1,664
Views
31
CrossRef citations to date
0
Altmetric
Review Articles

Kaempferol: A flavonoid with wider biological activities and its applications

, , , , ORCID Icon & ORCID Icon

References

  • Adhikari-Devkota, A., A. I. Dirar, A. Kurizaki, K. Tsushiro, and H. P. Devkota. 2019. Extraction and isolation of kaempferol glycosides from the leaves and twigs of Lindera neesiana. Separations 6 (1):10. doi: 10.3390/separations6010010.
  • Alam, W., H. Khan, M. A. Shah, O. Cauli, and L. Saso. 2020. Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules 25 (18):4073. doi: 10.3390/molecules25184073.
  • Al-Brakati, A., A. J. A. Albarakati, M. S. Lokman, A. Theyab, M. Algahtani, S. Menshawi, O. D. AlAmri, N. E. Al Omairi, E. A. Essawy, R. B. Kassab, et al. 2021. Possible role of Kaempferol in reversing oxidative damage, inflammation, and apoptosis-mediated cortical injury following cadmium exposure. Neurotoxicity Research 39 (2):198–209.
  • Al-Nour, M. Y., M. M. Ibrahim, and T. Elsaman. 2019. Ellagic acid, Kaempferol, and Quercetin from Acacia nilotica: Promising combined drug with multiple mechanisms of action. Current Pharmacology Reports 5 (4):255–80.
  • Altemimi, A. B., M. J. Mohammed, L. Yi-Chen, D. G. Watson, N. Lakhssassi, F. Cacciola, and S. A. Ibrahim. 2020. Optimization of ultrasonicated kaempferol extraction from Ocimum basilicum using a Box-Behnken design and its densitometric validation. Foods 9 (10):1379. doi: 10.3390/foods9101379.
  • Alvarez, A. I., R. Real, M. Pérez, G. Mendoza, J. G. Prieto, and G. Merino. 2010. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. Journal of Pharmaceutical Sciences 99 (2):598–617.
  • Ashrafizadeh, M., S. Tavakol, Z. Ahmadi, S. Roomiani, R. Mohammadinejad, and S. Samarghandian. 2020. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytotherapy Research: PTR 34 (5):911–23.
  • Ashrafizadeh, M., S. Tavakol, Z. Ahmadi, S. Roomiani, R. Mohammadinejad, and S. Samarghandian. 2020. Therapeutic effects of Kaempferol affecting autophagy and endoplasmic reticulum stress. Phytotherapy Research 34 (5):911–23. doi: 10.1002/ptr.6577.
  • Awouafack, M. D., P. Tane, and H. Morita. 2017. Isolation and structure characterization of flavonoids. Flavonoids-From Biosynthesis to Human Health. London: IntechOpen.
  • Batubara, I., I. H. Suparto, and N. S. Wulandari. 2017. The best extraction technique for kaempferol and quercetin isolation from guava leaves (Psidium guajava). IOP Conference Series: Earth and Environmental Science 58:012060. doi: 10.1088/1755-1315/58/1/012060.
  • Berger, A., S. Venturelli, M. Kallnischkies, A. Böcker, C. Busch, T. Weiland, S. Noor, C. Leischner, T. S. Weiss, U. M. Lauer, et al. 2013. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. The Journal of Nutritional Biochemistry 24 (6):977–85.
  • Bezerra, C. F., J. E. Rocha, M. K. d. Nascimento Silva, T. S. de Freitas, A. K. de Sousa, A. T. L. Dos Santos, R. P. da Cruz, M. H. Ferreira, J. C. P. da Silva, A. J. T. Machado, et al. 2018. Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.). Food and Chemical Toxicology 119:122–32.
  • Biba, O., M. Strnad, and J. Gruz. 2013. Analytical approaches for kaempferol determination. Chemical Physics Research Journal 6 (3/4):305.
  • BinMowyna, M. N., and N. A. AlFaris. 2021. Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. Pharmaceutical Biology 59 (1):146–56.
  • Bonetti, A., I. Marotti, and G. Dinelli. 2007. Urinary excretion of kaempferol from common beans (Phaseolus vulgaris L.) in humans. International Journal of Food Sciences and Nutrition 58 (4):261–9.
  • Budisan, L., D. Gulei, A. Jurj, C. Braicu, O. Zanoaga, R. Cojocneanu, L. Pop, L. Raduly, A. Barbat, A. Moldovan, et al. 2019. Inhibitory effect of CAPE and kaempferol in colon cancer cell lines—possible implications in new therapeutic strategies. International Journal of Molecular Sciences 20 (5):1199. doi: 10.3390/ijms20051199.
  • Cai, W., X. Gu, and J. Tang. 2010. Extraction, purification, and characterisation of the flavonoids from Opuntia milpa alta skin. Czech Journal of Food Sciences 28 (2):108–16. doi: 10.17221/122/2009-CJFS.
  • Calderon-Montano, J. M., E. Burgos-Moron, C. Perez-Guerrero, and M. Lopez-Lazaro. 2011. A review on the dietary flavonoid kaempferol. Mini-Reviews in Medicinal Chemistry 11 (4):298–344. doi: 10.2174/138955711795305335.
  • Cao, J., Y. Zhang, W. Chen, and X. Zhao. 2010. The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake. British Journal of Nutrition 103 (2):249–55. doi: 10.1017/S000711450999170X.
  • Colombo, M., F. Figueiró, A. de Fraga Dias, H. F. Teixeira, A. M. O. Battastini, and L. S. Koester. 2018. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. International Journal of Pharmaceutics 543 (1-2):214–23. doi: 10.1016/j.ijpharm.2018.03.055.
  • Colombo, M., G. L. Melchiades, F. Figueiró, A. M. O. Battastini, H. F. Teixeira, and L. S. Koester. 2017. Validation of an HPLC-UV method for analysis of kaempferol-loaded nanoemulsion and its application to in vitro and in vivo tests. Journal of Pharmaceutical and Biomedical Analysis 145:831–7. doi: 10.1016/j.jpba.2017.07.046.
  • Chear, N. J.-Y., A. N. Fauzi, K.-Y. Khaw, S.-B. Choi, N. S. Yaacob, and C.-S. Lai. 2019. Free Radical scavenging and cytotoxic properties of acylated and non-acylated kaempferol glycosides from Stenochlaena palustris: a perspective on their structure – activity relationships. Pharmaceutical Chemistry Journal 53 (3):188–93. doi: 10.1007/s11094-019-01977-2.
