1,496
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Chemical aspects of polyphenol-protein interactions and their antibacterial activity

, ORCID Icon, , , , ORCID Icon, , & show all

References

  • Abbas, M., F. Saeed, F. M. Anjum, M. Afzaal, T. Tufail, M. S. Bashir, A. Ishtiaq, S. Hussain, and H. A. R. Suleria. 2017. Natural polyphenols: An overview. International Journal of Food Properties 20 (8):1689–99. doi: 10.1080/10942912.2016.1220393.
  • Abdi, S. N., Ghotaslou, R. Ganbarov, K. Mobed, A. Tanomand, A. Yousefi, M. Asgharzadeh, and M. K. H. S. 2019. Acinetobacter baumannii efflux pumps and antibiotic resistance. Dovpress Journal 13:423–34.
  • Abuga, I., S. F. Sulaiman, R. Abdul Wahab, K. L. Ooi, and M. S. B. Abdull Rasad. 2020. In vitro antibacterial effect of the leaf extract of murraya koenigii on cell membrane destruction against pathogenic bacteria and phenolic compounds identification. European Journal of Integrative Medicine 33:101010. doi: 10.1016/j.eujim.2019.101010.
  • Achika, J. I., R. G. Ayo, A. O. Oyewale, and J. D. Habila. 2020. Flavonoids with antibacterial and antioxidant potentials from the stem bark of uapaca heudelotti. Heliyon 6 (2):e03381. doi: 10.1016/j.heliyon.2020.e03381.
  • Adewunmi, Y., S. Namjilsuren, W. D. Walker, D. N. Amato, D. V. Amato, O. V. Mavrodi, D. L. Patton, and D. V. Mavrodi. 2020. Antimicrobial activity of, and cellular pathways targeted by, p-Anisaldehyde and epigallocatechin gallate in the opportunistic human pathogen Pseudomonas aeruginosa. Applied and Environmental Microbiology 86 (4):e02482-19. doi: 10.1128/AEM.02482-19.
  • Adrar, N. S., K. Madani, and S. Adrar. 2019. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PharmaNutrition 7:100142. doi: 10.1016/j.phanu.2019.100142.
  • Akiyama, H., K. Fujii, O. Yamasaki, T. Oono, and K. Iwatsuki. 2001. Antibacterial action of several tannins against staphylococcus aureus. Journal of Antimicrobial Chemotherapy 48 (4):487–91. doi: 10.1093/jac/48.4.487.
  • Al-Hanish, A., D. Stanic-Vucinic, J. Mihailovic, I. Prodic, S. Minic, M. Stojadinovic, M. Radibratovic, M. Milcic, and T. Cirkovic Velickovic. 2016. Noncovalent interactions of bovine a -lactalbumin with green tea. Food Hydrocolloids. 61:241–50. doi: 10.1016/j.foodhyd.2016.05.012.
  • Albadawi, D. A., R. A. Mothana, J. M. Khaled, A. E. Ashour, A. Kumar, S. F. Ahmad, M. S. Al-Said, A. J. Al-Rehaily, and N. M. Almusayeib. 2017. Antimicrobial, anticancer, and antioxidant compounds from Premna resinosa growing in Saudi Arabia. Pharmaceutical Biology 55 (1):1759–66. doi: 10.1080/13880209.2017.1322617.
  • Albe Slabi, S., C. Mathe, M. Basselin, X. Framboisier, M. Ndiaye, O. Galet, and R. Kapel. 2020. Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal. Food Chemistry 317:126423. doi: 10.1016/j.foodchem.2020.126423.
  • Alshaibani, D., R. Zhang, and V. C. H. Wu. 2017. Antibacterial characteristics and activity of Vaccinium macrocarpon proanthocyanidins against diarrheagenic Escherichia coli. Journal of Functional Foods 39:133–8. doi: 10.1016/j.jff.2017.10.003.
  • Arima, H., H. Ashida, and G. Danno. 2002. Rutin-enhanced antibacterial activities of flavonoids against bacillus cereus and salmonella enteritidis. Bioscience, Biotechnology, and Biochemistry 66 (5):1009–14. doi: 10.1271/bbb.66.1009.
  • Arroyo-maya, I. J., and D. Julian. 2015. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International 69:1–8. doi: 10.1016/j.foodres.2014.12.005.
  • Assadpour, E., and S. Mahdi Jafari. 2019. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition 59 (19):3129–51. doi: 10.1080/10408398.2018.1484687.
  • Barreca, D., G. Laganà, G. Toscano, P. Calandra, M. A. Kiselev, D. Lombardo, and E. Bellocco. 2016. The interaction and binding of fl avonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries. Biochimica et Biophysica Acta 1861 (1 Pt B):3531–9. doi: 10.1016/j.bbagen.2016.03.014.
  • Basile, A., S. Sorbo, S. Giordano, L. Ricciardi, S. Ferrara, D. Montesano, R. Castaldo Cobianchi, M. L. Vuotto, and L. Ferrara. 2000. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 71 (1 Suppl):S110–S6. doi: 10.1016/S0367-326X(00)00185-4.
  • Bazzaz, B. S. F., S. Sarabandi, B. Khameneh, and H. Hosseinzadeh. 2016. Effect of catechins, green tea extract and methylxanthines in combination with gentamicin agair staphylococcus aureus and pseudomonas aeruginosa—Combination therapy against resistant bacteria. Journal of Pharmacopuncture 19 (4):312–8. doi: 10.3831/KPI.2016.19.032.
  • Beydokhti, S. S., C. Stork, U. Dobrindt, and A. Hensel. 2019. Orthosipon stamineus extract exerts inhibition of bacterial adhesion and chaperon-usher system of uropathogenic Escherichia coli—A transcriptomic study. Applied Microbial and Cell Physiology 103 (20):8571–84.
