. Metabolic Engineering 55:290–8. doi: 10.1016/j.ymben.2019.05.008.
  • Alexandre, A. M. R. C., A. Matias, C. M. M. Duarte, and M. R. Bronze. 2018. High-pressure CO2 assisted extraction as a tool to increase phenolic content of strawberry-tree (Arbutus unedo) extracts. Journal of CO2 Utilization 27:73–80. doi: 10.1016/j.jcou.2018.07.002.
  • Alvarez-Suarez, J. M., C. Cuadrado, I. B. Redondo, F. Giampieri, A. M. González-Paramás, and C. Santos-Buelga. 2021. Novel approaches in anthocyanin research-Plant fortification and bioavailability issues. Trends in Food Science & Technology 117:92–105. doi: 10.1016/j.tifs.2021.01.049.
  • Andersen, O. M., and M. Jordheim. 2014. Basic anthocyanin chemistry and dietary sources. In Anthocyanins in health and disease, 13–89. Florida: CRC Press.
  • Anderson, L. A., M. A. Islam, and K. L. J. Prather. 2018. Synthetic biology strategies for improving microbial synthesis of "green" biopolymers. The Journal of Biological Chemistry 293 (14):5053–61. doi: 10.1074/jbc.TM117.000368.
  • Anthocyanin Market-Global Industry Analysis, Market Size, Opportunities and Forecast, 2019–2026. https://www.acumenresearchandconsulting.com/anthocyanin-market
  • Appelhagen, I., A. K. Wulff-Vester, M. Wendell, A.-K. Hvoslef-Eide, J. Russell, A. Oertel, S. Martens, H.-P. Mock, C. Martin, and A. Matros. 2018. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metabolic Engineering 48:218–32. doi: 10.1016/j.ymben.2018.06.004.
  • Aryanti, N., A. Nafiunisa, and D. H. Wardhani. 2019. Conventional and ultrasound-assisted extraction of anthocyanin from red and purple roselle (Hibiscus sabdariffa L.) calyces and characterisation of its anthocyanin powder. International Food Research Journal 26 (2):529–35.
  • Barba, F. J., C. M. Galanakis, M. J. Esteve, A. Frigola, and E. Vorobiev. 2015. Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. Journal of Food Engineering 167:38–44. doi: 10.1016/j.jfoodeng.2015.02.001.
  • Barba, F. J., E. Roselló-Soto, K. Marszaek, D. B. Kovaevi, A. R. Jambrak, J. M. Lorenzo, F. Chemat, and P. Putnik. 2019. Green food processing: Concepts, strategies, and tools. Green Food Processing Techniques 1–21. Pittsburgh: Academic press. doi: 10.1016/B978-0-12-815353-6.00001-X.
  • Barba, F. J., M. J. Esteve, and A. Frigola. 2013. Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Research International 50 (2):545–9. doi: 10.1016/j.foodres.2011.02.038.
  • Biswas, T., and A. Mathur. 2017. Plant anthocyanins: Biosynthesis, bioactivity and in vitro production from tissue cultures. Advances in Biotechnology & Microbiology 5 (5):555672. doi: 10.19080/AIBM.2017.05.555672.
  • Cao, X. M., Y. Zhang, F. S. Zhang, Y. T. Wang, J. Y. Yi, and X. J. Liao. 2011. Effects of high hydrostatic pressure on enzymes, phenolic compounds, anthocyanins, polymeric color and color of strawberry pulps. Journal of the Science of Food and Agriculture 91 (5):877–88. doi: 10.1002/jsfa.4260.
  • Chemat, F., N. Rombaut, A.-G. Sicaire, A. Meullemiestre, A.-S. Fabiano-Tixier, and M. Abert-Vian. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry 34:540–60. doi: 10.1016/j.ultsonch.2016.06.035.
  • Chemat, F., M. A. Vian, and G. Cravotto. 2012. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences 13 (7):8615–27. doi: 10.3390/ijms13078615.
  • Chen, L., X. Xin, H. Zhang, and Q. Yuan. 2013. Phytochemical properties and antioxidant capacities of commercial raspberry varieties. Journal of Functional Foods 5 (1):508–15. doi: 10.1016/j.jff.2012.10.009.
