1,573
Views
17
CrossRef citations to date
0
Altmetric
Review Articles

Preparation and potential applications of alginate oligosaccharides

, , ORCID Icon &
Pages 10130-10147 | Published online: 26 Apr 2022

References

  • Abd El-Mohdy, H. 2017. Radiation-induced degradation of sodium alginate and its plant growth promotion effect. Arabian Journal of Chemistry 10:S431–S438. doi: 10.1016/j.arabjc.2012.10.003.
  • An, Q.-D., G.-L. Zhang, H.-T. Wu, Z.-C. Zhang, G.-S. Zheng, L. Luan, Y. Murata, and X. Li. 2009. Alginate‐deriving oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its potential application in protection against pathogens. Journal of Applied Microbiology 106 (1):161–70.
  • Ariyo, B. T., C. Bucke, and T. Keshaverz. 1997. Alginate oligosaccharides as enhancers of penicillin production in cultures of Penicillium chrysogenum. Biotechnology and Bioengineering 53 (1):17–20. doi: 10.1002/(SICI)1097-0290(19970105)53:1<17::AID-BIT3>3.0.CO;2-1.
  • Ariyo, B., C. Tamerler, C. Bucke, and T. Keshavarz. 1998. Enhanced penicillin production by oligosaccharides from batch cultures of Penicillium chrysogenum in stirred-tank reactors. FEMS Microbiology Letters 166 (1):165–70.
  • Assis, J., E. Á. Serrão, N. C. Coelho, F. Tempera, M. Valero, and F. Alberto. 2018. Past climate changes and strong oceanographic barriers structured low‐latitude genetic relics for the golden kelp Laminaria ochroleuca. Journal of Biogeography 45 (10):2326–36. doi: 10.1111/jbi.13425.
  • Balakrishnan, B., S. Lesieur, D. Labarre, and A. Jayakrishnan. 2005. Periodate oxidation of sodium alginate in water and in ethanol–water mixture: A comparative study. Carbohydrate Research 340 (7):1425–9.
  • Belik, A., A. Silchenko, O. Malyarenko, A. Rasin, M. Kiseleva, M. Kusaykin, and S. Ermakova. 2020. Two new alginate lyases of PL7 and PL6 families from polysaccharide-degrading bacterium Formosa algae KMM 3553T: Structure, properties, and products analysis. Marine Drugs 18 (2):130. doi: 10.3390/md18020130.
  • Bhatia, V., and S. Sharma. 2021. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. Journal of the Neurological Sciences 421:117253.
  • Bi, D., Q. Lai, N. Cai, T. Li, Y. Zhang, Q. Han, Y. Peng, H. Xu, J. Lu, W. Bao, et al. 2018. Elucidation of the molecular-mechanisms and in vivo evaluation of the anti-inflammatory effect of alginate-derived Seleno-polymannuronate. Journal of Agricultural and Food Chemistry 66 (9):2083–91. doi: 10.1021/acs.jafc.7b05719.
  • Bi, D., Q. Lai, Q. Han, N. Cai, H. He, W. Fang, J. Yi, X. Li, H. Xu, X. Li, et al. 2018. Seleno-polymannuronate attenuates neuroinflammation by suppressing microglial and astrocytic activation. Journal of Functional Foods 51:113–20. doi: 10.1016/j.jff.2018.10.010.
  • Bi, D., Q. Lai, X. Li, N. Cai, T. Li, W. Fang, Q. Han, B. Yu, L. Li, Q. Liu, et al. 2019. Neuroimmunoregulatory potential of seleno-polymannuronate derived from alginate in lipopolysaccharide-stimulated BV2 microglia. Food Hydrocolloids. 87:925–32. doi: 10.1016/j.foodhyd.2018.09.013.
  • Bi, D., S. Xiao, Z. Lin, L. Yao, W. Fang, Y. Wu, H. Xu, J. Lu, and X. Xu. 2021. Alginate-derived mannuronate oligosaccharide attenuates tauopathy through enhancing autophagy. Journal of Agricultural and Food Chemistry 69 (15):4438–45. doi: 10.1021/acs.jafc.1c00394.
  • Bi, D., L. Yao, Z. Lin, L. Chi, H. Li, H. Xu, X. Du, Q. Liu, Z. Hu, J. Lu, et al. 2021. Unsaturated mannuronate oligosaccharide ameliorates β-amyloid pathology through autophagy in Alzheimer’s disease cell models. Carbohydrate Polymers 251:117124. doi: 10.1016/j.carbpol.2020.117124.
  • Bi, D., R. Zhou, N. Cai, Q. Lai, Q. Han, Y. Peng, Z. Jiang, Z. Tang, J. Lu, W. Bao, et al. 2017. Alginate enhances Toll-like receptor 4-mediated phagocytosis by murine RAW264.7 macrophages. International Journal of Biological Macromolecules 105 (Pt 2):1446–54. doi: 10.1016/j.ijbiomac.2017.07.129.
  • Boucelkha, A., E. Petit, R. Elboutachfaiti, R. Molinié, S. Amari, and R. Zaidi-Yahaoui. 2017. Production of guluronate oligosaccharide of alginate from brown algae Stypocaulon scoparium using an alginate lyase. Journal of Applied Phycology 29 (1):509–19. doi: 10.1007/s10811-016-0928-y.
  • Brownlee, I., A. Allen, J. Pearson, P. Dettmar, M. Havler, M. Atherton, and E. Onsøyen. 2005. Alginate as a source of dietary fiber. Critical Reviews in Food Science and Nutrition 45 (6):497–510.
  • Burana-osot, J., S. Hosoyama, Y. Nagamoto, S. Suzuki, R. J. Linhardt, and T. Toida. 2009. Photolytic depolymerization of alginate. Carbohydrate Research 344 (15):2023–7.
  • Campos-Perez, W., and E. Martinez-Lopez. 2021. Effects of short chain fatty acids on metabolic and inflammatory processes in human health. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1866 (5):158900. doi: 10.1016/j.bbalip.2021.158900.
  • Cheng, H., C. Wen, C. Zhang, and W. Kwapong. 2020. The use of GV-971 induces liver injury in an Alzheimer’s disease patient. Authorea Preprints.
  • Chen, Y., W. Dou, H. Li, J. Shi, and Z. Xu. 2018. The alginate lyase from Isoptericola halotolerans CGMCC 5336 as a new tool for the production of alginate oligosaccharides with guluronic acid as reducing end. Carbohydrate Research 470:36–41. doi: 10.1016/j.carres.2018.06.005.