  • Bordenave, N., R. Hamaker, and M. G. Ferruzzi. 2014. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food & Function 5 (1):18–34. doi: 10.1039/c3fo60263j.
  • Borges, A., C. Ferreira, M. J. Saavedra, and M. Simões. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance (Larchmont, N.Y.) 19 (4):256–65. doi: 10.1089/mdr.2012.0244.
  • Bouarab-Chibane, L., V. Forquet, P. Lantéri, Y. Clément, L. Léonard-Akkari, N. Oulahal, P. Degraeve, and C. Bordes. 2019. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Frontiers in Microbiology 10:829. doi: 10.3389/fmicb.2019.00829.
  • Brandão, E., M. S. Silva, I. García-Estévez, P. Williams, N. Mateus, T. Doco, V. de Freitas, and S. Soares. 2017. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydrate Polymers 177:77–85. doi: 10.1016/j.carbpol.2017.08.075.
  • Brown, J. C., and X. Jiang. 2013. Activities of muscadine grape skin and polyphenolic constituents against Helicobacter pylori. Journal of Applied Microbiology 114 (4):982–91. doi: 10.1111/jam.12129.
  • Brudzynski, K., and L. Maldonado-Alvarez. 2015. Polyphenol-protein complexes and their consequences for the redox activity, structure and function of honey. A current view and new hypothesis—A review. Polish Journal of Food and Nutrition Sciences 65 (2):71–80. doi: 10.1515/pjfns-2015-0030.
  • Bussey, R. O., A. A. Sy-Cordero, M. Figueroa, F. S. Carter, J. O. Falkinham, N. H. Oberlies, and N. B. Cech. 2014. Antimycobacterial furofuran lignans from the roots of anemopsis californica. Planta Medica 80 (6):498–501. doi: 10.1055/s-0034-1368352.
  • Canizales, J. R., G. R. V. Rodríguez, J. A. D. Avila, A. M. P. Saldaña, E. A. Parrilla, M. A. V. Ochoa, and G. A. G. Aguilar. 2018. Encapsulation to protect different bioactives to be used as nutraceuticals and food ingredients. In Bioactive molecules in food. Reference series in phytochemistry, eds. J. M. Mérillon and K. Ramawat, 1–20. Cham, Switzerland: Springer Nature.
  • Cao, H.,X. Jia,J. Shi,J. Xiao, andX. Chen. 2016. Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure-affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. Food Chemistry 202:383–8. doi:10.1016/j.foodchem.2016.02.003. PMID: 26920308
  • Cetin-Karaca, H., and M. C. Newman. 2015. Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia Coli. Food Bioscience 11:8–16. doi: 10.1016/j.fbio.2015.03.002.
  • Chang, E. H., J. Huang, Z. Lin, and A. C. Brown. 2019. Catechin-mediated restructuring of a bacterial toxin inhibits activity. Biochimica et Biophysica Acta (BBA) - General Subjects 1863 (1):191–8. doi: 10.1016/j.bbagen.2018.10.011.
  • Chang, W. Y., C. W. Huang, Y. C. Lin, H. W. Wang, and C. C. H. Hung. 2019. Tellimagrandin II, A type of plant polyphenol extracted from trapa bispinosa inhibits antibiotic resistance of drug-resistant staphylococcus aureus. International Jounal of Molecular Science 20 (22):1–17.
  • Chanphai, P., P. Bourassa, C. D. Kanakis, P. A. Tarantilis, M. G. Polissiou, and H. A. Tajmir-riahi. 2018. Review on the loading efficacy of dietary tea polyphenols with milk proteins. Food Hydrocolloids 77:322–8. doi: 10.1016/j.foodhyd.2017.10.008.
  • Chung, J. Y., J. H. Choo, M. H. Lee, and J. K. Hwang. 2006. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 13 (4):261–6. doi: 10.1016/j.phymed.2004.04.007.
  • Cirillo, G., M. Curcio, O. Vittorio, F. Iemma, D. Restuccia, U. G. Spizzirri, F. Puoci, and N. Picci. 2016. Polyphenol conjugates and human health: A perspective review. Critical Reviews in Food Science and Nutrition 56 (2):326–37. doi: 10.1080/10408398.2012.752342.
  • Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology 23 (2):174–81. doi: 10.1016/j.copbio.2011.08.007.
  • Dai, T., X. Yan, Q. Li, T. Li, C. Liu, D. J. McClements, and J. Chen. 2017. Characterization of binding interaction between rice glutelin and gallic acid: Multi-spectroscopic analyses and computational docking simulation. Food Research International (Ottawa, Ont.) 102:274–81. doi: 10.1016/j.foodres.2017.09.020.
  • Dey, D., S. Debnath, S. Hazra, S. Ghosh, R. Ray, and B. Hazra. 2012. Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrum β-lactamase (ESBL) and metallo-β-lactamase (MBL) producing Gram-negative bacilli. Food and Chemical Toxicology 50 (12):4302–9. doi: 10.1016/j.fct.2012.09.001.
  • Dubeau, S., G. Samson, and H.-A. Tajmir-Riahi. 2010. Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas. Food Chemistry 122 (3):539–45. doi: 10.1016/j.foodchem.2010.03.005.
  • Durazzo, A., M. Lucarini, E. B. Souto, C. Cicala, E. Caiazzo, A. A. Izzo, E. Novellino, and A. Santini. 2019. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research: PTR 33 (9):2221–43. doi: 10.1002/ptr.6419.
  • Dzah, C. S., Y. Duan, H. Zhang, N. A. Serwah Boateng, and H. Ma. 2020. Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends in Food Science & Technology 99:375–88. doi: 10.1016/j.tifs.2020.03.003.