  • Chen, W., K. Eric, Y. Jingyang, X. Shuqin, F. Biao, and Z. Xiaoming. 2016. Improving red radish anthocyanin yield and off flavor removal by acidified aqueous organic based medium. RSC Advances 6 (100):97532–45. doi: 10.1039/C6RA16936H.
  • Chen, X. Q., N. Nagao, T. Itani, and K. Irifune. 2012. Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chemistry 135 (4):2783–8. doi: 10.1016/j.foodchem.2012.06.098.
  • Condurache (Lazăr), N.-N., C. Croitoru, E. Enachi, G.-E. Bahrim, N. Stănciuc, and G. Râpeanu. 2021. Eggplant peels as a valuable source of anthocyanins: Extraction, thermal stability and biological activities. Plants 10 (3):577. doi: 10.3390/plants10030577.
  • Corrales, M., S. Toepfl, P. Butz, D. Knorr, and B. Tauscher. 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies 9 (1):85–91. doi: 10.1016/j.ifset.2007.06.002.
  • Cress, B. F., Q. D. Leitz, D. C. Kim, T. D. Amore, J. Y. Suzuki, R. J. Linhardt, and M. A. G. Koffas. 2017. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microbial Cell Factories 16 (1):10. doi: 10.1186/s12934-016-0623-3.
  • da Silveira, T. F. F., M. Cristianini, G. G. Kuhnle, A. B. Ribeiro, J. Teixeira, and H. T. Godoy. 2019. Anthocyanins, non-anthocyanin phenolics, tocopherols and antioxidant capacity of acai juice (Euterpe oleracea) as affected by high pressure processing and thermal pasteurization. Innovative Food Science & Emerging Technologies 55:88–96. doi: 10.1016/j.ifset.2019.05.001.
  • Du, Y., B. Yang, Z. Yi, L. Hu, and M. Li. 2020. Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids. Journal of Agricultural and Food Chemistry 68 (7):2146–54. doi: 10.1021/acs.jafc.9b07916.
  • Dzhanfezova, T., G. Barba-Espín, R. Müller, B. Joernsgaard, J. N. Hegelund, B. Madsen, D. H. Larsen, M. Martínez Vega, and T. B. Toldam-Andersen. 2020. Anthocyanin profile, antioxidant activity and total phenolic content of a strawberry (Fragaria x ananassa Duch) genetic resource collection. Food Bioscience 36:100620. doi: 10.1016/j.fbio.2020.100620.
  • Eichenberger, M., A. Hansson, D. Fischer, L. Dürr, and M. Naesby. 2018. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Research 18 (4):1–13. doi: 10.1093/femsyr/foy046.
  • Frond, A. D., C. I. Iuhas, I. Stirbu, L. Leopold, S. Socaci, S. Andreea, H. Ayvaz, S. Andreea, S. Mihai, Z. Diaconeasa, et al. 2019. Phytochemical characterization of five edible purple-reddish vegetables: Anthocyanins, flavonoids, and phenolic acid derivatives. Molecules 24 (8):1536. doi: 10.3390/molecules24081536.
  • Gachovska, T., D. Cassada, J. Subbiah, M. Hanna, H. Thippareddi, and D. Snow. 2010. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. Journal of Food Science 75 (6):E323–329. doi: 10.1111/j.1750-3841.2010.01699.x.
  • Giusti, M. M., L. E. Rodriguez-Saona, J. R. Baggett, G. L. Reed, R. W. Durst, and R. E. Wrolstad. 2008. Anthocyanin pigment composition of red radish cultivars as potential food colorants. Journal of Food Science 63 (2):219–24. doi: 10.1111/j.1365-2621.1998.tb15713.x.
  • Global Anthocyanin Market report, 2020–2025. https://www.mordorintelligence.com/industry-reports/anthocyanin-market
  • Gowd, V., Z. Q. Jia, and W. Chen. 2017. Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science & Technology 68:1–13. doi: 10.1016/j.tifs.2017.07.015.
  • Gupta, M., J. Zha, X. Zhang, G. Y. Jung, R. J. Linhardt, and M. A. G. Koffas. 2018. Production of deuterated cyanidin 3-O-glucoside from recombinant Escherichia coli. ACS Omega 3 (9):11643–8. doi: 10.1021/acsomega.8b01134.
  • He, J., and M. M. Giusti. 2010. Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1:163–87. doi: 10.1146/annurev.food.080708.100754.