  • Chen, J., Y.-H. Xuan, M.-X. Luo, X.-G. Ni, L.-Q. Ling, S.-J. Hu, J.-Q. Chen, J.-Y. Xu, L.-Y. Jiang, W.-Z. Si, et al. 2020. Kaempferol alleviates acute alcoholic liver injury in mice by regulating intestinal tight junction proteins and butyrate receptors and transporters. Toxicology 429:152338.
  • Chen, W., Z. Xiao, Y. Wang, J. Wang, R. Zhai, K. Lin-Wang, R. Espley, F. Ma, and P. Li. 2021. Competition between anthocyanin and kaempferol glycosides biosynthesis affects pollen tube growth and seed set of Malus. Horticulture Research 8 (1):173. doi: 10.1038/s41438-021-00609-9.
  • Chen, X., J. Qian, L. Wang, J. Li, Y. Zhao, J. Han, Z. Khan, X. Chen, J. Wang, and G. Liang. 2018. Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine 60 (1):83–94.
  • Choi, J. B., J. H. Kim, H. Lee, J. N. Pak, B. S. Shim, and S. H. Kim. 2018. Reactive oxygen species and p53 mediated activation of p38 and caspases is critically involved in kaempferol induced apoptosis in colorectal cancer cells. Journal of Agricultural and Food Chemistry 66 (38):9960–7. doi: 10.1021/acs.jafc.8b02656.
  • Chuang, Y. L., H. W. Fang, A. Ajitsaria, K. H. Chen, C. Y. Su, G. S. Liu, and C. L. Tseng. 2019. Development of kaempferol-loaded gelatin nanoparticles for the treatment of corneal neovascularization in mice. Pharmaceutics 11 (12):635. doi: 10.3390/pharmaceutics11120635.
  • Crespy, V., C. Morand, C. Besson, N. Cotelle, H. Vezin, C. Demigne, and C. Remesy. 2003. The splanchnic metabolism of flavonoids highly differed according to the nature of the compound. Am. J. Physiol. 284:G980–G988.
  • Cruz, B. G., H. S. dos Santos, P. N. Bandeira, T. H. S. Rodrigues, M. G. C. Matos, M. F. Nascimento, G. G. de Carvalho, R. Braz-Filho, A. M. Teixeira, S. R. Tintino, et al. 2020. Evaluation of antibacterial and enhancement of antibiotic action by the flavonoid kaempferol 7-O-β-D-(6″-O-cumaroyl)-glucopyranoside isolated from Croton piauhiensis müll. Microbial Pathogenesis 143:104144. doi: 10.1016/j.micpath.2020.104144.
  • D’Archivio, M., C. Filesi, R. Di Benedetto, R. Gargiulo, C. Giovannini, and R. Masella. 2007. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43:348–61.
  • Dabeek, W. M., N. Kovinich, C. Walsh, and M. Ventura Marra. 2019. Characterization and quantification of major flavonol glycosides in ramps (Allium tricoccum). Molecules (Basel, Switzerland) 24 (18):3281. doi: 10.3390/molecules24183281.
  • Dai, J., and R. J. Mumper. 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland) 15 (10):7313–52. doi: 10.3390/molecules15107313.
  • Day, A. J., M. S. DuPont, S. Ridley, M. Rhodes, M. J. Rhodes, M. R. Morgan, and G. Williamson. 1998. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Letters 436 (1):71–5.
  • de Freitas, M. A., R. P. da Cruz, A. T. L. Dos Santos, J. W. Almeida-Bezerra, A. J. T. Machado, J. F. S. Dos Santos, … M. F. B. Morais-Braga. 2022. HPLC–DAD analysis and antimicrobial activities of Spondias Mombin L. (Anacardiaceae). 3 Biotech 12 (3):1–15.
  • de Souza, L. A., W. M. Tavares, A. P. M. Lopes, M. M. Soeiro, and W. B. de Almeida. 2017. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin. Chemical Physics Letters 676:46–52. doi: 10.1016/j.cplett.2017.03.038.
  • Deng, S. P., Y. L. Yang, X. X. Cheng, W. R. Li, and J. Y. Cai. 2019. Synthesis, spectroscopic study and radical scavenging activity of kaempferol derivatives: Enhanced water solubility and antioxidant activity. International Journal of Molecular Sciences 20 (4):975. doi: 10.3390/ijms20040975.
  • Dewal, S., R. Lakhne, and R. S. Gupta. 2018. Antifertility activity of Cassia siamea (stem bark) in male albino rats and phytochemical analysis by GC-MS technique. Journal of Pharmacognosy and Phytochemistry 7 (3):3050–3.
  • Diao, M., Y. Liang, J. Zhao, C. Zhao, J. Zhang, and T. Zhang. 2021. Enhanced cytotoxicity and antioxidant capacity of kaempferol complexed with α-lactalbumin. Food and Chemical Toxicology 153:112265.
  • Dias, M. C., D. C. Pinto, and A. Silva. 2021. Plant flavonoids: Chemical characteristics and biological activity. Molecules 26 (17):5377. doi: 10.3390/molecules26175377.
  • Dimitrić Marković, J. M., D. Milenković, D. Amić, A. Popović-Bijelić, M. Mojović, I. A. Pašti, and Z. S. Marković. 2014. Energy requirements of the reactions of kaempferol and selected radical species in different media: Towards the prediction of the possible radical scavenging mechanisms. Structural Chemistry 25 (6):1795–804. doi: 10.1007/s11224-014-0453-z.
  • Du, Q., J. Chen, G. Yan, F. Lyu, J. Huang, J. Ren, and L. Di. 2019. Comparison of different aliphatic acid grafted N-trimethyl chitosan surface-modified nanostructured lipid carriers for improved oral kaempferol delivery. International Journal of Pharmaceutics 568:118506.
  • Du, Y.-C., L. Lai, H. Zhang, F.-R. Zhong, H.-L. Cheng, B.-L. Qian, P. Tan, X.-M. Xia, and W.-G. Fu. 2020. Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity. Food & Function 11 (9):7925–34.
  • Duan, L., W. Ding, X. Liu, X. Cheng, J. Cai, E. Hua, and H. Jiang. 2017. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microbial Cell Factories 16 (1):165.