  • Dzotam, J. K., and V. Kuete. 2017. Antibacterial and antibiotic-modifying activity of methanol extracts from six cameroonian food plants against multidrug-resistant enteric bacteria. BioMed Research International 2017:1583510. doi: 10.1155/2017/1583510.
  • Ferrer-Gallego, R., J. M. Hernández-Hierro, N. F. Brás, N. Vale, P. Gomes, N. Mateus, V. de Freitas, F. J. Heredia, and M. T. Escribano-Bailón. 2017. Interaction between wine phenolic acids and salivary proteins by saturation-transfer difference nuclear magnetic resonance spectroscopy (STD-NMR) and molecular dynamics simulations. Journal of Agricultural and Food Chemistry 65 (31):6434–41. doi: 10.1021/acs.jafc.6b05414.
  • Francisco, A., J. Bezerra, and R. M. Duarte. 2020. Synthesis and evaluation of new 2-aminothiophene derivatives as staphylococcus aureus efflux pump inhibitors. ChemMedChem 15 (8):716–25. doi: 10.1002/cmdc.201900688.
  • Fu, L., Y. Sun, L. Ding, Y. Wang, Z. Gao, Z. Wu, S. Wang, W. Li, and Y. Bi. 2016. Mechanism evaluation of the interactions between flavonoids and bovine serum albumin based on multi-spectroscopy, molecular docking and Q-TOF HR-MS analyses. Food Chemistry 203:150–7. doi: 10.1016/j.foodchem.2016.01.105.
  • Gharehbeglou, P., S. M. Jafari, H. Hamishekar, A. Homayouni, and H. Mirzaei. 2019. Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. Journal of Food Engineering 245:139–48. doi: 10.1016/j.jfoodeng.2018.10.016.
  • Ghorbani Gorji, E., E. Rocchi, G. Schleining, D. Bender-Bojalil, P. G. Furtmüller, L. Piazza, J. J. Iturri, and J. L. Toca-Herrera. 2015. Characterization of resveratrol –-milk protein interaction. Journal of Food Engineering 167:217–25. doi: 10.1016/j.jfoodeng.2015.05.032.
  • Girondi, C. M., A. B. de Oliveira, J. A. Prado, C. Y. Koga-Ito, A. C. Borges, A. C. Botazzo Delbem, D. F. Alves Pereira, M. J. Salvador, and F. L. Brighenti. 2017. Screening of plants with antimicrobial activity against enterobacteria, Pseudomonas spp. and Staphylococcus spp. Future Microbiology 12 (8):671–81. doi: 10.2217/fmb-2016-0129.
  • Green, A. T., M. Moniruzzaman, C. J. Cooper, J. K. Walker, C. Smith, J. M. Parks, and H. I. Zgurskaya. 2020. Discovery of multidrug efflux pump inhibitors with a novel chemical scaffold. Biochimica et Biophysica Acta 1864 (6):129546.
  • Guo, L., Y. Wang, X. Bi, K. Duo, Q. Sun, X. Yun, Y. Zhang, P. Fei, and J. Han. 2020. Antimicrobial Activity and mechanism of action of the amaranthus tricolor crude extract against staphylococcus aureus and potential application in cooked meat. Foods 9 (3):359. doi: 10.3390/foods9030359.
  • Gupta, P. D., and T. J. Birdi. 2017. Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine 8 (4):266–75. doi: 10.1016/j.jaim.2017.05.004.
  • Hasni, I., P. Bourassa, S. Hamdani, G. Samson, R. Carpentier, and H.-A. Tajmir-Riahi. 2011. Interaction of milk a - and b -caseins with tea polyphenols. Food Chemistry 126 (2):630–9. doi: 10.1016/j.foodchem.2010.11.087.
  • Hassanzadeh, S., S. ganjloo, M. R. Pourmand, R. Mashhadi, and K. Ghazvini. 2020. Epidemiology of efflux pumps genes mediating resistance among staphylococcus aureus; A systematic review. Microbial Pathogenesis 139:103850. doi: 10.1016/j.micpath.2019.103850.
  • He, Z., H. Zhu, M. Xu, M. Zeng, F. Qin, and J. Chen. 2016. Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts. Food Chemistry 209:234–40. doi: 10.1016/j.foodchem.2016.04.048.
  • Horincar, G., I. Aprodu, V. Barbu, G. Râpeanu, G. E. Bahrim, and N. St. 2019. Interactions of flavonoids from yellow onion skins with whey proteins: Mechanisms of binding and microencapsulation with different combinations of polymers. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 215:158–67. doi: 10.1016/j.saa.2019.02.100.
  • Huang, Y., F. Xie, Z. Gong, Y. Zhang, A. Stojkoska, and J. Xie. 2019. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. Biological Chemistry 401 (3):331–48.
  • Ignasimuthu, K., R. Prakash, P. S. Murthy, and N. Subban. 2019. Enhanced bioaccessibility of green tea polyphenols and lipophilic activity of EGCG octaacetate on gram-negative bacteria. LWT - Food Science and Technology 105:103–9. doi: 10.1016/j.lwt.2019.01.064.
  • Jakobek, L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry 175:556–67. doi: 10.1016/j.foodchem.2014.12.013.
  • Ji, H., S. Zhou, Y. Fu, Y. Wang, J. Mi, T. Lu, X. Wang, and C. Lü. 2020. Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. Materials Science & Engineering. C, Materials for Biological Applications 110:110735. doi: 10.1016/j.msec.2020.110735.
  • Jia, J., X. Gao, M. Hao, and L. Tang. 2017. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chemistry 228:143–51. doi: 10.1016/j.foodchem.2017.01.131.