  • Hinojosa-Gomez, J., C. S. Martin-Hernandez, J. B. Heredia, J. Leon-Felix, T. Osuna-Enciso, and M. D. Muy-Rangel. 2020. Anthocyanin induction by drought stress in the calyx of roselle cultivars. Molecules 25 (7):1555. doi: 10.3390/molecules25071555.
  • Hu, W. F., L. Y. Zhou, Z. Z. Xu, Y. Zhang, and X. J. Liao. 2013. Enzyme inactivation in food processing using high pressure carbon dioxide technology. Critical Reviews in Food Science and Nutrition 53 (2):145–61. doi: 10.1080/10408398.2010.526258.
  • Ismuil, Z., M. Yunus, M. Aziz, and S. Muhammad. 2020. High pressure CO2-assisted extraction for rapid phenolic isolation: A brief on recent progress and its future direction. In Advances in Engineering Research 255–264. Dordrecht: Atlantis Press.
  • Jezek, M., C. Zorb, N. Merkt, and C. M. Geilfus. 2018. Anthocyanin management in fruits by fertilization. Journal of Agricultural and Food Chemistry 66 (4):753–64. doi: 10.1021/acs.jafc.7b03813.
  • Jiang, H. L., J. L. Yang, and Y. P. Shi. 2017. Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrasonics Sonochemistry 34:325–31. doi: 10.1016/j.ultsonch.2016.06.003.
  • Jones, J. A., V. R. Vernacchio, S. M. Collins, A. N. Shirke, Y. Xiu, J. A. Englaender, B. F. Cress, C. C. McCutcheon, R. J. Linhardt, R. A. Gross, et al. 2017. Complete biosynthesis of anthocyanins using E. coli polycultures. mBio 8 (3):e00621–17. doi: 10.1128/mBio.00621-17.
  • Jones, J. A., V. R. Vernacchio, A. L. Sinkoe, S. M. Collins, M. H. A. Ibrahim, D. M. Lachance, J. Hahn, and M. A. G. Koffas. 2016. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metabolic Engineering 35:55–63. doi: 10.1016/j.ymben.2016.01.006.
  • Julia, M. B., R.-E. Fernando, S.-P. Purificacion, M. M. Ana, J. N. Maria, and G. A. Agustin. 2012. Analysis and antioxidant capacity of anthocyanin pigments. Part I: General considerations concerning polyphenols and flavonoids. Critical Reviews in Analytical Chemistry 42 (2):102–25. doi: 10.1080/10408347.2011.632312.
  • Jun, X. 2013. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Critical Reviews in Food Science and Nutrition 53 (8):837–52. doi: 10.1080/10408398.2011.561380.
  • Kallscheuer, N., T. Classen, T. Drepper, and J. Marienhagen. 2019. Production of plant metabolites with applications in the food industry using engineered microorganisms. Current Opinion in Biotechnology 56:7–17. doi: 10.1016/j.copbio.2018.07.008.
  • Kammerer, D., R. Carle, and A. Schieber. 2004. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp sativus var. atrorubens Alef.) and evaluation of their color properties. European Food Research and Technology 219 (5):479–86. doi: 10.1007/s00217-004-0976-4.
  • Katayama-Ikegami, A., Z. Byun, S. Okada, M. Miyashita, T. Katayama, T. Sakamoto, A. Ichihi, K. Shimizu, and S. Kanzaki. 2020. Characterization of the recombinant UDP: Flavonoid 3-O-galactosyltransferase from Mangifera indica ‘Irwin’ (MiUFGalT3) involved in skin coloring. The Horticulture Journal 89 (5):516–24. doi: 10.2503/hortj.UTD-201.
  • Katayama-Ikegami, A., T. Sakamoto, K. Shibuya, T. Katayama, and M. Gao-Takai. 2016. Effects of abscisic acid treatment on berry coloration and expression of flavonoid biosynthesis genes in grape. American Journal of Plant Sciences 07 (09):1325–36. doi: 10.4236/ajps.2016.79127.
  • Kapusta, I., T. Cebulak, and J. Oszmiański. 2017. The anthocyanins profile of red grape cultivars growing in south-east Poland (Subcarpathia region). Journal of Food Measurement and Characterization 11 (4):1863–73. doi: 10.1007/s11694-017-9568-4.