  • Cheng, Y., D. Wang, J. Gu, J. Li, H. Liu, F. Li, and W. Han. 2017. Biochemical characteristics and variable alginate-degrading modes of a novel bifunctional endolytic alginate lyase. Applied and Environmental Microbiology 83 (23):e01608–01617. doi: 10.1128/AEM.01608-17.
  • Chen, J., Y. Hu, L. Zhang, Y. Wang, S. Wang, Y. Zhang, H. Guo, D. Ji, and Y. Wang. 2017. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery. Frontiers in Pharmacology 8:623. doi: 10.3389/fphar.2017.00623.
  • Ching, S. H., N. Bansal, and B. Bhandari. 2017. Alginate gel particles–A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition 57 (6):1133–52.
  • Ebere, E., I. Obinna, and V. Wirnkor. 2019. Applications of column, paper, thin layer and ion exchange chromatography in purifying samples: Mini review. SF Journal of Pharmaceutical and Analytical Chemistry 2:1018.
  • Eftekharzadeh, B., F. Khodagholi, A. Abdi, and N. Maghsoudi. 2010. Alginate protects NT2 neurons against H2O2-induced neurotoxicity. Carbohydrate Polymers 79 (4):1063–72. doi: 10.1016/j.carbpol.2009.10.040.
  • Ermund, A., C. V. Recktenwald, G. Skjåk-Braek, L. N. Meiss, E. Onsøyen, P. D. Rye, A. Dessen, A. H. Myrset, and G. C. Hansson. 2017. OligoG CF-5/20 normalizes cystic fibrosis mucus by chelating calcium. Clinical and Experimental Pharmacology & Physiology 44 (6):639–47. doi: 10.1111/1440-1681.12744.
  • Falkeborg, M., L.-Z. Cheong, C. Gianfico, K. M. Sztukiel, K. Kristensen, M. Glasius, X. Xu, and Z. Guo. 2014. Alginate oligosaccharides: Enzymatic preparation and antioxidant property evaluation. Food Chemistry 164:185–94. doi: 10.1016/j.foodchem.2014.05.053.
  • Fan, Y., J. Hu, J. Li, Z. Yang, X. Xin, J. Wang, J. Ding, and M. Geng. 2005. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neuroscience Letters 374 (3):222–6. doi: 10.1016/j.neulet.2004.10.063.
  • Fang, W., D. Bi, R. Zheng, N. Cai, H. Xu, R. Zhou, J. Lu, M. Wan, and X. Xu. 2017. Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages. Scientific Reports 7 (1):1663. doi: 10.1038/s41598-017-01868-0.
  • Feng, W., J. Liu, S. Wang, Y. Hu, H. Pan, T. Hu, H. Guan, D. Zhang, and Y. Mao. 2021. Alginate oligosaccharide alleviates D-galactose-induced cardiac ageing via regulating myocardial mitochondria function and integrity in mice . Journal of Cellular and Molecular Medicine 25 (15):7157–68. doi: 10.1111/jcmm.16746.
  • Feng, W., X. Yang, M. Feng, H. Pan, J. Liu, Y. Hu, S. Wang, D. Zhang, F. Ma, and Y. Mao. 2021. Alginate oligosaccharide prevents against D-galactose-mediated cataract in C57BL/6J mice via regulating oxidative stress and antioxidant system. Current Eye Research 46 (6):802–10. doi: 10.1080/02713683.2020.1842456.
  • Fischer, A., and D. Wefers. 2019. Chromatographic analysis of alginate degradation by five recombinant alginate lyases from Cellulophaga algicola DSM 14237. Food Chemistry 299:125142. doi: 10.1016/j.foodchem.2019.125142.
  • Flórez-Fernández, N., M. D. Torres, M. J. González-Muñoz, and H. Domínguez. 2019. Recovery of bioactive and gelling extracts from edible brown seaweed Laminaria ochroleuca by non-isothermal autohydrolysis. Food Chemistry 277:353–61.
  • Franco, J. N., F. Tuya, I. Bertocci, L. Rodríguez, B. Martínez, I. Sousa-Pinto, and F. Arenas. 2018. The ‘golden kelp’ Laminaria ochroleuca under global change: Integrating multiple eco-physiological responses with species distribution models. Journal of Ecology 106 (1):47–58. doi: 10.1111/1365-2745.12810.
  • Gao, S., Z. Zhang, S. Li, H. Su, L. Tang, Y. Tan, W. Yu, and F. Han. 2018. Characterization of a new endo-type polysaccharide lyase (PL) family 6 alginate lyase with cold-adapted and metal ions-resisted property. International Journal of Biological Macromolecules 120 (Pt A):729–35. doi: 10.1016/j.ijbiomac.2018.08.164.
  • Gordon, S. 2002. Pattern recognition receptors: Doubling up for the innate immune response. Cell 111 (7):927–30. doi: 10.1016/S0092-8674(02)01201-1.
  • Guo, L., H. D. Goff, F. Xu, F. Liu, J. Ma, M. Chen, and F. Zhong. 2020. The effect of sodium alginate on nutrient digestion and metabolic responses during both in vitro and in vivo digestion process. Food Hydrocolloids. 107:105304. doi: 10.1016/j.foodhyd.2019.105304.
  • Guo, J.-J., L.-L. Ma, H.-T. Shi, J.-B. Zhu, J. Wu, Z.-W. Ding, Y. An, Y.-Z. Zou, and J.-B. Ge. 2016. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis. Marine Drugs 14 (12):231. doi: 10.3390/md14120231.
  • Guo, X., X. Xin, L. Gan, Q. Nie, and M. Geng. 2006. Determination of the accessibility of acidic oligosaccharide sugar chain to blood-brain barrier using surface plasmon resonance. Biological & Pharmaceutical Bulletin 29 (1):60–3.
  • Guo, J.-J., F.-Q. Xu, Y.-H. Li, J. Li, X. Liu, X.-F. Wang, L.-G. Hu, and Y. An. 2017. Alginate oligosaccharide alleviates myocardial reperfusion injury by inhibiting nitrative and oxidative stress and endoplasmic reticulum stress-mediated apoptosis. Drug Design, Development and Therapy 11:2387–97. doi: 10.2147/DDDT.S142118.
  • Han, Z., M. Chen, X. Fu, M. Yang, M. Hrmova, Y. Zhao, and H. Mou. 2021. Potassium alginate oligosaccharides alter gut microbiota, and have potential to prevent the development of hypertension and heart failure in spontaneously hypertensive rats. International Journal of Molecular Sciences 22 (18):9823. doi: 10.3390/ijms22189823.