  • DuPont, M. S., A. J. Day, R. N. Bennett, F. A. Mellon, and P. A. Kroon. 2004. Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans. European Journal of Clinical Nutrition 58 (6):947–54.
  • El-Haggar, M., L. El-Hosseiny, N. M. Ghazy, F. K. El-Fiky, and A. El-Hawiet. 2021. Phytochemical investigation, antimicrobial and cytotoxic activities of suspension cultures of Lepidium sativum L. South African Journal of Botany 138:500–5. doi: 10.1016/j.sajb.2020.12.024.
  • El-kott, A. F., A.-E.-K. M. Abd-Lateif, H. S. Khalifa, K. Morsy, E. H. Ibrahim, M. Bin-Jumah, M. M. Abdel-Daim, and L. Aleya. 2020. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Science of the Total Environment 728:138832. doi: 10.1016/j.scitotenv.2020.138832.
  • Fouzder, C., A. Mukhuty, and R. Kundu. 2021. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Archives of Biochemistry and Biophysics 697:108700.
  • Gao, W., W. Wang, Y. Peng, and Z. Deng. 2019. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metabolic Brain Disease 34 (2):485–94.
  • Gao, Y., J. Yin, G. O. Rankin, and Y. C. Chen. 2018. Kaempferol induces G2/M cell cycle arrest via checkpoint kinase 2 and promotes apoptosis via death receptors in human ovarian carcinoma A2780/CP70 cells. Molecules 23 (5):1095. doi: 10.3390/molecules23051095.
  • Govindaraju, S., A. Roshini, M. H. Lee, and K. Yun. 2019. Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. International Journal of Nanomedicine 14:5147–57.
  • Guo, P., and Y. Y. Feng. 2017. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Tropical Journal of Pharmaceutical Research 16 (8):1819–26. doi: 10.4314/tjpr.v16i8.10.
  • Gupta, N., M. Kamath S, S. K. Rao, J. D, S. Patil, N. Gupta, and K. D. Arunachalam. 2021. Kaempferol loaded albumin nanoparticles and dexamethasone encapsulation into electrospun polycaprolactone fibrous mat–Concurrent release for cartilage regeneration. Journal of Drug Delivery Science and Technology 64:102666. doi: 10.1016/j.jddst.2021.102666.
  • Gutierrez-Uribe, J. A., M. Salinas-Santander, D. Serna-Guerrero, S. R. O. Serna-Saldivar, A. M. Rivas-Estilla, and C. P. Rios-Ibarra. 2020. Inhibition of miR31 and miR92a as oncological biomarkers in RKO colon cancer cells treated with kaempferol-3-O-glycoside isolated from black bean. Journal of Medicinal Food 23 (1):50–5. doi: 10.1089/jmf.2019.0059.
  • Häkkinen, S. H., S. O. Kärenlampi, I. M. Heinonen, H. M. Mykkänen, and A. R. Törrönen. 1999. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. Journal of Agricultural and Food Chemistry 47 (6):2274–9. doi: 10.1021/jf9811065.
  • Han, X., S. Zhao, H. Song, T. Xu, Q. Fang, G. Hu, and L. Sun. 2021. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: implications in Parkinson’s disease. Redox Biology 41:101911. doi: 10.1016/j.redox.2021.101911.
  • Hedayati, S. S., A. T. Minhajuddin, A. Ijaz, O. W. Moe, E. F. Elsayed, R. F. Reilly, and C. L. Huang. 2012. Association of urinary sodium/potassium ratio with blood pressure: Sex and racial differences. Clinical Journal of the American Society of Nephrology 7 (2):315–22. doi: 10.2215/CJN.02060311.
  • Hein, E.-M., K. Rose, G. van’t Slot, A. W. Friedrich, and H.-U. Humpf. 2008. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by Fluorescence in situ hybridization (FISH). Journal of Agricultural and Food Chemistry 56 (6):2281–90. doi: 10.1021/jf073444o.
  • Hoang, M. H., Y. Jia, J. H. Lee, Y. Kim, and S. J. Lee. 2019. Kaempferol reduces hepatic triglyceride accumulation by inhibiting Akt. Journal of Food Biochemistry 43 (11):e13034.
  • Huang, M., E. Su, F. Zheng, and C. Tan. 2017. Encapsulation of flavonoids in liposomal delivery systems: the case of quercetin, kaempferol and luteolin. Food & Function 8 (9):3198–208. doi: 10.1039/c7fo00508c.
  • Hu, W.-H., H.-Y. Wang, Y.-T. Xia, D. K. Dai, Q.-P. Xiong, T. T.-X. Dong, R. Duan, G. K.-L. Chan, Q.-W. Qin, and K. W.-K. Tsim. 2020. Kaempferol, a major flavonoid in ginkgo folium, potentiates angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor. Frontiers in Pharmacology 11:526. doi: 10.3389/fphar.2020.00526.
  • Hussein, R. M., W. R. Mohamed, and H. A. Omar. 2018. A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway. Pesticide Biochemistry and Physiology 152:29–37.
  • Ilk, S., N. Sağlam, M. Özgen, and F. Korkusuz. 2017. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. International Journal of Biological Macromolecules 94 (Pt A):653–62.
  • Imran, M., B. Salehi, J. Sharifi-Rad, T. Aslam Gondal, F. Saeed, A. Imran, M. Shahbaz, P. V. Tsouh Fokou, M. Umair Arshad, H. Khan, et al. 2019. Kaempferol: a key emphasis to its anticancer potential. Molecules 24 (12):2277. doi: 10.3390/molecules24122277.
  • Imran, M., A. Rauf, Z. A. Shah, F. Saeed, A. Imran, M. U. Arshad, B. Ahmad, S. Bawazeer, M. Atif, D. G. Peters, et al. 2019. Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytotherapy Research: PTR 33 (2):263–75.
  • Jaeschke, H., and A. Ramachandran. 2018. Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity. Reactive Oxygen Species (Apex, N.C.) 5 (15):145–58.
  • Jiang, H., U. H. Engelhardt, C. Thräne, B. Maiwald, and J. Stark. 2015. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chemistry 183:30–5.
  • Jones, J. A., V. R. Vernacchio, A. L. Sinkoe, S. M. Collins, M. H. A. Ibrahim, D. M. Lachance, J. Hahn, and M. A. G. Koffas. 2016. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metabolic Engineering 35:55–63.