  • Khoo, G. M., M. R. Clausen, H. L. Pedersen, and E. Larsen. 2012. Bioactivity and chemical composition of blackcurrant (Ribes nigrum) cultivars with and without pesticide treatment. Food Chemistry 132 (3):1214–20. doi: 10.1016/j.foodchem.2011.11.087.
  • Kikas, A., R. Ratsep, H. Kaldmae, and A. V. Libek. 2020. Comparison of polyphenols and anthocyanin content of different blackcurrant (Ribes nigrum L.) cultivars at the polli horticultural research centre in Estonia. Agronomy Research 18 (S4):2715–26. doi: 10.15159/AR.20.208.
  • Koirala, N., R. P. Pandey, N. H. Thuan, G. P. Ghimire, H. J. Jung, T. J. Oh, and J. K. Sohng. 2019. Metabolic engineering of Escherichia coli for the production of isoflavonoid-4’-O-methoxides and their biological activities. Biotechnology and Applied Biochemistry 66 (4):484–93. doi: 10.1002/bab.1452.
  • Kotnik, T., P. Kramar, G. Pucihar, D. Miklavcic, and M. Tarek. 2012. Cell membrane electroporation-Part 1: The phenomenon. IEEE Electrical Insulation Magazine 28 (5):14–23. doi: 10.1109/MEI.2012.6268438.
  • Krga, I., and D. Milenkovic. 2019. Anthocyanins: From sources and bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. Journal of Agricultural and Food Chemistry 67 (7):1771–83. doi: 10.1021/acs.jafc.8b06737.
  • Kumari, P., D. V. S. Raju, K. V. Prasad, K. P. Singh, S. Saha, A. Arora, and F. Hossain. 2017. Quantification and correlation of anthocyanin pigments and their antioxidant activities in rose (Rosa hybrida) varieties. Indian Journal of Agricultural Sciences 87 (10):1340–6.
  • Lao, F., H. T. Cheng, Q. L. Wang, X. Wang, X. J. Liao, and Z. Z. Xu. 2020. Enhanced water extraction with high-pressure carbon dioxide on purple sweet potato pigments: Comparison to traditional aqueous and ethanolic extraction. Journal of CO2 Utilization 40:101188. doi: 10.1016/j.jcou.2020.101188.
  • Leonard, E., Y. Yan, J. Chemler, U. Matern, S. Martens, and M. A. G. Koffas. 2008a. Characterization of dihydroflavonol 4-reductases for recombinant plant pigment biosynthesis applications. Biocatalysis and Biotransformation 26 (3):243–51. doi: 10.1080/10242420701685635.
  • Leonard, E., Y. Yan, Z. L. Fowler, Z. Li, C.-G. Lim, K.-H. Lim, and M. A. G. Koffas. 2008b. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Molecular Pharmaceutics 5 (2):257–65. doi: 10.1021/mp7001472.
  • Levisson, M., C. Patinios, S. Hein, P. A. De Groot, J.-M. Daran, R. D. Hall, S. Martens,and J. Beekwilder. 2018. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microbial Cell Factories 17 (1):103. doi: 10.1186/s12934-018-0951-6.
  • Li, C., R. Zhang, J. Wang, L. M. Wilson, and Y. Yan. 2020. Protein engineering for improving and diversifying natural product biosynthesis. Trends in Biotechnology 38 (7):729–44. doi: 10.1016/j.tibtech.2019.12.008.
  • Li, C.-Y., H.-W. Kim, S.-R. Won, H.-K. Min, K.-J. Park, J.-Y. Park, M.-S. Ahn, and H.-L. Rhee. 2008. Corn Husk as a potential source of anthocyanins. Journal of Agricultural and Food Chemistry 56 (23):11413–6. doi: 10.1021/jf802201c.
  • Li, D. T., P. P. Wang, Y. H. Luo, M. Y. Zhao, and F. Chen. 2017. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition 57 (8):1729–41. doi: 10.1080/10408398.2015.1030064.
  • Li, N., H. Wu, Q. Ding, H. Li, Z. Li, J. Ding, and Y. Li. 2018. The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Functional & Integrative Genomics 18 (3):341–53. doi: 10.1007/s10142-018-0590-3.