  • Han, Y., L. Zhang, X. Yu, S. Wang, C. Xu, H. Yin, and S. Wang. 2019. Alginate oligosaccharide attenuates α2, 6-sialylation modification to inhibit prostate cancer cell growth via the Hippo/YAP pathway. Cell Death & Disease 10 (5):1–14. doi: 10.1038/s41419-019-1560-y.
  • Haug, A, and B. Larsen. 1966. A study on the constitution of alginic acid by partial acid hydrolysis. Paper Presented at the Proceedings of the Fifth International Seaweed Symposium, Halifax, August 25–28, 1965.
  • Larsen, B. 1962. Quantitative determination of the uronic acid composition of alginates. Acta Chemica Scandinavica 16:1908. doi: 10.3891/acta.chem.scand.16-1908.
  • Haug, A. 1964. Composition and properties of alginates. In Report No. 30. Norwegian Institute of Seaweed Research.
  • He, X., H-m. Hwang, W. G. Aker, P. Wang, Y. Lin, X. Jiang, and X. He. 2014. Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiological Research 169 (9–10):759–67.
  • He, N., Y. Yang, H. Wang, N. Liu, Z. Yang, and S. Li. 2021. Unsaturated alginate oligosaccharides (UAOS) protects against dextran sulfate sodium-induced colitis associated with regulation of gut microbiota. Journal of Functional Foods 83:104536. doi: 10.1016/j.jff.2021.104536.
  • Hien, N. Q., N. Nagasawa, L. X. Tham, F. Yoshii, V. H. Dang, H. Mitomo, K. Makuuchi, and T. Kume. 2000. Growth-promotion of plants with depolymerized alginates by irradiation. Radiation Physics and Chemistry 59 (1):97–101. doi: 10.1016/S0969-806X(99)00522-8.
  • Holme, H. K., L. Davidsen, A. Kristiansen, and O. Smidsrød. 2008. Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohydrate Polymers 73 (4):656–64.
  • Holme, H. K., K. Lindmo, A. Kristiansen, and O. Smidsrød. 2003. Thermal depolymerization of alginate in the solid state. Carbohydrate Polymers 54 (4):431–8. doi: 10.1016/S0144-8617(03)00134-6.
  • Holtan, S., Q. Zhang, W. I. Strand, and G. Skjåk-Braek. 2006. Characterization of the hydrolysis mechanism of polyalternating alginate in weak acid and assignment of the resulting MG-oligosaccharides by NMR spectroscopy and ESI-mass spectrometry. Biomacromolecules 7 (7):2108–21. doi: 10.1021/bm050984q.
  • Houghton, D., M. D. Wilcox, P. I. Chater, I. A. Brownlee, C. J. Seal, and J. P. Pearson. 2015. Biological activity of alginate and its effect on pancreatic lipase inhibition as a potential treatment for obesity. Food Hydrocolloids 49:18–24.
  • Huang, H., S. Li, S. Bao, K. Mo, D. Sun, and Y. Hu. 2021. Expression and characterization of a cold-adapted alginate lyase with exo/endo-type activity from a novel marine bacterium alteromonas portus HB161718T. Marine Drugs 19 (3):155. doi: 10.3390/md19030155.
  • Huang, G., S. Wen, S. Liao, Q. Wang, S. Pan, R. Zhang, F. Lei, W. Liao, J. Feng, and S. Huang. 2019. Characterization of a bifunctional alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2. Biotechnology Letters 41 (10):1187–200. doi: 10.1007/s10529-019-02722-1.
  • Hu, F., S. Cao, Q. Li, B. Zhu, and Z. Yao. 2021. Construction and biochemical characterization of a novel hybrid alginate lyase with high activity by module recombination to prepare alginate oligosaccharides. International Journal of Biological Macromolecules 166:1272–9.
  • Hu, J., M. Geng, J. Li, X. Xin, J. Wang, M. Tang, J. Zhang, X. Zhang, and J. Ding. 2004. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. Journal of Pharmacological Sciences 95 (2):248–55. doi: 10.1254/jphs.fpj04004x.
  • Hu, X., X. Jiang, H. Hwang, S. Liu, and H. Guan. 2004. Antitumour activities of alginate-derived oligosaccharides and their sulphated substitution derivatives. European Journal of Phycology 39 (1):67–71. doi: 10.1080/09670260310001636695.
  • Hu, T., C. Li, X. Zhao, G. Li, G. Yu, and H. Guan. 2013. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method. Carbohydrate Research 373:53–8.
  • Hu, F., B. Zhu, Q. Li, H. Yin, Y. Sun, Z. Yao, and D. Ming. 2020. Elucidation of a unique pattern and the role of carbohydrate binding module of an alginate lyase. Marine Drugs 18 (1):32. doi: 10.3390/md18010032.
  • Itoh, T., E. Nakagawa, M. Yoda, A. Nakaichi, T. Hibi, and H. Kimoto. 2019. Structural and biochemical characterisation of a novel alginate lyase from Paenibacillus sp. str. FPU-7. Scientific Reports 9 (1):1–14. doi: 10.1038/s41598-019-51006-1.
  • Iwamoto, Y., K. Iriyama, K. Osatomi, T. Oda, and T. Muramatsu. 2002. Primary structure and chemical modification of some amino acid residues of bifunctional alginate lyase from a marine bacterium Pseudoalteromonas sp. strain No. 272. Journal of Protein Chemistry 21 (7):455–63.
  • Iwamoto, M., M. Kurachi, T. Nakashima, D. Kim, K. Yamaguchi, T. Oda, Y. Iwamoto, and T. Muramatsu. 2005. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Letters 579 (20):4423–9. doi: 10.1016/j.febslet.2005.07.007.
  • Iwamoto, Y., X. Xu, T. Tamura, T. Oda, and T. Muramatsu. 2003. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytokine production in human mononuclear cells. Bioscience Biotechnology and Biochemistry 67 (2):258–63. doi: 10.1271/bbb.67.258.
  • Jack, A. A., S. Khan, L. C. Powell, M. F. Pritchard, K. Beck, H. Sadh, L. Sutton, A. Cavaliere, H. Florance, P. D. Rye, et al. 2018. Alginate oligosaccharide-induced modification of the lasI-lasR and rhlI-rhlR quorum-sensing systems in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 62 (5):e02318–02317. doi: 10.1128/AAC.02318-17.
  • Jack, A. A., H. R. Nordli, L. C. Powell, D. J. J. Farnell, B. Pukstad, P. D. Rye, D. W. Thomas, G. Chinga-Carrasco, and K. E. Hill. 2019. Cellulose nanofibril formulations incorporating a low-molecular-weight alginate oligosaccharide modify bacterial biofilm development. Biomacromolecules 20 (8):2953–61. doi: 10.1021/acs.biomac.9b00522.