  • Jongberg, S., M. L. Andersen, and M. N. Lund. 2020. Covalent protein-polyphenol bonding as initial steps of haze formation in beer covalent protein-polyphenol. Journal of the American Society of Brewing Chemists 78 (2):153–64. doi: 10.1080/03610470.2019.1705045.
  • Joye, I. J., G. Davidov-pardo, R. D. Ludescher, and D. J. Mcclements. 2015. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chemistry 185:261–2015. doi: 10.1016/j.foodchem.2015.03.128.
  • Kang, M. S., J. S. Oh, I. C. Kang, S. J. Hong, and C. H. Choi. 2008. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. The Journal of Microbiology 46 (6):744–50. doi: 10.1007/s12275-008-0235-7.
  • Kardum, N, and M. Glibetic. 2018. Polyphenols and their tnteractions with other dietary compounds: Implications for human health. In Advances in food and nutrition research, 1st ed., vol. 84. Amsterdam, the Netherlands: Elsevier Inc. doi: 10.1016/bs.afnr.2017.12.001.
  • Kariu, T., R. Nakao, T. Ikeda, K. Nakashima, J. Potempa, and T. Imamura. 2017. Inhibition of gingipains and Porphyromonas gingivalis growth and biofilm formation by prenyl flavonoids. Journal of Periodontal Research 52 (1):89–96. doi: 10.1111/jre.12372.
  • Kauss, T., C. Arpin, L. Bientz, P. Vinh Nguyen, B. Vialet, S. Benizri, and P. Barthélémy. 2020. Lipid oligonucleotides as a new strategy for tackling the antibiotic resistance. Scientific Reports 10 (1):1054. doi: 10.1038/s41598-020-58047-x.
  • Khan, T., K. Sankhe, V. Suvarna, A. Sherje, K. Patel, and B. Dravyakar. 2018. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 103:923–38. doi: 10.1016/j.biopha.2018.04.021.
  • Khatun, S., S. Yasmeen, A. Kumar, and N. Subbarao. 2018. Calorimetric, spectroscopic and molecular modelling insight into the interaction of gallic acid with bovine serum albumin. The Journal of Chemical Thermodynamics 122:85–94. doi: 10.1016/j.jct.2018.03.004.
  • Kumar, N., and N. Goel. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports (Amsterdam, Netherlands) 24:e00370. doi: 10.1016/j.btre.2019.e00370.
  • Kumar, S., M. Lekshmi, A. Parvathi, M. Ojha, N. Wenzel, and M. F. Varela. 2020. Functional and structural roles of the major facilitator superfamily bacterial functional and structural roles of the major facilitator superfamily bacterial multidrug Efflux Pumps. Microorganisms 8 (2):266. doi: 10.3390/microorganisms8020266.
  • Kurzbaum, E., L. Iliasafov, L. Kolik, J. Starosvetsky, D. Bilanovic, M. Butnariu, and R. Armon. 2019. From the Titanic and other shipwrecks to biofilm prevention: The interesting role of polyphenol-protein complexes in biofilm inhibition. The Science of the Total Environment 658:1098–105. doi: 10.1016/j.scitotenv.2018.12.197.
  • Lamut, A., L. Peterlin Mašič, D. Kikelj, and T. Tomašič. 2019. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Medicinal Research Reviews 39 (6):2460–45. doi: 10.1002/med.21591.
  • Le Bourvellec, L. C., and C. M. Renard. 2012. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms interactions between polyphenols and macromolecules. Critical Reviews in Food Science and Nutrition 52 (3):230–48. doi: 10.1080/10408398.2010.499808.
  • Li, T., P. Hu, T. Dai, P. Li, X. Ye, J. Chen, and C. Liu. 2018. Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 201:197–206. doi: 10.1016/j.saa.2018.05.011.
  • Li, X., T. Dai, P. Hu, C. Zhang, J. Chen, C. Liu, and T. Li. 2020. Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocolloids. 105:105761. doi: 10.1016/j.foodhyd.2020.105761.
  • Liang, L., H. A. Tajmir-Riahi, and M. Subirade. 2008. Interaction of β-Lactoglobulin with resveratrol and its biological Implications. Biomacromolecules 9 (1):50–6.
  • Liang, L., and M. Subirade. 2012. Study of the acid and thermal stability of β-lactoglobulin – ligand complexes using fluorescence quenching. Food Chemistry 132 (4):2023–9. doi: 10.1016/j.foodchem.2011.12.043.
  • Limwachiranon, J., L. Jiang, H. Huang, J. Sun, and Z. Luo. 2019. Improvement of phenolic compounds extraction from high-starch lotus (Nelumbo nucifera G.) seed kernels using glycerol: New insights to amylose/amylopectin - phenolic relationships. Food Chemistry 274:933–41. doi: 10.1016/j.foodchem.2018.09.022.
  • Madikizela, B., M. A. Aderogba, and J. Van Staden. 2013. Isolation and characterization of antimicrobial constituents of searsia chirindensis L. (Anacardiaceae) leaf extracts. Journal of Ethnopharmacology 150 (2):609–13. doi: 10.1016/j.jep.2013.09.016.
  • Mahendra Kumar, C., and S. A. Singh. 2015. Bioactive lignans from sesame (Sesamum indicum L.): Evaluation of their antioxidant and antibacterial effects for food applications. Journal of Food Science and Technology 52 (5):2934–41. doi: 10.1007/s13197-014-1334-6.
  • Majidinia, M., A. Bishayee, and B. Yousefi. 2019. Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair 82:102679. doi: 10.1016/j.dnarep.2019.102679.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5):727–47. doi: 10.1093/ajcn/79.5.727.