  • Lim, C. G., L. Wong, N. Bhan, H. Dvora, P. Xu, S. Venkiteswaran, and M. A. G. Koffas. 2015. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Applied and Environmental Microbiology 81 (18):6276–84. doi: 10.1128/AEM.01448-15.
  • Lin, B. W., C. C. Gong, H. F. Song, and Y. Y. Cui. 2017. Effects of anthocyanins on the prevention and treatment of cancer. British Journal of Pharmacology 174 (11):1226–43. doi: 10.1111/bph.13627.
  • Lopes da Silva, F., M. T. Escribano-Bailon, J. J. Perez Alonso, J. C. Rivas-Gonzalo, and C. Santos-Buelga. 2007. Anthocyanin pigments in strawberry. LWT - Food Science and Technology 40 (2):374–82. doi: 10.1016/j.lwt.2005.09.018.
  • Lou, Q., L. Wang, H. Liu, and Y. Liu. 2017. Anthocyanin profiles in flowers of Grape Hyacinth. Molecules 22 (5):688. doi: 10.3390/molecules22050688.
  • Lucker, J., S. Martens, and S. T. Lund. 2010. Characterization of a Vitis vinifera cv. Cabernet Sauvignon 3’,5’-O-methyltransferase showing strong preference for anthocyanins and glycosylated flavonols. Phytochemistry 71 (13):1474–84. doi: 10.1016/j.phytochem.2010.05.027.
  • Ma, Y., C. J. Hou, D. Li, and D. Q. Huo. 2018. The effect and evidence of ethanol content on the stability of anthocyanins from purple-fleshed sweet potato. Journal of Food Processing and Preservation 42 (2):e13484. doi: 10.1111/jfpp.13484.
  • Marchev, A. S., Z. P. Yordanova, and M. I. Georgiev. 2020. Green (cell) factories for advanced production of plant secondary metabolites. Critical Reviews in Biotechnology 40 (4):443–58. doi: 10.1080/07388551.2020.1731414.
  • Marsafari, M., H. Samizadeh, B. Rabiei, A. Mehrabi, M. Koffas, and P. Xu. 2020. Biotechnological production of flavonoids: An update on plant metabolic engineering, microbial host selection, and genetically encoded biosensors. Biotechnology Journal 15 (8). doi: 10.1002/biot.201900432.
  • Martin, J., and A. G. Asuero. 2021. High hydrostatic pressure for recovery of anthocyanins: Effects, performance, and applications. Separation & Purification Reviews 50 (2):159–76. doi: 10.1080/15422119.2019.1632897.
  • Medina-Meza, I. G., and G. V. Barbosa-Canovas. 2015. Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. Journal of Food Engineering 166:268–75. doi: 10.1016/j.jfoodeng.2015.06.012.
  • Mikulic-Petkovsek, M., V. Schmitzer, A. Slatnar, B. Todorovic, R. Veberic, F. Stampar, and A. Ivancic. 2014. Investigation of anthocyanin profile of four elderberry species and interspecific hybrids. Journal of Agricultural and Food Chemistry 62 (24):5573–80. doi: 10.1021/jf5011947.
  • Miyake, S., N. Takahashi, M. Sasaki, S. Kobayashi, K. Tsubota, and Y. Ozawa. 2012. Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: Cellular and molecular mechanism. Laboratory Investigation; a Journal of Technical Methods and Pathology 92 (1):102–9. doi: 10.1038/labinvest.2011.132.
  • Naliyadhara, N., A. Kumar, S. Girisa, U. D. Daimary, M. Hegde, and A. B. Kunnumakkara. 2022. Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends in Food Science & Technology 122:238–55. doi: 10.1016/j.tifs.2022.02.019.
  • Oancea, S., O. Draghici, and O. Ketney. 2016. Changes in total anthocyanin content and antioxidant activity in sweet cherries during frozen storage, and air-oven and infrared drying. Fruits 71 (5):281–8. doi: 10.1051/fruits/2016025.
  • Pandey, R. P., P. Parajuli, M. A. G. Koffas, and J. K. Sohng. 2016. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnology Advances 34 (5):634–62. doi: 10.1016/j.biotechadv.2016.02.012.
  • Park, S., M. V. Arasu, M.-K. Lee, J.-H. Chun, J. M. Seo, N. A. Al-Dhabi, and S.-J. Kim. 2014. Analysis and metabolite profiling of glucosinolates, anthocyanins and free amino acids in inbred lines of green and red cabbage (Brassica oleracea L.). LWT - Food Science and Technology 58 (1):203–13. doi: 10.1016/j.lwt.2014.03.002.