  • Jiang, R-w., X-g. Du, X. Zhang, X. Wang, D-y. Hu, T. Meng, Y-l. Chen, M-y. Geng, and J-k. Shen. 2013. Synthesis and bioassay of β-(1,4)-D-mannans as potential agents against Alzheimer’s disease. Acta Pharmacologica Sinica 34 (12):1585–91. doi: 10.1038/aps.2013.104.
  • Jiang, Z., Y. Guo, X. Wang, H. Li, H. Ni, L. Li, A. Xiao, and Y. Zhu. 2019. Molecular cloning and characterization of AlgL17, a new exo-oligoalginate lyase from Microbulbifer sp. ALW1. Protein Expression and Purification 161:17–27. doi: 10.1016/j.pep.2019.03.015.
  • Kelishomi, Z. H., B. Goliaei, H. Mahdavi, A. Nikoofar, M. Rahimi, A. A. Moosavi-Movahedi, F. Mamashli, and B. Bigdeli. 2016. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chemistry 196:897–902. doi: 10.1016/j.foodchem.2015.09.091.
  • Kesika, P., N. Suganthy, B. S. Sivamaruthi, and C. Chaiyasut. 2021. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sciences 264:118627.
  • Khan, S., A. Tøndervik, H. Sletta, G. Klinkenberg, C. Emanuel, E. Onsøyen, R. Myrvold, R. A. Howe, T. R. Walsh, K. E. Hill, et al. 2012. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrobial Agents and Chemotherapy 56 (10):5134–41. doi: 10.1128/AAC.00525-12.
  • Kleinert, M., C. Clemmensen, S. M. Hofmann, M. C. Moore, S. Renner, S. C. Woods, P. Huypens, J. Beckers, M. H. de Angelis, A. Schürmann, et al. 2018. Animal models of obesity and diabetes mellitus. Nature Reviews. Endocrinology 14 (3):140–62. doi: 10.1038/nrendo.2017.161.
  • Kuklenyik, Z., A. E. Boyer, R. Lins, C. P. Quinn, M. Gallegos-Candela, A. Woolfitt, J. L. Pirkle, and J. R. Barr. 2011. Comparison of MALDI-TOF-MS and HPLC-ESI-MS/MS for endopeptidase activity-based quantification of anthrax lethal factor in serum. Analytical Chemistry 83 (5):1760–5. doi: 10.1021/ac1030144.
  • Kumar, S., and S. K. Nayak. 2019. Purification techniques for biological proteins. Think India Journal 22 (30):1057–77.
  • Lamela, M., J. Anca, R. Villar, J. Otero, and J. Calleja. 1989. Hypoglycemic activity op several seaweed extracts. Journal of Ethnopharmacology 27 (1-2):35–43. doi: 10.1016/0378-8741(89)90075-5.
  • Lane, C., J. Hardy, and J. Schott. 2018. Alzheimer’s disease. European Journal of Neurology 25 (1):59–70. doi: 10.1111/ene.13439.
  • Lee, D. W., W. S. Choi, M. W. Byun, H. J. Park, Y.-M. Yu, and C. M. Lee. 2003. Effect of γ-irradiation on degradation of alginate. Journal of Agricultural and Food Chemistry 51 (16):4819–23.
  • Lee, K. H., Y. Song, W. Wu, K. Yu, and G. Zhang. 2020. The gut microbiota, environmental factors, and links to the development of food allergy. Clinical and Molecular Allergy 18 (1):1–11. doi: 10.1186/s12948-020-00120-x.
  • Li, S., N. He, and L. Wang. 2019. Efficiently Anti-obesity effects of unsaturated alginate oligosaccharides (UAOS) in high-fat diet (HFD)-fed mice. Marine Drugs 17 (9):540. doi: 10.3390/md17090540.
  • Li, Q., F. Hu, B. Zhu, Y. Sun, and Z. Yao. 2019. Biochemical characterization and elucidation of action pattern of a novel polysaccharide lyase 6 family alginate lyase from marine bacterium Flammeovirga sp. NJ-04. Marine Drugs 17 (6):323. doi: 10.3390/md17060323.
  • Linker, A., and R. S. Jones. 1964. A polysaccharide resembling alginic acid from a Pseudomonas micro-organism. Nature 204 (4954):187–8.
  • Linker, A., and R. S. Jones. 1966. A new polysaccharide resembling alginic acid isolated from pseudomonads. Journal of Biological Chemistry 241 (16):3845–51. doi: 10.1016/S0021-9258(18)99848-0.
  • Liu, J., J. F. Kennedy, X. Zhang, Y. Heng, W. Chen, Z. Chen, X. Wu, and X. Wu. 2020. Preparation of alginate oligosaccharide and its effects on decay control and quality maintenance of harvested kiwifruit. Carbohydrate Polymers 242:116462. doi: 10.1016/j.carbpol.2020.116462.
  • Liu, M., Q. Nie, X. Xin, and M. Geng. 2008. Identification of AOSC-binding proteins in neurons. Chinese Journal of Oceanology and Limnology 26 (4):394–9. doi: 10.1007/s00343-008-0394-8.
  • Liu, Q., Y. Xi, Q. Wang, J. Liu, P. Li, X. Meng, K. Liu, W. Chen, X. Liu, and Z. Liu. 2021. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis. Brain, Behavior, and Immunity 95:330–43. doi: 10.1016/j.bbi.2021.04.005.
  • Liu, J., S. Yang, X. Li, Q. Yan, M. J. Reaney, and Z. Jiang. 2019. Alginate oligosaccharides: Production, biological activities, and potential applications. Comprehensive Reviews in Food Science and Food Safety 18 (6):1859–81. doi: 10.1111/1541-4337.12494.
  • Li, H., S. Wang, Y. Zhang, and L. Chen. 2018. High-level expression of a thermally stable alginate lyase using pichia pastoris, characterization and application in producing brown alginate oligosaccharide. Marine Drugs 16 (5):158. doi: 10.3390/md16050158.
  • Li, X., A. Xu, H. Xie, W. Yu, W. Xie, and X. Ma. 2010. Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydrate Polymers 79 (3):660–4. doi: 10.1016/j.carbpol.2009.09.020.
  • Luan, L. Q., V. T. T. Ha, N. H. P. Uyen, L. T. T. Trang, and N. Q. Hien. 2012. Preparation of oligoalginate plant growth promoter by γ irradiation of alginate solution containing hydrogen peroxide. Journal of Agricultural and Food Chemistry 60 (7):1737–41.