  • Martini, N. D., D. R. P. Katerere, and J. N. Eloff. 2004. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). Journal of Ethnopharmacology 93 (2–3):207–12. doi: 10.1016/j.jep.2004.02.030.
  • Michalet, S., G. Cartier, B. David, A.-M. Mariotte, M.-G. Dijoux-franca, G. W. Kaatz, M. Stavri, and S. Gibbons. 2007. N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorganic & Medicinal Chemistry Letters 17 (6):1755–8. doi: 10.1016/j.bmcl.2006.12.059.
  • Miklasińska-Majdanik, M., M. Kępa, R. D. Wojtyczka, D. Idzik, and T. J. Wąsik. 2018. Phenolic compounds diminish antibiotic resistance of staphylococcus aureus clinical strains. International Journal of Environmental Research and Public Health 15 (10):2321. doi: 10.3390/ijerph15102321.
  • Mohammadi, T. N., A. T. Maung, J. Sato, T. Sonoda, Y. Masuda, K. Honjoh, and T. Miyamoto. 2019. Mechanism for antibacterial action of epigallocatechin gallate and theaflavin-3,3’-digallate on Clostridium perfringens. Journal of Applied Microbiology 126 (2):633–40. doi: 10.1111/jam.14134.
  • Mora-Pale, M., N. Bhan, S. Masuko, P. James, J. Wood, S. McCallum, R. J. Linhardt, J. S. Dordick, and M. A. G. Koffas. 2015. Antimicrobial mechanism of resveratrol-trans-dihydrodimer produced from peroxidase-catalyzed oxidation of resveratrol. Biotechnology and Bioengineering 112 (12):2417–28. doi: 10.1002/bit.25686.
  • Nagy, K., M. Courtet-compondu, G. Williamson, S. Rezzi, M. Kussmann, and A. Rytz. 2012. Non-covalent binding of proteins to polyphenols correlates with their amino acid sequence. Food Chemistry 132 (3):1333–9. doi: 10.1016/j.foodchem.2011.11.113.
  • Nair, M. S. 2015. Spectroscopic study on the interaction of resveratrol and pterostilbene with human serum albumin. Journal of Photochemistry and Photobiology. B, Biology 149:58–67. doi: 10.1016/j.jphotobiol.2015.05.001.
  • Nakayama, M., K. Shimatani, T. Ozawa, N. Shigemune, D. Tomiyama, K. Yui, M. Katsuki, K. Ikeda, A. Nonaka, and T. Miyamoto. 2015. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on bacillus subtilis mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on bacillus subtilis. Bioscience, Biotechnology, and Biochemistry 79 (5):845–1. doi: 10.1080/09168451.2014.993356.
  • Nie, X., L. Zhao, N. Wang, and X. Meng. 2017. Phenolics-protein interaction involved in silver carp myo fi brilliar protein films with hydrolysable and condensed tannins. LWT - Food Science and Technology 81:258–64. doi: 10.1016/j.lwt.2017.04.011.
  • Niehues, M., T. Stark, D. Keller, T. Hofmann, and A. Hensel. 2011. Antiadhesion as a functional concept for prevention of pathogens: N-Phenylpropenoyl-L-amino acid amides as inhibitors of the Helicobacter pylori BabA outer membrane protein. Molecular Nutrition & Food Research 55 (7):1104–17. doi: 10.1002/mnfr.201000548.
  • Oliver, S., O. Vittorio, G. Cirillo, and C. Boyer. 2016. Enhancing the therapeutic effects of polyphenols with macromolecules. Polymer Chemistry 7 (8):1529–44. doi: 10.1039/C5PY01912E.
  • Olmedo-Juárez, A., T. I. Briones-Robles, A. Zaragoza-Bastida, A. Zamilpa, D. Ojeda-Ramírez, P. Mendoza de Gives, J. Olivares-Pérez, and N. Rivero-Perez. 2019. Antibacterial activity of compounds isolated from Caesalpinia coriaria (Jacq) Willd against important bacteria in public health. Microbial Pathogenesis 136:103660. doi: 10.1016/j.micpath.2019.103660.
  • Özçelik, B., I. Orhan, and G. Toker. 2006. Antiviral and antimicrobial assessment of some selected flavonoids. Zeitschrift für Naturforschung C 61 (9–10):632–8. doi: 10.1515/znc-2006-9-1003.
  • Ozdal, T., E. Capanoglu, and F. Altay. 2013. A review on protein – phenolic interactions and associated changes. Food Research International 51 (2):954–70. doi: 10.1016/j.foodres.2013.02.009.
  • Papuc, C., G. V. Goran, C. N. Predescu, V. Nicorescu, and G. Stefan. 2017. Plant Polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16 (6):1243–26. doi: 10.1111/1541-4337.12298.
  • Park, J., J. Lee, E. Jung, Y. Park, K. Kim, B. Park, K. Jung, E. Park, J. Kim, and D. Park. 2004. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against propionibacterium sp. European Journal of Pharmacology 496 (1–3):189–95. doi: 10.1016/j.ejphar.2004.05.047.
  • Poveda, J. M., L. Loarce, M. Alarcón, M. C. Díaz-Maroto, and M. E. Alañón. 2018. Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Industrial Crops and Products 112:617–25. doi: 10.1016/j.indcrop.2017.12.063.
  • Precupas, A., A. R. Leonties, A. Neacsu, R. Sandu, and V. T. Popa. 2019. Gallic acid influence on bovine serum albumin thermal stability. New Journal of Chemistry 43 (9):3891–8. doi: 10.1039/C9NJ00115H.
  • Przybyłek, I., and T. M. Karpiński. 2019. Antibacterial properties of propolis. Molecules 24 (11):2047–13. doi: 10.3390/molecules24112047.