  • Pataro, G., R. Bobinaitė, Č. Bobinas, S. Šatkauskas, R. Raudonis, M. Visockis, G. Ferrari, and P. Viškelis. 2017. Improving the extraction of juice and anthocyanins from blueberry fruits and their by-products by application of pulsed electric fields. Food and Bioprocess Technology 10 (9):1595–605. doi: 10.1007/978-981-287-817-5_80.
  • Patras, A., N. P. Brunton, C. O’Donnell, and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology 21 (1):3–11. doi: 10.1016/j.tifs.2009.07.004.
  • Poojary, M. M., P. Putnik, D. B. Kovačević, F. J. Barba, J. M. Lorenzo, D. A. Dias, and A. Shpigelman. 2017. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. Journal of Food Composition and Analysis 61:28–39. doi: 10.1016/j.jfca.2017.04.007.
  • Puertolas, E., O. Cregenzan, E. Luengo, I. Alvarez, and J. Raso. 2013. Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry 136 (3–4):1330–6. doi: 10.1016/j.foodchem.2012.09.080.
  • Rocha, J., F. R. Procópio, A. C. Mendonça, L. M. Vieira, Í. T. Perrone, F. A. R. de Barros, and P. C. Stringheta. 2017. Optimization of ultrasound-assisted extraction of phenolic compounds from jussara (Euterpe edulis M.) and blueberry (Vaccinium myrtillus) fruits. Food Science and Technology 38 (1):45–53. doi: 10.1590/1678-7X.36316.
  • Roldan, M. V. G., N. Outchkourov, A. van Houwelingen, M. Lammers, I. R. de la Fuente, N. Ziklo, A. Aharoni, R. D. Hall, and J. Beekwilder. 2014. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato. The Plant Journal: For Cell and Molecular Biology 80 (4):695–708. doi: 10.1111/tpj.12664.
  • Routray, W., and V. Orsat. 2011. Blueberries and their anthocyanins: Factors affecting biosynthesis and properties. Comprehensive Reviews in Food Science and Food Safety 10 (6):303–20. doi: 10.1111/j.1541-4337.2011.00164.x.
  • Ryu, D., and E. Koh. 2019. Optimization of ultrasound-assisted extraction of anthocyanins and phenolic compounds from black soybeans (Glycine max L.). Food Analytical Methods 12 (6):1382–9. doi: 10.1007/s12161-019-01462-2.
  • Salacheep, S., P. Kasemsir, U. Pongsa, M. Okhawilai, P. Chindaprasirt, and S. Hiziroglu. 2020. Optimization of ultrasound-assisted extraction of anthocyanins and bioactive compounds from butterfly pea petals using Taguchi method and Grey relational analysis. Journal of Food Science and Technology 57 (10):3720–30. doi: 10.1007/s13197-020-04404-7.
  • Santiago, M. C. P. d. A., A. C. M. S. Gouvea, R. L. d. O. Godoy, R. G. Borguini, S. Pacheco, R. I. Nogueira, L. d. S. d. M. d. Nascimento, and S. P. Freitas. 2014. Analytical standards production for the analysis of pomegranate anthocyanins by HPLC. Brazilian Journal of Food Technology 17 (1):51–7. doi: 10.1590/bjft.2014.008.
  • Santos, D. T., and M. Meireles. 2011. Optimization of bioactive compounds extraction from jabuticaba (Myrciaria cauliflora) skins assisted by high pressure CO2. Innovative Food Science & Emerging Technologies 12 (3):398–406. doi: 10.1016/j.ifset.2011.02.004.
  • Sariburun, E., S. Şahin, C. Demir, C. Türkben, and V. Uylaşer. 2010. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. Journal of Food Science 75 (4):C328–C335. doi: 10.1111/j.1750-3841.2010.01571.x.
  • Sharifi, A., and S. Khoshnoudi-Nia. 2022. Ranking novel extraction systems of seedless barberry (Berberis Vulgaris) bioactive compounds with fuzzy logic-based term weighting scheme. Sustainable Chemistry and Pharmacy 25:100561. doi: 10.1016/j.scp.2021.100561.