  • Lu, J., H. Yang, J. Hao, C. Wu, L. Liu, N. Xu, R. J. Linhardt, and Z. Zhang. 2015. Impact of hydrolysis conditions on the detection of mannuronic to guluronic acid ratio in alginate and its derivatives. Carbohydrate Polymers 122:180–8. doi: 10.1016/j.carbpol.2015.01.008.
  • Lu, D., Q. Zhang, S. Wang, J. Guan, R. Jiao, N. Han, W. Han, and F. Li. 2019. Biochemical characteristics and synergistic effect of two novel alginate lyases from Photobacterium sp. FC615. Biotechnology for Biofuels 12 (1):1–17. doi: 10.1186/s13068-019-1600-y.
  • Mak, W., S. K. Wang, T. Liu, N. Hamid, Y. Li, J. Lu, and W. L. White. 2014. Anti-proliferation potential and content of fucoidan extracted from sporophyll of New Zealand Undaria pinnatifida. Frontiers in Nutrition 1:9. doi: 10.3389/fnut.2014.00009.
  • Mao, S., T. Zhang, W. Sun, and X. Ren. 2012. The depolymerization of sodium alginate by oxidative degradation. Pharmaceutical Development and Technology 17 (6):763–9.
  • Ming, L., L. Lei, H-f. ZHANG, Y. Bao, and N. Everaert. 2021. Alginate oligosaccharides preparation, biological activities and their application in livestock and poultry. Journal of Integrative Agriculture 20 (1):24–34.
  • Mouton, A. J., X. Li, M. E. Hall, and J. E. Hall. 2020. Obesity, hypertension, and cardiac dysfunction: Novel roles of immunometabolism in macrophage activation and inflammation. Circulation Research 126 (6):789–806.
  • Nagasawa, N., H. Mitomo, F. Yoshii, and T. Kume. 2000. Radiation-induced degradation of sodium alginate. Polymer Degradation and Stability 69 (3):279–85. doi: 10.1016/S0141-3910(00)00070-7.
  • Oakley, J. L., R. Weiser, L. C. Powell, J. Forton, E. Mahenthiralingam, P. D. Rye, K. E. Hill, D. W. Thomas, and M. F. Pritchard. 2021. Phenotypic and genotypic adaptations in Pseudomonas aeruginosa biofilms following long-term exposure to an alginate oligomer therapy. mSphere 6 (1):e01216–01220. doi: 10.1128/mSphere.01216-20.
  • Onsøyen, E. 1997. Alginates. In Thickening and gelling agents for food, ed. A. P. Imeson, 22–44. Boston: Springer.
  • Pan, H., W. Feng, M. Chen, H. Luan, Y. Hu, X. Zheng, S. Wang, and Y. Mao. 2021. Alginate oligosaccharide ameliorates D-galactose-induced kidney aging in mice through activation of the Nrf2 signaling pathway. BioMed Research International 2021:6623328. doi: 10.1155/2021/6623328.
  • Park, H. J., J.-M. Ahn, R.-M. Park, S.-H. Lee, S. S. Sekhon, S. Y. Kim, J.-H. Wee, Y.-H. Kim, and J. Min. 2016. Effects of alginate oligosaccharide mixture on the bioavailability of lysozyme as an antimicrobial agent. Journal of Nanoscience and Nanotechnology 16 (2):1445–9. doi: 10.1166/jnn.2016.10757.
  • Pei, X., Y. Chang, and J. Shen. 2019. Cloning, expression and characterization of an endo-acting bifunctional alginate lyase of marine bacterium Wenyingzhuangia fucanilytica. Protein Expression and Purification 154:44–51.
  • Pillai, C. K., W. Paul, and C. P. Sharma. 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science 34 (7):641–78. doi: 10.1016/j.progpolymsci.2009.04.001.
  • Pisoschi, A. M., A. Pop, F. Iordache, L. Stanca, G. Predoi, and A. I. Serban. 2021. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry 209:112891.
  • Poo, M. 2020. New light on the horizon of Alzheimer’s disease. National Science Review 7:831. doi: 10.1093/nsr/nwaa008.
  • Powell, L. C., M. F. Pritchard, C. Emanuel, E. Onsøyen, P. D. Rye, C. J. Wright, K. E. Hill, and D. W. Thomas. 2014. A nanoscale characterization of the interaction of a novel alginate oligomer with the cell surface and motility of Pseudomonas aeruginosa. American Journal of Respiratory Cell and Molecular Biology 50 (3):483–92. doi: 10.1165/rcmb.2013-0287OC.
  • Powell, L. C., M. F. Pritchard, E. L. Ferguson, K. A. Powell, S. U. Patel, P. D. Rye, S.-M. Sakellakou, N. J. Buurma, C. D. Brilliant, J. M. Copping, et al. 2018. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms and Microbiomes 4 (1):1–10. doi: 10.1038/s41522-018-0056-3.
  • Pritchard, M. F., A. Jack, L. C. Powell, H. Sadh, P. D. Rye, K. E. Hill, and D. W. Thomas. 2017. Alginate oligosaccharides modify hyphal infiltration of Candida albicans in an in vitro model of invasive human candidosis. Journal of Applied Microbiology 123 (3):625–36. doi: 10.1111/jam.13516.
  • Pritchard, M. F., J. L. Oakley, C. D. Brilliant, P. D. Rye, J. Forton, I. J. Doull, I. Ketchell, K. E. Hill, D. W. Thomas, and P. D. Lewis. 2019. Mucin structural interactions with an alginate oligomer mucolytic in cystic fibrosis sputum. Vibrational Spectroscopy 103:102932. doi: 10.1016/j.vibspec.2019.102932.
  • Pritchard, M. F., L. C. Powell, A. A. Jack, K. Powell, K. Beck, H. Florance, J. Forton, P. D. Rye, A. Dessen, K. E. Hill, et al. 2017. A low-molecular-weight alginate oligosaccharide disrupts pseudomonal microcolony formation and enhances antibiotic effectiveness. Antimicrobial Agents and Chemotherapy 61 (9):e00762–00717. doi: 10.1128/AAC.00762-17.
  • Pritchard, M. F., L. C. Powell, S. Khan, P. C. Griffiths, O. T. Mansour, R. Schweins, K. Beck, N. J. Buurma, C. E. Dempsey, C. J. Wright, et al. 2017. The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption. Scientific Reports 7 (1):44731–12. doi: 10.1038/srep44731.
  • Pritchard, M. F., L. C. Powell, G. E. Menzies, P. D. Lewis, K. Hawkins, C. Wright, I. Doull, T. R. Walsh, E. Onsøyen, A. Dessen, et al. 2016. A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease. Molecular Pharmaceutics 13 (3):863–72. doi: 10.1021/acs.molpharmaceut.5b00794.