  • Qayyum, S., D. Sharma, D. Bisht, and A. U. Khan. 2019. Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress. Microbial Pathogenesis 126:205–11. doi: 10.1016/j.micpath.2018.11.013.
  • Quan, T. H., S. Benjakul, T. Sae-leaw, A. K. Balange, and S. Maqsood. 2019. Protein-polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology 91:507–17. doi: 10.1016/j.tifs.2019.07.049.
  • Rawel, H. M., K. Meidtner, and J. Kroll. 2005. Binding of selected phenolic compounds to proteins. Journal of Agricultural and Food Chemistry 53 (10):4228–35. doi: 10.1021/jf0480290.
  • Rehman, A., T. Ahmad, R. M. Aadil, M. J. Spotti, A. M. Bakry, I. M. Khan, L. Zhao, T. Riaz, and Q. Tong. 2019. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science & Technology 90:35–46. doi: 10.1016/j.tifs.2019.05.015.
  • Šaponjac, V. T., G. Ćetković, J. Čanadanović-Brunet, B. Pajin, S. Djilas, J. Petrović, I. Lončarević, S. Stajčić, and J. Vulić. 2016. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chemistry 207:27–33. doi: 10.1016/j.foodchem.2016.03.082.
  • Save, S. N., and S. Choudhary. 2018. Elucidation of energetics and mode of recognition of green tea polyphenols by human serum albumin. Journal of Molecular Liquids 265:807–17. doi: 10.1016/j.molliq.2018.07.017.
  • Schmiege, D., M. Evers, T. Kistemann, and T. Falkenberg. 2020. What drives antibiotic use in the community? A systematic review of determinants in the human outpatient sector. International Journal of Hygiene and Environmental Health 226:113497. doi: 10.1016/j.ijheh.2020.113497.
  • Scodro, R. B. L., C. T. A. Pires, V. S. Carrara, C. O. T. Lemos, L. Cardozo-Filho, V. A. Souza, A. G. Corrêa, V. L. D. Siqueira, M. V. C. Lonardoni, R. F. Cardoso, et al. 2013. Anti-tuberculosis neolignans from Piper regnellii. Phytomedicine 20 (7):600–4. doi: 10.1016/j.phymed.2013.01.005.
  • Sellimi, S., A. Benslima, V. Barragan-montero, M. Hajji, and M. Nasri. 2017. Polyphenolic-protein-polysaccharide ternary conjugates from cystoseira barbata tunisian seaweed as potential biopreservatives: Chemical, antioxidant and antimicrobial properties. International Journal of Biological Macromolecules 105 (Pt 2):1375–83. doi: 10.1016/j.ijbiomac.2017.08.007.
  • Serra, D. O., F. Mika, A. M. Richter, and R. Hengge. 2016. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the r E -dependent sRNA RybB. Molecular Microbiology, 00 101 (1):136–51. doi: 10.1111/mmi.13379.
  • Seukep, J. A., A. G. Fankam, D. E. Djeussi, I. K. Voukeng, S. B. Tankeo, J. A. Noumdem, A. H. Kuete, and V. Kuete. 2013. Antibacterial activities of the methanol extracts of seven cameroonian dietary plants against bacteria expressing MDR phenotypes. SpringerPlus 2:363. doi: 10.1186/2193-1801-2-363.
  • Shahidi, F. R. Senadheera, and S. John. 2018. Encyclopedia of food chemistry: Protein–phenol interactions. In Encyclopedia of food chemistry. Amsterdam, the Netherlands: Elsevier. doi: 10.1016/B978-0-08-100596-5.21485-6.
  • Shahzad, M., E. Millhouse, S. Culshaw, C. A. Edwards, G. Ramage, and E. Combet. 2015. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food & Function 6 (3):719–29. doi: 10.1039/c4fo01087f.
  • Sheng, L., S. A. Olsen, J. Hu, W. Yue, W. J. Means, and M. J. Zhu. 2016. Inhibitory effects of grape seed extract on growth, quorum sensing, and virulence factors of CDC “top-six” non-O157 Shiga toxin producing E.coli. International Journal of Food Microbiology 229 (9):24–32. doi: 10.1016/j.ijfoodmicro.2016.04.001.
  • Shimamura, Y., N. Aoki, Y. Sugiyama, T. Tanaka, M. Murata, and S. Masuda. 2016. Plant-derived polyphenols interact with staphylococcal enterotoxin A and inhibit toxin activity. PLoS One 11 (6):e0157082. doi: 10.1371/journal.pone.0157082.
  • Shimamura, Y., C. Hirai, Y. Sugiyama, M. Utsumi, A. Yanagida, M. Murata, N. Ohashi, and S. Masuda. 2017. Interaction between various apple procyanidin and staphylococcal enterotoxin A and their inhibitory effects on toxin activity. Toxins 9 (8):243. doi: 10.3390/toxins9080243.
  • Shpigelman, A., G. Israeli, and Y. D. Livney. 2010. Thermally-induced protein polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocolloids. 24 (8):735–43. doi: 10.1016/j.foodhyd.2010.03.015.
  • Singh, B., J. P. Singh, A. Kaur, and N. Singh. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International (Ottawa, Ont.) 132:109114. doi: 10.1016/j.foodres.2020.109114.
  • Siriwong, S., Y. Teethaisong, K. Thumanu, B. Dunkhunthod, and G. Eumkeb. 2016. The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacology and Toxicology 17 (1):1–14. doi: 10.1186/s40360-016-0083-8.
  • Soares, S., N. Mateus, and V. D. Freitas. 2012. Interaction of different classes of salivary proteins with food tannins. Food Research International 49 (2):807–13. doi: 10.1016/j.foodres.2012.09.008.