  • Shi, L., S. F. Cao, W. Chen, and Z. F. Yang. 2014. Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Scientia Horticulturae 179:98–102. doi: 10.1016/j.scienta.2014.09.022.
  • Shibata, K., Y. Shibata, and I. Kasiwagi. 1919. Studies on anthocyanins: Color variation in anthocyanins. Journal of the American Chemical Society 41 (2):208–20. doi: 10.1021/ja01459a008.
  • Shrestha, B., R. P. Pandey, S. Darsandhari, P. Parajuli, and J. K. Sohng. 2019. Combinatorial approach for improved cyanidin 3-O-glucoside production in Escherichia coli. Microbial Cell Factories 18 (1):7. doi: 10.1186/s12934-019-1056-6.
  • Silva, S., E. M. Costa, C. Calhau, R. M. Morais, and M. E. Pintado. 2017. Anthocyanin extraction from plant tissues: A review. Critical Reviews in Food Science and Nutrition 57 (14):3072–83. doi: 10.1080/10408398.2015.1087963.
  • Solopova, A., A. Y. van Tilburg, A. Foito, J. W. Allwood, D. Stewart, S. Kulakauskas, and O. P. Kuipers. 2019. Engineering Lactococcus lactis for the production of unusual anthocyanins using tea as substrate. Metabolic Engineering 54:160–9. doi: 10.1016/j.ymben.2019.04.002.
  • Song, M. C., E. J. Kim, E. Kim, K. Rathwell, S.-J. Nam, and Y. J. Yoon. 2014. Microbial biosynthesis of medicinally important plant secondary metabolites. Natural Product Reports 31 (11):1497–509. doi: 10.1039/c4np00057a.
  • Spilimbergo, S., D. Komes, A. Vojvodic, B. Levaj, and G. Ferrentino. 2013. High pressure carbon dioxide pasteurization of fresh-cut carrot. The Journal of Supercritical Fluids 79:92–100. doi: 10.1016/j.supflu.2012.12.002.
  • Stevenson, D., and J. Scalzo. 2012. Anthocyanin composition and content of blueberries from around the world. Journal of Berry Research 2 (4):179–89. doi: 10.3233/JBR-2012-038.
  • Su, X., J. Xu, D. Rhodes, Y. Shen, W. Song, B. Katz, J. Tomich, and W. Wang. 2016. Identification and quantification of anthocyanins in transgenic purple tomato. Food Chemistry 202:184–8. doi: 10.1016/j.foodchem.2016.01.128.
  • Tiwari, B. K. 2015. Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry 71:100–9. doi: 10.1016/j.trac.2015.04.013.
  • Toshima, S., T. Hirano, and H. Kunitake. 2021. Comparison of anthocyanins, polyphenols, and antioxidant capacities among raspberry, blackberry, and Japanese wild Rubus species. Scientia Horticulturae 285:110204 doi: 10.1016/j.scienta.2021.110204.
  • Veberic, R., J. Jakopic, F. Stampar, and V. Schmitzer. 2009. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry 114 (2):511–5. doi: 10.1016/j.foodchem.2008.09.080.
  • Visockis, M., R. Bobinaitė, P. Ruzgys, J. Barakauskas, V. Markevičius, P. Viškelis, and S. Šatkauskas. 2021. Assessment of plant tissue disintegration degree and its related implications in the pulsed electric field (PEF)-assisted aqueous extraction of betalains from the fresh red beetroot. Innovative Food Science & Emerging Technologies 73:102761. doi: 10.1016/j.ifset.2021.102761.
  • Walker, R. S. K., and I. S. Pretorius. 2018. Applications of yeast synthetic biology geared towards the production of biopharmaceuticals. Genes 9 (7):340. doi: 10.3390/genes9070340.
  • Wang, B. F., S. N. Yang, L. Xu, X. Wang, L. Mi, K. W. Wang, X. J. Liao, and Z. Z. Xu. 2022. Evaluation study on extraction of anthocyanins from red cabbage using high pressure CO2 + H2O: A fuzzy logic model and metabolomic analysis. Sustainability 14 (3):1369. doi: 10.3390/su14031369.
  • Wang, L. J., and C. L. Weller. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology 17 (6):300–12. doi: 10.1016/j.tifs.2005.12.004.