  • Ju, P. C., Y. C. Ho, P. N. Chen, H. L. Lee, S. Y. Lai, S. F. Yang, and C. B. Yeh. 2021. Kaempferol inhibits the cell migration of human hepatocellular carcinoma cells by suppressing MMP-9 and Akt signaling. Environmental Toxicology 36 (10):1981–9. doi: 10.1002/tox.23316.
  • Kahraman, C., G. Topcu, E. Bedir, I. I. Tatli, M. Ekizoglu, and Z. S. Akdemir. 2019. Phytochemical screening and evaluation of the antimicrobial and antioxidant activities of Ferula caspica M. Saudi Pharmaceutical Journal: SPJ 27 (4):525–31.
  • Kannanoor, M., B. A. Lakshmi, and S. Kim. 2021. Synthesis of silver nanoparticles conjugated with kaempferol and hydrocortisone and an evaluation of their antibacterial effects. 3 Biotech 11 (7):1–8. doi: 10.1007/s13205-021-02880-y.
  • Kim, C.-J., S.-H. Shin, B.-J. Kim, C.-H. Kim, J.-H. Kim, H.-M. Kang, B.-S. Park, and I.-R. Kim. 2018. The effects of kaempferol-inhibited autophagy on osteoclast formation. International Journal of Molecular Sciences 19 (1):125. doi: 10.3390/ijms19010125.
  • Kim, S. H., K. A. Hwang, and K. C. Choi. 2016. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. The Journal of Nutritional Biochemistry 28:70–82.
  • Kim, T. W., S. Y. Lee, M. Kim, C. Cheon, and S. G. Ko. 2018. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death & Disease 9 (9):875. doi: 10.1038/s41419-018-0930-1.
  • Kingori, S. M., S. O. Ochanda, and R. K. Koech. 2021. Variation in levels of flavonols myricetin, quercetin and kaempferol—in Kenyan Tea (Camellia sinensis L.) with processed tea types and geographic location. Open Journal of Applied Sciences 11 (06):736–49. doi: 10.4236/ojapps.2021.116054.
  • Kishore, L., N. Kaur, and R. Singh. 2018. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology 26 (4):993–1003.
  • Kluska, M., M. Juszczak, J. Żuchowski, A. Stochmal, and K. Woźniak. 2021. Kaempferol and its glycoside derivatives as modulators of etoposide activity in HL-60 cells. International Journal of Molecular Sciences 22 (7):3520. doi: 10.3390/ijms22073520.
  • Koh, E., K. M. S. Wimalasiri, A. W. Chassy, and A. E. Mitchell. 2009. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. Journal of Food Composition and Analysis 22 (7–8):637–43. doi: 10.1016/j.jfca.2009.01.019.
  • Kuo, W. T., Y. C. Tsai, H. C. Wu, Y. J. Ho, Y. S. Chen, C. H. Yao, and C. H. Yao. 2015. Radiosensitization of non-small cell lung cancer by kaempferol. Oncology Reports 34 (5):2351–6.
  • Lee, B., M. Kwon, J. S. Choi, H. O. Jeong, H. Y. Chung, and H. R. Kim. 2015. Kaempferol isolated from Nelumbo nucifera inhibits lipid accumulation and increases fatty acid oxidation signaling in adipocytes. Journal of Medicinal Food 18 (12):1363–70.
  • Lehtonen, H. M., O. Lehtinen, J. P. Suomela, M. Viitanen, and H. Kallio. 2010. Flavonol glycosides of sea buckthorn (Hippophae rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion. Journal of Agricultural and Food Chemistry 58 (1):620–7.
  • Li, B., Y. Xu, Y. X. Jin, Y. Y. Wu, and Y. Y. Tu. 2010. Response surface optimization of supercritical fluid extraction of kaempferol glycosides from tea seed cake. Industrial Crops and Products 32 (2):123–8. doi: 10.1016/j.indcrop.2010.04.002.
  • Li, Q., L. Wei, S. Lin, Y. Chen, J. Lin, and J. Peng. 2019. Synergistic effect of kaempferol and 5-fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway. Molecular Medicine Reports 20 (1):728–34.
  • Li, S., T. Yan, R. Deng, X. Jiang, H. Xiong, Y. Wang, Q. Yu, X. Wang, C. Chen, and Y. Zhu. 2017. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. OncoTargets and Therapy 10:4809–19. doi: 10.2147/OTT.S140886.
  • Li, Y., X. Yu, Y. Wang, X. Zheng, and Q. Chu. 2021. Kaempferol-3-O-rutinoside, a flavone derived from Tetrastigma hemsleyanum, suppresses lung adenocarcinoma via the calcium signaling pathway. Food & Function 12 (18):8351–65.
  • Liang, Y., L. Wei, Z. Zhu, Y. Pan, H. Wang, and P. Liu. 2011. Isolation and purification of kaempferol-3,7-O-α-L-dirhamnopyranoside from Siraitia grosvenori leaves by high-speed counter-current chromatograph and its free radical scavenging activity. Separation Science and Technology 46 (9):1528–33. doi: 10.1080/01496395.2011.556101.
  • Lin, S., H. Li, Y. Tao, J. Liu, W. Yuan, Y. Chen, Y. Liu, and S. Liu. 2020. In vitro and in vivo evaluation of membrane-active flavone amphiphiles: Semisynthetic kaempferol-derived antimicrobials against drug-resistant gram-positive bacteria. Journal of Medicinal Chemistry 63 (11):5797–815.
  • Luo, H., B. H. Jiang, S. M. King, and Y. C. Chen. 2008. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutrition and Cancer 60 (6):800–9.
  • Malla, S., R. P. Pandey, B. G. Kim, and J. K. Sohng. 2013. Regiospecific modifications of naringenin for astragalin production in Escherichia coli. Biotechnology and Bioengineering 110 (9):2525–35. doi: 10.1002/bit.24919.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5):727–47.
  • Meena, D., K. Vimala, and S. Kannan. 2022. Combined delivery of DOX and kaempferol using PEGylated gold nanoparticles to target colon cancer. Journal of Cluster Science 33 (1):173–87. doi: 10.1007/s10876-020-01961-x.