  • Sousa, V., Â. Luís, M. Oleastro, F. Domingues, and S. Ferreira. 2019. Polyphenols as resistance modulators in Arcobacter butzleri. Folia Microbiologica 64 (4):547–54. doi: 10.1007/s12223-019-00678-3.
  • Stapleton, P. D., S. Shah, J. C. Anderson, Y. Hara, J. M. T. Hamilton-Miller, and P. W. Taylor. 2004. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. International Journal of Antimicrobial Agents 23 (5):462–7. doi: 10.1016/j.ijantimicag.2003.09.027.
  • Stenvang, M., M. S. Dueholm, B. S. Vad, T. Seviour, G. Zeng, S. Geifman-Shochat, M. T. Søndergaard, G. Christiansen, R. L. Meyer, S. Kjelleberg, et al. 2016. Epigallocatechin gallate remodels overexpresses functional amyloids in Pseudomonas aeruginosa ans increases biofilm susceptibility to antibiotic treatment. The Journal of Biological Chemistry 291 (51):26540–53. doi: 10.1074/jbc.M116.739953.
  • Sui, X., H. Sun, B. Qi, M. Zhang, Y. Li, and L. Jiang. 2018. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions. Food Chemistry 245:871–8. doi: 10.1016/j.foodchem.2017.11.090.
  • Sun, L., M. J. Gidley, and F. J. Warren. 2017. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry Lijun Sun. Molecular Nutrition & Food Research 61 (10):1700324. doi: 10.1002/mnfr.201700324.
  • Tang, B., Y. Huang, X. Ma, X. Liao, Q. Wang, X. Xiong, and H. Li. 2016. Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity. Food Chemistry 212:434–42. doi: 10.1016/j.foodchem.2016.06.007.
  • Tang, F., Y. Xie, H. Cao, H. Yang, X. Chen, and J. Xiao. 2017. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach. Food Chemistry 219:321–8. doi: 10.1016/j.foodchem.2016.09.154.
  • Tiam, E. R., D. S. Ngono Bikobo, A. Abouem A Zintchem, N. Mbabi Nyemeck, E. D. F. Moni Ndedi, P. H. Betote Diboué, M. A. Nyegue, A. d T. Atchadé, D. Emmanuel Pegnyemb, C. G. Bochet, et al. 2019. Secondary metabolites from Triclisia gilletii (De Wild) Staner (Menispermaceae) with antimycobacterial activity against Mycobacterium tuberculosis. Natural Product Research 33 (5):642–50. doi: 10.1080/14786419.2017.1402324.
  • Tresserra-Rimbau, A., S. Castro-Barquero, F. Vitelli-Storelli, N. Becerra-Tomas, Z. Vázquez-Ruiz, A. Díaz-López, D. Corella, O. Castañer, D. Romaguera, J. Vioque, et al. 2019. Associations between dietary polyphenols and type 2 diabetes in a cross-sectional analysis of the PREDIMED-Plus trial: Role of body mass index and sex. Antioxidants 8 (11):537. doi: 10.3390/antiox8110537.
  • Tsuzuki, S., N. Fujitsuka, K. Horiuchi, S. Ijichi, Y. Gu, Y. Fujitomo, R. Takahashi, and N. Ohmagari. 2020. Factors associated with sufficient knowledge of antibiotics and antimicrobial resistance in the Japanese general population. Scientific Reports 10 (1):3502. doi: 10.1038/s41598-020-60444-1.
  • van Duynhoven, J., E. E. Vaughan, F. van Dorsten, V. Gomez-Roldan, R. de Vos, J. Vervoort, J. J. van der Hooft, L. Roger, R. Draijer, and D. M. Jacobs. 2013. Interactions of black tea polyphenols with human gut microbiota: Implications for gut and cardiovascular health. The American Journal of Clinical Nutrition 98 (6):1631S–1641. doi: 10.3945/ajcn.113.058263.
  • Von Borowski, R. G., K. R. Zimmer, B. F. Leonardi, D. S. Trentin, R. C. Silva, M. P. de Barros, A. J. Macedo, S. C. B. Gnoatto, G. Gosmann, and A. R. Zimmer. 2019. Industrial crops & products red pepper Capsicum baccatum: Source of antiadhesive and antibio film compounds against nosocomial bacteria. Industrial Crops and Products 127:148–57. doi: 10.1016/j.indcrop.2018.10.011.
  • Wang, X., C.-T. Ho, and Q. Huang. 2007. Investigation of adsorption behavior of (−) -epigallocatechin gallate on bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring. Agriculcure and Food Chemistry 55 (13):4987–92.
  • Watrelot, A. A., D. L. Schulz, and J. A. Kennedy. 2017. Wine polysaccharides in fluence tannin-protein interactions. Food Hydrocolloids. 63:571–9. doi: 10.1016/j.foodhyd.2016.10.010.
  • Wu, S., Y. Zhang, F. Ren, Y. Qin, J. Liu, J. Liu, Q. Wang, and H. Zhang. 2018. Structure-affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity. Food Chemistry 245:613–9. doi: 10.1016/j.foodchem.2017.10.122.
  • Xiao, J., F. Mao, F. Yang, Y. Zhao, C. Zhang, and K. Yamamoto. 2011. Interaction of dietary polyphenols with bovine milk proteins: Molecular structure – affinity relationship and influencing bioactivity aspects. Molecular Nutrition & Food Research 55 (11):1637–45. doi: 10.1002/mnfr.201100280.
  • Xie, Y., J. Chen, A. Xiao, and L. Liu. 2017. Antibacterial activity of polyphenols: Structure-activity relationship and influence of hyperglycemic condition. Molecules 22 (11):1913. doi: 10.3390/molecules22111913.