  • Wang, R., S. Zhao, Z. Wang, and M. A. G. Koffas. 2020. Recent advances in modular co-culture engineering for synthesis of natural products. Current Opinion in Biotechnology 62:65–71. doi: 10.1016/j.copbio.2019.09.004.
  • Wiczkowski, W., J. Topolska, and J. Honke. 2014. Anthocyanins profile and antioxidant capacity of red cabbages are influenced by genotype and vegetation period. Journal of Functional Foods 7:201–11. doi: 10.1016/j.jff.2014.02.011.
  • Xie, L. H., H. M. Su, C. D. Sun, X. D. Zheng, and W. Chen. 2018. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends in Food Science & Technology 72:13–24. doi: 10.1016/j.tifs.2017.12.002.
  • Xu, Z. Z., J. H. Wu, Y. Zhang, X. S. Hu, X. J. Liao, and Z. F. Wang. 2010. Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology 101 (18):7151–7. doi: 10.1016/j.biortech.2010.04.004.
  • Yan, Y., Z. Li, and M. A. G. Koffas. 2008. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnology and Bioengineering 100 (1):126–40. doi: 10.1002/bit.21721.
  • Yan, Y. J., J. Chemler, L. X. Huang, S. Martens, and M. A. G. Koffas. 2005. Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Applied and Environmental Microbiology 71 (7):3617–23. doi: 10.1128/AEM.71.7.3617-3623.2005.
  • Yong, H., and J. Liu. 2020. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life 26:100550. doi: 10.1016/j.fpsl.2020.100550.
  • Yuan, B., M. G. C. Danao, J. E. Stratton, S. A. Weier, C. L. Weller, and M. Lu. 2018. High pressure processing (HPP) of aronia berry puree: Effects on physicochemical properties, microbial counts, bioactive compounds, and antioxidant capacities. Innovative Food Science & Emerging Technologies 47:249–55. doi: 10.1016/j.ifset.2018.03.009.
  • Zha, J., X. Wu, and M. A. G. Koffas. 2020. Making brilliant colors by microorganisms. Current Opinion in Biotechnology 61:135–41. doi: 10.1016/j.copbio.2019.12.020.
  • Zha, J., Y. Zang, M. Mattozzi, J. Plassmeier, G. Mamta, X. Wu, S. Clarkson, and M. A. G. Koffas. 2018. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microbial Cell Factories 17 (1):143. doi: 10.1186/s12934-018-0990-z.
  • Zhang, H., and X. Wang. 2016. Modular co-culture engineering, a new approach for metabolic engineering. Metabolic Engineering 37:114–21. doi: 10.1016/j.ymben.2016.05.007.
  • Zhang, H. N., and Y. K. Ma. 2017. Optimisation of high hydrostatic pressure assisted extraction of anthocyanins from rabbiteye blueberry pomace. Czech Journal of Food Sciences 35 (2):180–7. doi: 10.17221/189/2016-CJFS.
  • Zhang, N., and P. Jing. 2022. Anthocyanins in Brassicaceae: Composition, stability, bioavailability, and potential health benefits. Critical Reviews in Food Science and Nutrition 62 (8):2205–15. doi: 10.1080/10408398.2020.1852170.
  • Zhang, Y., E. Butelli, and C. Martin. 2014. Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology 19:81–90. doi: 10.1016/j.pbi.2014.05.011.
  • Zheng, J., C. Ding, L. Wang, G. Li, J. Shi, H. Li, H. Wang, and Y. Suo. 2011. Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. Food Chemistry 126 (3):859–65. doi: 10.1016/j.foodchem.2010.11.052.
  • Zhu, L., Y. Zhang, and J. Lu. 2012. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. International Journal of Molecular Sciences 13 (3):3492–510. doi: 10.3390/ijms13033492.
  • Zhu, Z. Z., Q. Y. Guan, Y. Guo, J. R. He, G. Liu, S. Y. Li, F. J. Barba, and M. Y. Jaffrin. 2016. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology. International Agrophysics 30 (1):113–22. doi: 10.1515/intag-2015-0066.
  • Zou, B., D. Zeng, J. Wu, Y. Yu, G. Xiao, and Y. Xu. 2018. Antioxidant capacity and anthocyanins of purple-fleshed sweet potato cultivars. Food Science 39 (2):38–44. (In Chinese).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.