  • Moradzadeh, M., A. Tabarraei, H. R. Sadeghnia, A. Ghorbani, A. Mohamadkhani, S. Erfanian, and A. Sahebkar. 2018. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes. Journal of Cellular Biochemistry 119 (2):2288–97.
  • Németh, K., G. W. Plumb, J.-G. Berrin, N. Juge, R. Jacob, H. Y. Naim, G. Williamson, D. M. Swallow, and P. A. Kroon. 2003. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. European Journal of Nutrition 42 (1):29–42.
  • Nielsen, S. E., M. Kall, U. Justesen, A. Schou, and L. O. Dragsted. 1997. Human absorption and excretion of flavonoids after broccoli consumption. Cancer Letters 114 (1–2):173–4.
  • Ochiai, A., S. Miyata, M. Iwase, M. Shimizu, J. Inoue, and R. Sato. 2016. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes. Scientific Reports 6 (1):1–10. doi: 10.1038/srep24940.
  • Olazarán-Santibañez, F., G. Rivera, V. Vanoye-Eligio, A. Mora-Olivo, G. Aguirre-Guzmán, M. Ramírez-Cabrera, and E. Arredondo-Espinoza. 2021. Antioxidant and antiproliferative activity of the ethanolic extract of equisetum myriochaetum and molecular docking of its main metabolites (Apigenin, Kaempferol, and Quercetin) on β-Tubulin. Molecules 26 (2):443. doi: 10.3390/molecules26020443.
  • Orhan, I., E. Küpeli, S. Terzioğlu, and E. Yesilada. 2007. Bioassay-guided isolation of kaempferol-3-O-beta-D-galactoside with anti-inflammatory and antinociceptive activity from the aerial part of Calluna vulgaris L. Journal of Ethnopharmacology 114 (1):32–7. doi: 10.1016/j.jep.2007.06.017.
  • Osw, P. S. H. H. S. 2020. Isolation Of kaempferol 3-O-rutinoside from kurdish plant Anchusa italica Retz. and bioactivity of some extracts. European Journal of Molecular & Clinical Medicine 7:2465–80.
  • Oueslati, M. H., L. B. Tahar, and A. H. Harrath. 2020. Catalytic, antioxidant and anticancer activities of gold nanoparticles synthesized by kaempferol glucoside from Lotus leguminosae. Arabian Journal of Chemistry 13 (1):3112–22. doi: 10.1016/j.arabjc.2018.09.003.
  • Özkütük, A. S. 2022. Antimicrobial effects of carnosic acid, kaempferol and luteolin on biogenic amine production by spoilage and food-borne pathogenic bacteria. Food Bioscience 46:101588. doi: 10.1016/j.fbio.2022.101588.
  • Pan, X., X. Liu, H. Zhao, B. Wu, and G. Liu. 2020. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods 74:104140. doi: 10.1016/j.jff.2020.104140.
  • Pei, J., P. Dong, T. Wu, L. Zhao, X. Fang, F. Cao, F. Tang, and Y. Yue. 2016. Metabolic engineering of Escherichia coli for astragalin biosynthesis. Journal of Agricultural and Food Chemistry 64 (42):7966–72.
  • Pham, D. Q., H. T. Pham, J. W. Han, T. H. Nguyen, H. T. Nguyen, T. D. Nguyen, T. T. T. Nguyen, C. T. Ho, H. M. Pham, H. D. Vu, et al. 2021. Extracts and metabolites derived from the leaves of Cassia alata L. exhibit in vitro and in vivo antimicrobial activities against fungal and bacterial plant pathogens. Industrial Crops and Products 166:113465. doi: 10.1016/j.indcrop.2021.113465.
  • Pham, H. N. T., J. A. Sakoff, Q. V. Vuong, M. C. Bowyer, and C. J. Scarlett. 2018. Comparative cytotoxic activity between kaempferol and gallic acid against various cancer cell lines. Data in Brief 21:1033–6.
  • Qian, Y., S. Ramamurthy, M. Candasamy, M. Shadab, R. H. Kumar, and V. S. Meka. 2016. Production, characterization and evaluation of kaempferol nanosuspension for improving oral bioavailability. Current Pharmaceutical Biotechnology 17 (6):549–55. doi: 10.2174/1389201017666160127110609.
  • Rached, W., F. Z. Zeghada, M. Bennaceur, L. Barros, R. C. Calhelha, S. Heleno, M. J. Alves, A. M. Carvalho, A. Marouf, and I. C. Ferreira. 2018. Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves. Industrial Crops and Products 112:460–6. doi: 10.1016/j.indcrop.2017.12.037.
  • Rajendran, P., T. Rengarajan, N. Nandakumar, R. Palaniswami, Y. Nishigaki, and I. Nishigaki. 2014. Kaempferol, a potential cytostatic and cure for inflammatory disorders. European Journal of Medicinal Chemistry 86:103–12.
  • Ranjbar, F. E., F. Foroutan, M. Hajian, J. Ai, A. Farsinejad, S. Ebrahimi‐Barough, M. M. Dehghan, and M. Azami. 2021. Preparation and characterization of 58S bioactive glass based scaffold with Kaempferol‐containing Zein coating for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials 109 (9):1259–70. doi: 10.1002/jbm.b.34786.
  • Ren, J., Y. Lu, Y. Qian, B. Chen, T. Wu, and G. Ji. 2019. Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine 18 (4):2759–76.
  • Riahi-Chebbi, I., S. Souid, H. Othman, M. Haoues, H. Karoui, A. Morel, N. Srairi-Abid, M. Essafi, and K. Essafi-Benkhadir. 2019. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Scientific Reports 9 (1):1–20. doi: 10.1038/s41598-018-36808-z.
  • Rocha, M. F. G., J. A. Sales, M. G. da Rocha, L. M. Galdino, L. de Aguiar, W. d. A. Pereira-Neto, R. de Aguiar Cordeiro, D. d. S. C. M. Castelo-Branco, J. J. C. Sidrim, and R. S. N. Brilhante. 2019. Antifungal effects of the flavonoids kaempferol and quercetin: A possible alternative for the control of fungal biofilms. Biofouling 35 (3):320–8. doi: 10.1080/08927014.2019.1604948.
  • Rolnik, A., J. ŻUchowski, A. Stochmal, and B. Olas. 2020. Quercetin and kaempferol derivatives isolated from aerial parts of Lens culinaris Medik as modulators of blood platelet functions. Industrial Crops and Products 152:112536. doi: 10.1016/j.indcrop.2020.112536.