  • Rastelli, M., C. Knauf, and P. D. Cani. 2018. Gut microbes and health: A focus on the mechanisms linking microbes, obesity, and related disorders. Obesity (Silver Spring, Md.) 26 (5):792–800.
  • Roberts, J. L., S. Khan, C. Emanuel, L. C. Powell, M. F. Pritchard, E. Onsøyen, R. Myrvold, D. W. Thomas, and K. E. Hill. 2013. An in vitro study of alginate oligomer therapies on oral biofilms. Journal of Dentistry 41 (10):892–9. doi: 10.1016/j.jdent.2013.07.011.
  • Rye, P., A. Tøndervik, H. Sletta, M. Pritchard, A. Kristiansen, A. Dessen, and D. Thomas. 2018. Alginate oligomers and their use as active pharmaceutical drugs. In Alginates and their biomedical applications, ed. B. H. A. Rehm and M. Fata Moradali, 237–56. Singapore: Springer.
  • Şen, M., and H. Atik. 2012. The antioxidant properties of oligo sodium alginates prepared by radiation-induced degradation in aqueous and hydrogen peroxide solutions. Radiation Physics and Chemistry 81 (7):816–22. doi: 10.1016/j.radphyschem.2012.03.025.
  • Shen, P., Y. Gu, C. Zhang, C. Sun, L. Qin, C. Yu, and H. Qi. 2021. Metabolomic approach for characterization of polyphenolic compounds in Laminaria japonica, Undaria pinnatifida, Sargassum fusiforme and Ascophyllum nodosum. Foods 10 (1):192.
  • Shimokawa, T., S. Yoshida, T. Takeuchi, K. Murata, T. Ishii, and I. Kusakabe. 1996. Preparation of two series of oligo-guluronic acids from sodium alginate by acid hydrolysis and enzymatic degradation. Bioscience, Biotechnology, and Biochemistry 60 (9):1532–4. doi: 10.1271/bbb.60.1532.
  • Singer-Englar, T., G. Barlow, and R. Mathur. 2019. Obesity, diabetes, and the gut microbiome: An updated review. Expert Review of Gastroenterology & Hepatology 13 (1):3–15. doi: 10.1080/17474124.2019.1543023.
  • Soukaina, B., E. Zainab, P. Guillaume, R. Halima, M. Philippe, E. M. Cherkaoui, and D. Cédric. 2020. Radical depolymerization of alginate extracted from Moroccan Brown Seaweed Bifurcaria bifurcata. Applied Sciences 10 (12):4166. doi: 10.3390/app10124166.
  • Stanford, E. 1881. Improvements in the manufacture of useful products from seaweeds. British Patent, 142.
  • Stender, E. G. P., C. Dybdahl Andersen, F. Fredslund, J. Holck, A. Solberg, D. Teze, G. H. J. Peters, B. E. Christensen, F. L. Aachmann, D. H. Welner, et al. 2019. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. The Journal of Biological Chemistry 294 (47):17915–30. doi: 10.1074/jbc.RA119.010206.
  • Stokniene, J., L. C. Powell, O. A. Aarstad, F. L. Aachmann, P. D. Rye, K. E. Hill, D. W. Thomas, and E. L. Ferguson. 2020. Bi-functional alginate oligosaccharide–polymyxin conjugates for improved treatment of multidrug-resistant gram-negative bacterial infections. Pharmaceutics 12 (11):1080. doi: 10.3390/pharmaceutics12111080.
  • Tøndervik, A., H. Sletta, G. Klinkenberg, C. Emanuel, L. C. Powell, M. F. Pritchard, S. Khan, K. M. Craine, E. Onsøyen, P. D. Rye, et al. 2014. Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of antifungals against Candida and Aspergillus spp. PloS One. 9 (11):e112518. doi: 10.1371/journal.pone.0112518.
  • Tran, V., S. Cho, J. Kwon, and D. Kim. 2019. Alginate oligosaccharide (AOS) improves immuno-metabolic systems by inhibiting STOML2 overexpression in high-fat-diet-induced obese zebrafish. Food & Function 10 (8):4636–48.
  • Tusi, S. K., L. Khalaj, G. Ashabi, M. Kiaei, and F. Khodagholi. 2011. Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials 32 (23):5438–58.
  • Uddin, M. S., M. T. Kabir, A. Al Mamun, G. E. Barreto, M. Rashid, A. Perveen, and G. M. Ashraf. 2020. Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. International Immunopharmacology 84:106479.
  • Ueno, M., K. Cho, S. Nakazono, S. Isaka, R. Abu, S. Takeshita, K. Yamaguchi, D. Kim, and T. Oda. 2015. Alginate oligomer induces nitric oxide (NO) production in RAW264. 7 cells: Elucidation of the underlying intracellular signaling mechanism. Bioscience, Biotechnology, and Biochemistry 79 (11):1787–93.
  • Uno, T., M. Hattori, and T. Yoshida. 2006. Oral administration of alginic acid oligosaccharide suppresses IgE production and inhibits the induction of oral tolerance. Bioscience Biotechnology and Biochemistry 70 (12):3054–7. doi: 10.1271/bbb.60391.
  • Ushasree, M. V., O. K. Lee, and E. Y. Lee. 2021. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydrate Polymers 267:118158.
  • Wang, Z., M. Cao, B. Li, X. Ji, X. Zhang, Y. Zhang, and H. Wang. 2020. Cloning, secretory expression and characterization of a unique pH-stable and cold-adapted alginate lyase. Marine Drugs 18 (4):189. doi: 10.3390/md18040189.
  • Wang, X., X. Chen, X. Yang, M. Geng, and L. Wang. 2007. Acidic oligosaccharide sugar chain, a marine-derived oligosaccharide, activates human glial cell line-derived neurotrophic factor signaling. Neuroscience Letters 417 (2):176–80.
  • Wang, P., X. Jiang, Y. Jiang, X. Hu, H. Mou, M. Li, and H. Guan. 2007. In vitro antioxidative activities of three marine oligosaccharides. Natural Product Research 21 (7):646–54.
  • Wang, S., J. Li, W. Xia, and M. Geng. 2007. A marine-derived acidic oligosaccharide sugar chain specifically inhibits neuronal cell injury mediated by β-amyloid-induced astrocyte activation in vitro. Neurological Research 29 (1):96–102.
  • Wang, Y., L. Li, C. Ye, J. Yuan, and S. Qin. 2020. Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice. Applied Microbiology and Biotechnology 104 (8):3541–54.