  • Yadav, A. K., J. Thakur, O. Prakash, F. Khan, D. Saikia, and M. M. Gupta. 2013. Screening of flavonoids for antitubercular activity and their structure-activity relationships. Medicinal Chemistry Research 22 (6):2706–16. doi: 10.1007/s00044-012-0268-7.
  • Yang, C., B. Wang, J. Wang, S. Xia, and Y. Wu. 2019. Effect of pyrogallic acid (1,2,3-benzenetriol) polyphenol-protein covalent conjugation reaction degree on structure and antioxidant properties of pumpkin (Cucurbita sp.) seed protein isolate. LWT - Food Science and Technology 109:443–9. doi: 10.1016/j.lwt.2019.04.034.
  • Ye, J., F. Fan, X. Xu, and Y. Liang. 2013. Interactions of black and green tea polyphenols with whole milk. Food Research International 53 (1):449–55. doi: 10.1016/j.foodres.2013.05.033.
  • Yildirim-Elikoglu, S., and Y. K. Erdem. 2018. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Reviews International 34 (7):665–97. doi: 10.1080/87559129.2017.1377225.
  • Yoda, Y., Z. Q. Hu, W. H. Zhao, and T. Shimamura. 2004. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. Journal of Infection and Chemotherapy 10 (1):55–8. doi: 10.1007/s10156-003-0284-0.
  • Yoo, S., R. M. Murata, and S. Duarte. 2011. Antimicrobial traits of tea- and cranberry-derived polyphenols against streptococcus mutans. Caries Research 45 (4):327–35. doi: 10.1159/000329181.
  • Yu, Q., L. Fan, and Z. Duan. 2019. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chemistry 297:124910. doi: 10.1016/j.foodchem.2019.05.184.
  • Zakova, T., J. Rondevaldova, A. Bernardos, P. Landa, and L. Kokoska. 2018. The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiologica et Immunologica Hungarica 65 (4):467–76. doi: 10.1556/030.65.2018.040.
  • Zayda, M. G., Masuda, Y. Hammad, A. M. Honjoh, K. ichi, Elbagory, A. M., and Miyamoto, T. 2020. Molecular characterisation of methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) Staphylococcus aureus isolated from bovine subclinical mastitis and Egyptian raw milk cheese. International Dairy Journal 104:104646. doi: 10.1016/j.idairyj.2020.104646.
  • Zhang, H., J.-M. Jiang, L. Han, Y.-Z. Lao, D. Zheng, Y.-Y. Chen, S.-J. Wan, C.-W. Zheng, H.-S. Tan, Z.-G. Li, et al. 2019. Engineering research centre of shanghai colleges for TCM New drug discovery, SC. Pharmacological Research 147:104328. doi: 10.1016/j.phrs.2019.104328.
  • Zhang, H., J. Jung, and Y. Zhao. 2016. Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydrate Polymers 137:82–91. doi: 10.1016/j.carbpol.2015.10.036.
  • Zhang, L., D. J. McClements, Z. Wei, G. Wang, X. Liu, and F. Liu. 2020. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition 60 (12):2083–97. doi: 10.1080/10408398.2019.1630358.
  • Zhang, Y., C. Pu, W. Tang, S. Wang, and Q. Sun. 2020. Effects of four polyphenols loading on the attributes of lipid bilayers. Journal of Food Engineering 282:110008. doi: 10.1016/j.jfoodeng.2020.110008.
  • Zhang, Y., F. Bao, J. Hu, S. Liang, Y. Zhang, G. Du, C. Zhang, and Y. Cheng. 2007. Antibacterial lignans and triterpenoids from Rostellularia procumbens. Planta Medica 73 (15):1596–9. doi: 10.1055/s-2007-993747.
  • Zhang, Y., J. Wei, Y. Qiu, C. Niu, Z. Song, Y. Yuan, and T. Yue. 2019. Structure-dependent inhibition of stenotrophomonas maltophilia by polyphenol and its impact on cell membrane. Frontiers in Microbiology 10:2646–11. doi: 10.3389/fmicb.2019.02646.
  • Zhao, H., M. Zhu, K. Wang, E. Yang, J. Su, Q. Wang, N. Cheng, X. Xue, L. Wu, and W. Cao. 2020. Identification and quantitation of bioactive components from honeycomb (Nidus Vespae). Food Chemistry 314:126052. doi: 10.1016/j.foodchem.2019.126052.
  • Zhao, L., A. Zhou, Z. Liu, J. Xiao, Y. Wang, Y. Cao, and L. Wang. 2020. Inhibitory mechanism of lactoferrin on antibacterial activity of oenothein B: Isothermal titration calorimetry and computational docking simulation. Journal of the Science of Food and Agriculture 100 (6):2494–501. doi: 10.1002/jsfa.10271.
  • Zhao, Q., X. Yu, C. Zhou, A. Elgasim, A. Yagoub, and H. Ma. 2020. Effects of collagen and casein with phenolic compounds interactions on protein in vitro digestion and antioxidation. LWT - Food Science and Technology 124:109192. doi: 10.1016/j.lwt.2020.109192.
  • Zhao, Y., X. Wang, D. Li, H. Tang, D. Yu, L. Wang, and L. Jiang. 2020. Effect of anionic polysaccharides on conformational changes and antioxidant properties of protein-polyphenol binary covalently-linked complexes. Process Biochemistry 89:89–97. doi: 10.1016/j.procbio.2019.10.021.
  • Zhou, L., D. Li, J. Wang, Y. Liu, and J. Wu. 2007. Antibacterial phenolic compounds from the spines of gleditsia sinensis lam. Natural Product Research 21 (4):283–91. doi: 10.1080/14786410701192637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.