  • Sati, P., P. Dhyani, I. D. Bhatt, and A. Pandey. 2019. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. Journal of Traditional and Complementary Medicine 9 (1):15–23. doi: 10.1016/j.jtcme.2017.10.003.
  • Sedef, I. N., M. Saglam, and N. Ozgen. 2017. Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artificial Cells, Nanomedicine, and Biotechnology 45:907–16.
  • Sekiguchi, A., S.-I. Motegi, C. Fujiwara, S. Yamazaki, Y. Inoue, A. Uchiyama, R. Akai, T. Iwawaki, and O. Ishikawa. 2019. Inhibitory effect of kaempferol on skin fibrosis in systemic sclerosis by the suppression of oxidative stress. Journal of Dermatological Science 96 (1):8–17.
  • Sermkaew, N., and T. Plyduang. 2020. Self-microemulsifying drug delivery systems of Moringa oleifera extract for enhanced dissolution of kaempferol and quercetin. Acta Pharmaceutica (Zagreb, Croatia) 70 (1):77–88. doi: 10.2478/acph-2020-0012.
  • Seydi, E., A. Salimi, H. R. Rasekh, Z. Mohsenifar, and J. Pourahmad. 2018. Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: Involvement of ROS-mediated mitochondrial targeting. Nutrition and Cancer 70 (4):594–604. doi: 10.1080/01635581.2018.1460679.
  • Sharma, N., A. Sharma, G. Bhatia, M. Landi, M. Brestic, B. Singh, J. Singh, S. Kaur, and R. Bhardwaj. 2019. Isolation of phytochemicals from Bauhinia variegata L. Bark and their in vitro antioxidant and cytotoxic potential. Antioxidants 8 (10):492. doi: 10.3390/antiox8100492.
  • Shafei, A. A. 2016. Qualitative and quantitative estimation of flavonoids and phenolic compounds and the biological activities of Colvillea racemosa cultivated in Egypt. International Journal of Pharmacognosy and Phytochemical Research 8 (5):836–40.
  • Shao, J., M. Zhang, T. Wang, Y. Li, and C. Wang. 2016. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharmaceutical Biology 54 (6):984–92.
  • Sharma, N., S. Biswas, N. Al-Dayan, A. S. Alhegaili, and M. Sarwat. 2021. Antioxidant role of kaempferol in prevention of hepatocellular carcinoma. Antioxidants 10 (9):1419. doi: 10.3390/antiox10091419.
  • Shimojo, Y., Y. Ozawa, T. Toda, K. Igami, and T. Shimizu. 2018. Probiotic Lactobacillus paracasei A221 improves the functionality and bioavailability of kaempferol-glucoside in kale by its glucosidase activity. Scientific Reports 8 (1):1–11. doi: 10.1038/s41598-018-27532-9.
  • Shrestha, R., K. Mohankumar, G. Martin, A. Hailemariam, S-o. Lee, U-h. Jin, R. Burghardt, and S. Safe. 2021. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. Journal of Experimental & Clinical Cancer Research 40 (1). doi: 10.1186/s13046-021-02199-9.
  • Silva dos Santos, J., J. P. Goncalves Cirino, P. de Oliveira Carvalho, and M. M. Ortega. 2021. The pharmacological action of kaempferol in central nervous system diseases: A review. Frontiers in Pharmacology 11:2143. doi: 10.3389/fphar.2020.565700.
  • Simunkova, M., Z. Barbierikova, K. Jomova, L. Hudecova, P. Lauro, S. H. Alwasel, I. Alhazza, C. J. Rhodes, and M. Valko. 2021. Antioxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of Cu (II) ions: A ROS-scavenging activity, Fenton reaction and DNA damage study. International Journal of Molecular Sciences 22 (4):1619. doi: 10.3390/ijms22041619.
  • Somsak, V., A. Damkaew, and P. Onrak. 2018. Antimalarial activity of kaempferol and its combination with chloroquine in Plasmodium berghei infection in mice. Journal of Pathogens 2018:1–7. doi: 10.1155/2018/3912090.
  • Song, H., J. Bao, Y. Wei, Y. A. N. G. Chen, X. Mao, J. Li, Z. Yang, and Y. Xue. 2015. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study. Oncology Reports 33 (2):868–74. doi: 10.3892/or.2014.3662.
  • St-Pierre, A., D. Blondeau, A. Lajeunesse, J. Bley, N. Bourdeau, and I. Desgagné-Penix. 2018. Phytochemical screening of quaking aspen (Populus tremuloides) extracts by UPLC-QTOF-MS and evaluation of their antimicrobial activity. Molecules 23 (7):1739. doi: 10.3390/molecules23071739.
  • Suchal, K., S. Malik, N. Gamad, R. K. Malhotra, S. N. Goyal, U. Chaudhary, J. Bhatia, S. Ojha, and D. S. Arya. 2016. Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxidative Medicine and Cellular Longevity 2016:1–10. doi: 10.1155/2016/7580731.
  • Suchal, K., S. Malik, S. Khan, R. Malhotra, S. Goyal, J. Bhatia, S. Ojha, and D. Arya. 2017. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. International Journal of Molecular Sciences 18 (5):1001. doi: 10.3390/ijms18051001.
  • Taiwo, F. O., O. Oyedeji, and M. T. Osundahunsi. 2019. Antimicrobial and Antioxidant Properties of kaempferol-3-O-glucoside and 1-(4-Hydroxyphenyl)-3-phenylpropan-1-one Isolated from the Leaves of Annona muricata (Linn.). Journal of Pharmaceutical Research International 26:1–13.
  • Thangavel, P., B. Viswanath, and S. Kim. 2018. Synthesis and characterization of kaempferol-based ruthenium (II) complex: a facile approach for superior anticancer application. Materials Science & Engineering. C, 89:87–94. doi: 10.1016/j.msec.2018.03.020.
  • Telange, D. R., A. T. Patil, A. M. Pethe, A. A. Tatode, S. Anand, and V. S. Dave. 2016. Kaempferol-phospholipid complex: formulation, and evaluation of improved solubility, in vivo bioavailability, and antioxidant potential of kaempferol. Journal of Excipients and Food Chemicals 7:1174.