  • Wang, H., Z. Song, O. Ciofu, E. Onsøyen, P. D. Rye, and N. Høiby. 2016. OligoG CF-5/20 disruption of mucoid Pseudomonas aeruginosa biofilm in a murine lung infection model. Antimicrobial Agents and Chemotherapy 60 (5):2620–6.
  • Wang, X., G. Sun, T. Feng, J. Zhang, X. Huang, T. Wang, Z. Xie, X. Chu, J. Yang, H. Wang, et al. 2019. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Research 29 (10):787–803. doi: 10.1038/s41422-019-0216-x.
  • Wan, J., J. Zhang, D. Chen, B. Yu, and J. He. 2017. Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs. Animal Feed Science and Technology 234:118–27. doi: 10.1016/j.anifeedsci.2017.09.006.
  • Wan, J., J. Zhang, D. Chen, B. Yu, Z. Huang, X. Mao, P. Zheng, J. Yu, and J. He. 2018. Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Advances 8 (24):13482–92. doi: 10.1039/C8RA01943F.
  • Wan, J., J. Zhang, Q. Xu, H. Yin, D. Chen, B. Yu, and J. He. 2021. Alginate oligosaccharide protects against enterotoxigenic Escherichia coli-induced porcine intestinal barrier injury. Carbohydrate Polymers 270:118316.
  • Wan, J., J. Zhang, H. Yin, D. Chen, B. Yu, and J. He. 2020. Ameliorative effects of alginate oligosaccharide on tumour necrosis factor-α-induced intestinal epithelial cell injury. International Immunopharmacology 89:107084. doi: 10.1016/j.intimp.2020.107084.
  • Weijers, C. A., M. C. Franssen, and G. M. Visser. 2008. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnology Advances 26 (5):436–56.
  • Wilcox, M. D., I. A. Brownlee, J. C. Richardson, P. W. Dettmar, and J. P. Pearson. 2014. The modulation of pancreatic lipase activity by alginates. Food Chemistry 146:479–84.
  • Wilcox, M. D., P. I. Chater, K. J. Stanforth, A. D. Woodcock, P. W. Dettmar, and J. P. Pearson. 2021. The rheological properties of an alginate satiety formulation in a physiologically relevant human model gut system. Annals of Esophagus 5:1–9.
  • Xie, X., and K. L. Cheong. 2021. Recent advances in marine algae oligosaccharides: Structure, analysis, and potential prebiotic activities. Critical Reviews in Food Science and Nutrition 1–16. doi: 10.1080/10408398.2021.1916736. PMID: 33939558
  • Xing, M., Q. Cao, Y. Wang, H. Xiao, J. Zhao, Q. Zhang, A. Ji, and S. Song. 2020. Advances in research on the bioactivity of alginate oligosaccharides. Marine Drugs 18 (3):144. doi: 10.3390/md18030144.
  • Xu, X., D.-C. Bi, C. Li, W.-S. Fang, R. Zhou, S.-M. Li, L.-L. Chi, M. Wan, and L.-M. Shen. 2015. Morphological and proteomic analyses reveal that unsaturated guluronate oligosaccharide modulates multiple functional pathways in murine macrophage RAW264.7 cells. Marine Drugs 13 (4):1798–818. doi: 10.3390/md13041798.
  • Xu, X., D. Bi, and M. Wan. 2016. Characterization and immunological evaluation of low-molecular-weight alginate derivatives. Current Topics in Medicinal Chemistry 16 (8):874–87.
  • Xu, X., D. Bi, X. Wu, Q. Wang, G. Wei, L. Chi, Z. Jiang, T. Oda, and M. Wan. 2014. Unsaturated guluronate oligosaccharide enhances the antibacterial activities of macrophages. FASEB Journal 28 (6):2645–54. doi: 10.1096/fj.13-247791.
  • Xu, X., Y. Iwamoto, Y. Kitamura, T. Oda, and T. Muramatsu. 2003. Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants. Bioscience, Biotechnology, and Biochemistry 67 (9):2022–5. doi: 10.1271/bbb.67.2022.
  • Xu, X., X. Wu, Q. Wang, N. Cai, H. Zhang, Z. Jiang, M. Wan, and T. Oda. 2014. Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264. 7 cells and their structure–activity relationships. Journal of Agricultural and Food Chemistry 62 (14):3168–76.
  • Yamamoto, Y., M. Kurachi, K. Yamaguchi, and T. Oda. 2007a. Induction of multiple cytokine secretion from RAW264.7 cells by alginate oligosaccharides. Bioscience, Biotechnology, and Biochemistry 71 (1):238–41. doi: 10.1271/bbb.60416.
  • Yamamoto, Y., M. Kurachi, K. Yamaguchi, and T. Oda. 2007b. Stimulation of multiple cytokine production in mice by alginate oligosaccharides following intraperitoneal administration. Carbohydrate Research 342 (8):1133–7. doi: 10.1016/j.carres.2007.02.015.
  • Yamasaki, Y., T. Yokose, T. Nishikawa, D. Kim, Z. Jiang, K. Yamaguchi, and T. Oda. 2012. Effects of alginate oligosaccharide mixtures on the growth and fatty acid composition of the green alga Chlamydomonas reinhardtii. Journal of Bioscience and Bioengineering 113 (1):112–6.
  • Yan, G., Y. Guo, J. Yuan, D. Liu, and B. Zhang. 2011. Sodium alginate oligosaccharides from brown algae inhibit Salmonella Enteritidis colonization in broiler chickens. Poultry Science 90 (7):1441–8.
  • Yang, D., and K. S. Jones. 2009. Effect of alginate on innate immune activation of macrophages. Journal of Biomedical Materials Research. Part A 90 (2):411–8.
  • Yang, Z., J. Li, and H. Guan. 2004. Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydrate Polymers 58 (2):115–21. doi: 10.1016/j.carbpol.2004.04.022.
  • Yang, Y., Z. Ma, G. Yang, J. Wan, G. Li, L. Du, and P. Lu. 2017. Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of microRNA-29b in aneurysm patients after endovascular aortic repair. Drug Design, Development and Therapy 11:2565–79. doi: 10.2147/DDDT.S140206.
  • Yang, M., Y. Yu, S. Yang, X. Shi, H. Mou, and L. Li. 2018. Expression and characterization of a new polyG-specific alginate lyase from marine bacterium Microbulbifer sp. Frontiers in Microbiology 9:2894.
  • Yin, R., Y.-J. Yi, Z. Chen, B.-X. Wang, X.-H. Li, and Y.-X. Zhou. 2021. Characterization of a new biofunctional, exolytic alginate lyase from Tamlana sp. s12 with high catalytic activity and cold-adapted features. Marine Drugs 19 (4):191. doi: 10.3390/md19040191.