  • Tatsimo, S. J. N., J. d. D. Tamokou, L. Havyarimana, D. Csupor, P. Forgo, J. Hohmann, J.-R. Kuiate, and P. Tane. 2012. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Research Notes 5 (1):1–6. doi: 10.1186/1756-0500-5-158.
  • Tian, C., X. Liu, Y. Chang, R. Wang, T. Lv, C. Cui, and M. Liu. 2021. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. South African Journal of Botany 137:257–64. doi: 10.1016/j.sajb.2020.10.022.
  • Trendafilova, I., H. Lazarova, R. Chimshirova, B. Trusheva, N. Koseva, and M. Popova. 2021. Novel kaempferol delivery systems based on Mg-containing MCM-41 mesoporous silicas. Journal of Solid State Chemistry 301:122323. doi: 10.1016/j.jssc.2021.122323.
  • Tsai, M. S., Y. H. Wang, Y. Y. Lai, H. K. Tsou, G. G. Liou, J. L. Ko, and S. H. Wang. 2018. Kaempferol protects against propacetamol-induced acute liver injury through CYP2E1 inactivation, UGT1A1 activation, and attenuation of oxidative stress, inflammation and apoptosis in mice. Toxicology Letters 290:97–109. doi: 10.1016/j.toxlet.2018.03.024.
  • Tu, L. Y., H. H. Bai, J. Y. Cai, and S. P. Deng. 2016. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano. Scanning 38 (6):644–53.
  • Utari, F., A. Itam, S. Syafrizayanti, W. H. Putri, M. Ninimiya, M. Koketsu, K. Tanaka, and M. Efdi. 2019. Isolation of flavonol rhamnosides from Pometia pinnata leaves and investigation of α-glucosidase inhibitory activity of flavonol derivatives. Journal of Applied Pharmaceutical Science 9 (8):53–65.
  • Verma, A. R., M. Vijayakumar, C. S. Mathela, and C. V. Rao. 2009. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology 47 (9):2196–201.
  • Vimalraj, S., S. Saravanan, G. Hariprabu, R. Yuvashree, S. K. Ajieth Kanna, K. Sujoy, and D. Anjali. 2020. Kaempferol-zinc(II) complex synthesis and evaluation of bone formation using zebrafish model. Life Sciences 256:117993. doi: 10.1016/j.lfs.2020.117993.
  • Walgren, R. A., J. T. Lin, R. K. H. Kinne, and T. Walle. 2000. Cellular uptake of dietary flavonoid quercetin 4′-β-glucoside by sodium-dependent glucose transporter SGLT1. Journal of Pharmacology and Experimental Therapeutics 294 (3):837–43.
  • Wang, F., L. Wang, C. Qu, L. Chen, Y. Geng, C. Cheng, … Z. Chen. 2021. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer 21 (1):1–11.
  • Wang, H., L. Chen, X. Zhang, L. Xu, B. Xie, H. Shi, Z. Duan, H. Zhang, and F. Ren. 2019. Kaempferol protects mice from d-GalN/LPS-induced acute liver failure by regulating the ER stress-Grp78-CHOP signaling pathway. Biomedicine & Pharmacotherapy  111:468–75. doi: 10.1016/j.biopha.2018.12.105.
  • Wang, J., X. Fang, L. Ge, F. Cao, L. Zhao, Z. Wang, and W. Xiao. 2018a. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One 13 (5):e0197563. doi: 10.1371/journal.pone.0197563.
  • Wang, J., T. Li, J. Feng, L. I. Li, R. Wang, H. Cheng, and Y. Yuan. 2018b. Kaempferol protects against gamma radiation-induced mortality and damage via inhibiting oxidative stress and modulating apoptotic molecules in vivo and vitro. Environmental Toxicology and Pharmacology 60:128–37.
  • Wang, J., J. Mao, R. Wang, S. Li, B. Wu, and Y. Yuan. 2020. Kaempferol protects against cerebral ischemia reperfusion injury through intervening oxidative and inflammatory stress induced apoptosis. Frontiers in Pharmacology 11:424.
  • Wang, N., H. Chen, L. Xiong, X. Liu, X. Li, Q. An, X. Ye, and W. Wang. 2018. Phytochemical profile of ethanolic extracts of Chimonanthus salicifolius SY Hu. leaves and its antimicrobial and antibiotic-mediating activity. Industrial Crops and Products 125:328–34. doi: 10.1016/j.indcrop.2018.09.021.
  • Wang, Q., M. Huang, Y. Huang, J. S. Zhang, G. F. Zhou, R. Q. Zeng, and X. B. Yang. 2014. Synthesis, characterization, DNA interaction, and antitumor activities of mixed-ligand metal complexes of kaempferol and 1,10-phenanthroline/2,2′-bipyridine. Medicinal Chemistry Research 23 (5):2659–66. doi: 10.1007/s00044-013-0863-2.
  • Wang, X., Y. Yang, Y. An, and G. Fang. 2019. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 117:109086. doi: 10.1016/j.biopha.2019.109086.
  • Williamson, G., C. D. Kay, and A. Crozier. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety 17 (5):1054–112. doi: 10.1111/1541-4337.12351.
  • Wong, C. C., N. P. Botting, C. Orfila, N. Al-Maharik, and G. Williamson. 2011. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochemical Pharmacology 81 (7):942–9. doi: 10.1016/j.bcp.2011.01.004.
  • Wu, H., M. Cui, C. Li, H. Li, Y. Dai, K. Cui, and Z. Li. 2021. Kaempferol reverses aerobic glycolysis via miR-339-5p-mediated PKM alternative splicing in colon cancer cells. Journal of Agricultural and Food Chemistry 69 (10):3060–8.
  • Wu, P., X. Meng, H. Zheng, Q. Zeng, T. Chen, W. Wang, X. Zhang, and J. Su. 2018. Kaempferol attenuates ROS-induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules 23 (10):2592. doi: 10.3390/molecules23102592.
  • Xiao, H. B., G. G. Sui, X. Y. Lu, and Z. L. Sun. 2018. Kaempferol modulates Angiopoietin-like protein 2 expression to lessen the mastitis in mice. Pharmacological Reports: PR 70 (3):439–45.
  • Xiao, J., T. S. Muzashvili, and M. I. Georgiev. 2014. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances 32 (6):1145–56.