  • Yoshida, T., A. Hirano, H. Wada, K. Takahashi, and M. Hattori. 2004. Alginic acid oligosaccharide suppresses Th2 development and IgE production by inducing IL-12 production. International Archives of Allergy and Immunology 133 (3):239–47.
  • You, L., Y. Gong, L. Li, X. Hu, C. Brennan, and V. Kulikouskaya. 2020. Beneficial effects of three brown seaweed polysaccharides on gut microbiota and their structural characteristics: An overview. International Journal of Food Science & Technology 55 (3):1199–206. doi: 10.1111/ijfs.14408.
  • Zeng, J., D. An, C. Jiao, Q. Xiao, H. Weng, Q. Yang, and A. Xiao. 2019. Cloning, expression, and characterization of a new pH- and heat-stable alginate lyase from Pseudoalteromonas carrageenovora ASY5. Journal of Food Biochemistry 43 (7):e12886.
  • Zhang, P., Y. Feng, L. Li, W. Ge, S. Yu, Y. Hao, W. Shen, X. Han, D. Ma, S. Yin, et al. 2021. Improvement in sperm quality and spermatogenesis following faecal microbiota transplantation from alginate oligosaccharide dosed mice. Gut 70 (1):222–5. doi: 10.1136/gutjnl-2020-320992.
  • Zhang, C., M. Li, A. Rauf, A. A. Khalil, Z. Shan, C. Chen, K. R. R. Rengasamy, and C. Wan. 2021. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Critical Reviews in Food Science and Nutrition 1–27. doi: 10.1080/10408398.2021.1946008.
  • Zhang, P., J. Liu, B. Xiong, C. Zhang, B. Kang, Y. Gao, Z. Li, W. Ge, S. Cheng, Y. Hao, et al. 2020. Microbiota from alginate oligosaccharide-dosed mice successfully mitigated small intestinal mucositis. Microbiome 8 (1):1–15. doi: 10.1186/s40168-020-00886-x.
  • Zhang, Y.-H., Y. Shao, C. Jiao, Q.-M. Yang, H.-F. Weng, and A.-F. Xiao. 2020. Characterization and application of an alginate lyase, Aly1281 from marine bacterium Pseudoalteromonas carrageenovora ASY5. Marine Drugs 18 (2):95. doi: 10.3390/md18020095.
  • Zhang, C., B. Xiong, L. Chen, W. Ge, S. Yin, Y. Feng, Z. Sun, Q. Sun, Y. Zhao, W. Shen, et al. 2021. Rescue of male fertility following faecal microbiota transplantation from alginate oligosaccharide-dosed mice. Gut 70 (11):2213–5. doi: 10.1136/gutjnl-2020-323593.
  • Zhang, K., Y. Yang, W. Wang, W. Liu, and Q. Lyu. 2021. Substrate-binding mode and intermediate-product distribution coguided protein design of alginate lyase AlyF for altered end-product distribution. Journal of Agricultural and Food Chemistry 69 (25):7190–8. doi: 10.1021/acs.jafc.1c02473.
  • Zhang, Z., G. Yu, H. Guan, X. Zhao, Y. Du, and X. Jiang. 2004. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibro sp. Carbohydrate Research 339 (8):1475–81.
  • Zhang, Z., G. Yu, X. Zhao, H. Liu, H. Guan, A. M. Lawson, and W. Chai. 2006. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. Journal of the American Society for Mass Spectrometry 17 (4):621–30.
  • Zhao, J., Y. Han, Z. Wang, R. Zhang, G. Wang, and Y. Mao. 2020. Alginate oligosaccharide protects endothelial cells against oxidative stress injury via integrin-α/FAK/PI3K signaling. Biotechnology Letters 42 (12):2749–58.
  • Zheng, W., M. Duan, J. Jia, S. Song, and C. Ai. 2021. Low-molecular alginate improved diet-induced obesity and metabolic syndrome through modulating the gut microbiota in BALB/c mice. International Journal of Biological Macromolecules 187:811–20.
  • Zhou, R., X. Shi, D. Bi, W. Fang, G. Wei, and X. Xu. 2015. Alginate-derived oligosaccharide inhibits neuroinflammation and promotes microglial phagocytosis of β-amyloid. Marine Drugs 13 (9):5828–46.
  • Zhou, R., X. Shi, Y. Gao, N. Cai, Z. Jiang, and X. Xu. 2015. Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide-activated murine macrophage RAW 264.7 cells. Journal of Agricultural and Food Chemistry 63 (1):160–8.
  • Zhuang, J., K. Zhang, X. Liu, W. Liu, Q. Lyu, and A. Ji. 2018. Characterization of a novel polyM-preferred alginate lyase from marine Vibrio splendidus OU02. Marine Drugs 16 (9):295. doi: 10.3390/md16090295.
  • Zhu, B., F. Hu, H. Yuan, Y. Sun, and Z. Yao. 2018. Biochemical characterization and degradation pattern of a unique pH-stable polyM-specific alginate lyase from newly isolated Serratia marcescens NJ-07. Marine Drugs 16 (4):129. doi: 10.3390/md16040129.
  • Zhu, B., K. Li, W. Wang, L. Ning, H. Tan, X. Zhao, and H. Yin. 2019. Preparation of trisaccharides from alginate by a novel alginate lyase Alg7A from marine bacterium Vibrio sp. W13. International Journal of Biological Macromolecules 139:879–85.
  • Zhu, B., F. Ni, Y. Sun, L. Ning, and Z. Yao. 2019. Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides. Biotechnology for Biofuels 12 (1):13. doi: 10.1186/s13068-019-1352-8.
  • Zhu, B., F. Ni, Y. Sun, and Z. Yao. 2017. Expression and characterization of a new heat-stable endo-type alginate lyase from deep-sea bacterium Flammeovirga sp. NJ-04. Extremophiles 21 (6):1027–36. doi: 10.1007/s00792-017-0962-y.
  • Zhu, Y., L. Wu, Y. Chen, H. Ni, A. Xiao, and H. Cai. 2016. Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates. Microbiological Research 182:49–58.
  • Zhu, B., and H. Yin. 2015. Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6 (3):125–31. doi: 10.1080/21655979.2015.1030543.
  • Zimoch-Korzycka, A., D. Kulig, Ż. Król-Kilińska, B. Żarowska, Ł. Bobak, and A. Jarmoluk. 2021. Biophysico-chemical properties of alginate oligomers obtained by acid and oxidation depolymerization. Polymers 13 (14):2258. doi: 10.3390/polym13142258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.