  • Xiao, Y., J. Chen, H. Zhou, X. Zeng, Z. Ruan, Z. Pu, X. Jiang, A. Matsui, L. Zhu, Z. Amoozgar, et al. 2022. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nature Communications 13 (1):758. doi: 10.1038/s41467-022-28279-8.
  • Xiong, D., S. Lu, J. Wu, C. Liang, W. Wang, W. Wang, J.-M. Jin, and S.-Y. Tang. 2017. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metabolic Engineering 40:115–23.
  • Xiong, L., W. B. Hu, Z. W. Yang, and W. J. Wang. 2019. Enzymolysis-ultrasonic assisted extraction of flavanoid from Cyclocarya paliurus (Batal) Iljinskaja: HPLC profile, antimicrobial and antioxidant activity. Industrial Crops and Products 130:615–26.
  • Xu, T., S. Huang, Q. Huang, Z. Ming, M. Wang, R. Li, and Y. Zhao. 2019. Kaempferol attenuates liver fibrosis by inhibiting activin receptor–like kinase 5. Journal of Cellular and Molecular Medicine 23 (9):6403–10.
  • Xu, Y., L. L. Qian, J. Yang, R. M. Han, J. P. Zhang, and L. H. Skibsted. 2018. Kaempferol binding to zinc (II), efficient radical scavenging through increased phenol acidity. The Journal of Physical Chemistry B 122 (44):10108–17.
  • Yan, M., Y. Huo, S. Yin, and H. Hu. 2018. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biology 17:274–83.
  • Yang, J. H., T. P. Kondratyuk, L. E. Marler, X. Qiu, Y. Choi, H. Cao, R. Yu, M. Sturdy, S. Pegan, Y. Liu, et al. 2010. Isolation and evaluation of kaempferol glycosides from the fern Neocheiropteris palmatopedata. Phytochemistry 71 (5–6):641–7.
  • Yang, Y. L., X. Cheng, W. H. Li, M. Liu, Y. H. Wang, and G. H. Du. 2019. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. International Journal of Molecular Sciences 20 (3):491. doi: 10.3390/ijms20030491.
  • Ye, Y., X. Zhang, X. Deng, L. Hao, and W. Wang. 2019. Modification of alginate hydrogel films for delivering hydrophobic kaempferol. Journal of Nanomaterials 2019:1–8. doi: 10.1155/2019/9170732.
  • Yeganegi, M., F. T. Yazdi, S. A. Mortazavi, J. Asili, B. A. Behbahani, and A. Beigbabaei. 2018. Equisetum telmateia extracts: Chemical compositions, antioxidant activity and antimicrobial effect on the growth of some pathogenic strain causing poisoning and infection. Microbial Pathogenesis 116:62–7. doi: 10.1016/j.micpath.2018.01.014.
  • Yi, J., J. Zhu, C. Zhao, Q. Kang, X. Zhang, K. Suo, N. Cao, L. Hao, and J. Lu. 2021. Potential of natural products as radioprotectors and radiosensitizers: Opportunities and challenges. Food & Function 12 (12):5204–18.
  • Yin, C., Y. Liu, X. Qi, C. Guo, and X. Wu. 2021. Kaempferol incorporated bovine serum albumin fibrous films for ocular drug delivery. Macromolecular Bioscience 21 (12):e2100269. doi: 10.1002/mabi.202100269.
  • Yoncheva, K., N. Hristova-Avakumova, V. Hadjimitova, T. Traykov, and P. Petrov. 2020. Evaluation of physicochemical and antioxidant properties of nanosized copolymeric micelles loaded with kaempferol. Pharmacia 67 (2):49–54. doi: 10.3897/pharmacia.67.e38648.
  • Zengin, G., R. Ceylan, K. I. Sinan, G. Ak, S. Uysal, M. F. Mahomoodally, D. Lobine, A. Aktumsek, Z. Cziáky, J. Jeko, et al. 2020. Network analysis, chemical characterization, antioxidant and enzyme inhibitory effects of foxglove (Digitalis cariensis Boiss. ex Jaub. & Spach): A novel raw material for pharmaceutical applications. Journal of Pharmaceutical and Biomedical Analysis 191:113614. doi: 10.1016/j.jpba.2020.113614.
  • Zhang, X., M. Xu, Z. Zhang, X. Hu, L. Hao, Q. Lin, S. Wang, and W. Jiang. 2017. Preparation and characterization of magnetic fluorescent microspheres for delivery of kaempferol. Materials Technology 32 (3):125–30. doi: 10.1080/10667857.2016.1157913.
  • Zhang, Y., and D. Liu. 2011. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology 670 (1):325–32.
  • Zhao, C., X. Ren, C. Li, H. Jiang, J. Guan, W. Su, Y. Li, Y. Tian, T. Wang, and S. Li. 2019. Coupling ultrasound with heat-reflux to improve the extraction of quercetin, kaempferol, ginkgetin and sciadopitysin from Mairei Yew leaves. Applied Sciences 9 (4):795. doi: 10.3390/app9040795.
  • Zhang, F., R. Li, M. Yan, Q. Li, Y. Li, and X. Wu. 2020. Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: a potential nanoplatform for the ocular delivery of kaempferol. European Journal of Pharmaceutical Sciences: 147:105289. doi: 10.1016/j.ejps.2020.105289.
  • Zheng, L., L. Chen, J. Li, L. Liang, Y. Fan, L. Qiu, and Z. Deng. 2019. Two kaempferol glycosides separated from camellia oleifera meal by high‐speed countercurrent chromatography and their possible application for antioxidation. Journal of Food Science 84 (10):2805–11.
  • Zhu, L., and L. Xue. 2019. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncology Research 27 (6):629–34.
  • Zhu, X. Y., H. M. Lin, X. Chen, J. Xie, and P. Wang. 2011. Mechanochemical-Assisted extraction and antioxidant activities of kaempferol glycosides from Camellia oleifera Abel. meal. Journal of Agricultural and Food Chemistry 59 (8):3986–93. doi: 10.1021/jf1042689.
  • Zhu, X. Y., H. M. Lin, X. Chen, J. Xie, and P. Wang. 2011. Mechanochemical-Assisted Extraction and Antioxidant Activities of Kaempferol Glycosides from Camellia oleifera Abel. Journal of Agricultural and Food Chemistry 59 (8):3986–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.